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Abstract. We consider the problem of estimating the variance of a sample quan-
tile calculated from a random sample of size n. The r-th-order kernel-smoothed
bootstrap estimator is known to yield an impressively small relative error of order
O(n~"/r+1)_ 1t nevertheless requires strong smoothness conditions on the underly-
ing density function, and has a performance very sensitive to the precise choice of the
bandwidth. The unsmoothed bootstrap has a poorer relative error of order O(n~/%),
but works for less smooth density functions. We investigate a modified form of the
bootstrap, known as the m out of n bootstrap, and show that it yields a relative error
of order smaller than O(n~'/%) under the same smoothness conditions required by
the conventional unsmoothed bootstrap on the density function, provided that the
bootstrap sample size m is of an appropriate order. The estimator permits exact,
simulation-free, computation and has accuracy fairly insensitive to the precise choice
of m. A simulation study is reported to provide empirical comparison of the various
methods.
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1. Introduction

Suppose that X1, ..., X, constitute a random sample of size n taken from a distri-
bution F. Let X(;) denote the j-th smallest datum in the sample. For a fixed p € (0,1),
assume that F" has a continuous and positive density f on F~!(0O) for an open neighbour-
hood O containing p. Denote by &, = F~1(p) the unique p-th quantile of F. The p-th
sample quantile X, is a natural and consistent estimator for &,, where r = [np|+1 and
[] denotes the integer part function. Standard theory establishes that o2 = Var(X(,))
admits an asymptotic expansion

(1.1) o2 =n"'p(l - p)f(&) 2 +o(n™h).

A general discussion can be found in Stuart and Ord ((1994), §10.10). Although (1.1)
provides an explicit leading term useful for approximating o2, its direct computation
requires the value of f(£,), which is usually unknown and is difficult to estimate. The
conventional, n out of n, unsmoothed bootstrap draws a large number of bootstrap
samples, each of size n, from X1,..., Xy, and estimates o2 by the sample variance of
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the bootstrap sample quantiles calculated from the bootstrap samples. Hall and Martin
(1988) show that the theoretical n out of n bootstrap estimator 62, which is based on
infinite simulation of bootstrap samples, has an explicit expression

n

(1.2) 57 =D (X(j) — X)) wn,j,

i=1
where wy, ; = r(:‘) f(JJ./:LI)/n z7"1(1 — z)""dz. They prove that 62 has a large relative
error of order O(n~'/4), that is 62/02 = 1+ O(n~'/4). Maritz and Jarrett (1978)
note that 2 may be more accurate than the leading term in the asymptotic formula
(1.1) for p = 1/2 in small-sample cases, even if the true f(§,) is employed to calculate
the latter. The smoothed bootstrap modifies the n out of n bootstrap procedure by
drawing (smoothed) bootstrap samples from a kernel density estimate of f rather than
from the empirical distribution of X3,...,X,,. Hall et al. (1989) show that the smoothed
bootstrap estimator has a smaller relative error, of order O(n~"/(3+1)) based on a kernel
of order r, under much stronger smoothness conditions on f, provided that the smoothing
bandwidth is chosen of order n=1/(2r+1),

The m out of n bootstrap, as pioneered by Bickel and Freedman (1981), provides
a method for rectifying bootstrap inconsistency in many nonregular problems: see, for
example, Swanepoel (1986) and Athreya (1987). It is, however, generally less efficient
than the n out of n bootstrap when the latter is consistent: see, for example, Shao
(1994) and Cheung et al. (2005). Exceptional cases have been found though. Wang and
Taguri (1998) and Lee (1999) improve the n out of n bootstrap by suitably adjusting the
resample size m in estimation and confidence interval problems respectively. Arcones
(2003) shows that the m out of n bootstrap provides a consistent estimator for the
distribution function of sample quantiles with error of order O(n=/%), whilst the m out
of n bootstrap reduces the error to order O(n~1/3) by use of m o n%/3. Janssen et al.
(2001) obtain independently similar results for U-quantiles. We shall show in the present
context that the m out of n bootstrap is also effective in reducing the relative error of
62 under the minimal smoothness conditions same as those required by the n out of n
bootstrap on f.

The rest of the paper is organized as follows. Section 2 reviews the smoothed boot-
strap method for variance estimation for sample quantiles. Section 3 studies the conver-
gence rate, as well as the asymptotic distribution, of the m out of n bootstrap variance
estimator. Section 4 describes a computational algorithm for empirically determining
the optimal m. Section 5 presents a simulation study to compare the performances of
the various variance estimators. Section 6 concludes our findings. Technical details are
given in the Appendix.

2. Smoothed bootstrap

We review the smoothed bootstrap procedure for estimating o2. Instead of re-
sampling from the empirical distribution of Xi,...,X,, the smoothed bootstrap sim-
ulates smoothed bootstrap samples from a kernel density estimate fy of f, given by
fo(z) = (nb)~? > K((z — X;)/b), where b > 0 denotes the bandwidth and K is an
r-th-order kernel function for » > 2. The smoothed bootstrap estimator &i’b of UZ is
then obtained by calculating the sample variance of the p-th-order smoothed bootstrap
sample quantiles.
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Let fU) be the j-th-derivative of f. Assume that f(") exists and is uniformly
continuous, f&) is bounded for 0 < j < r, f is bounded away from 0 in a neighbourhood
of &, and E|X|? < oo for some 7 > 0. Then Hall et al. (1989) show that 62 , has the
optimal relative error of order O(n~"/(27+1)) achieved by setting b o« n~1/Z+1)  In
principle, the relative error can be made arbitrarily close to O(n_l/ 2) by choosing a
sufficiently high kernel order r.

It should be noted that when r > 2, fb(az) necessarily takes on negative values for
some z and poses practical difficulties if smoothed bootstrap samples need be simulated
from f,. Negativity correction techniques of some sort must be incorporated into the
smoothed bootstrap procedure to make it computationally feasible: see, for example,
Lee and Young (1994). In the case where r = 2 so that fb is a proper density function,
the optimal relative error of 67 , is of order O(n~2/5), which already improves upon the

unsmoothed n out of n bootstrap, which has a relative error of order O(n~1/4).
3. m out of n bootstrap

The m out of n bootstrap modifies the n out of n bootstrap by drawing bootstrap
samples of size m, instead of n, from the empirical distribution of X7,..., X,,, where m
satisfies m = o(n) and m — oo as n — oo. The corresponding variance estimator 42, is
then defined as m/n times the sample variance of the p-th bootstrap sample quantiles.

Recall that X(;) is the j-th order statistic of X3,..., X, and X,y is the p-th sample
quantile. The m out of n bootstrap variance estimator 62, admits an explicit, directly

computable, formula:

(3.1) 67, = (m/n) > (X(j) — X(r)) W5,

=1

where wy, ; = k(7) f(?llll)/n k=1 (1-z)™ *dx and k = [mp|+1. Our main theorem below
establishes asymptotic normality of 62, together with the corresponding convergence rate.

Its proof is outlined in the Appendix.

THEOREM 3.1. Assume m « n* for some A € (0,1), E|X|? < oo for some n > 0,
f = F' exists and satisfies a Lipschitz condition of order v = % +¢, with e € (0, %], ina
neighbourhood of &, and f(£,) > 0. Then
(32) n3/2m_1/4(&,2n _ 0_121) — Sn + Op(m1/4n—1/2 +m—l/2—e/2nl/2)’

where Sy, converges in distribution to N(0,2m~1/2[p(1 — p)]3/2f(&,)™%).

The expansion (3.2) enables us to deduce the optimal choice of m by which 62,
achieves the fastest convergence rate, as is asserted in the following corollary.

COROLLARY 3.1. Under the conditions of Theorem 3.1, 62, has an optimal relative
error of order O(n~(112e)/(4+4€)) " qchieved by setting m o« nt/(+e),

Hall and Martin (1988) show that n%/4(62 — 02) has the same asymptotic normal
distribution as does n%/2m~1/4(62, — ¢2) under exactly the same conditions of Theo-
rem 3.1. It is clear that 62, converges to o2 at a faster rate than does 62, which has a



282 K. Y. CHEUNG AND STEPHEN M. S. LEE

relative error of order O(n~'/4). Although the smoothed bootstrap estimator &Z’b has

an even smaller relative error, of order O(n~"/("+V), than 62, for any r > 2, it requires
that f be at least twice continuously differentiable in a neighbourhood of &, a condition
much stronger than those of Theorem 3.1. Moreover, that no such computable expres-
sion as (3.1) exists for &i,b means that 672”6 has to be approximated by Monte Carlo
simulation, which is computationally more expensive and is not immediately feasible if
r > 2 due to the problem of negativity of .

Arcones (2003) establishes versions of Theorem 3.1 and Corollary 3.1 for m out
of n bootstrap estimation of the distribution of X(,j. He shows, under the stronger
assumption that f is differentiable at &,, that the fastest convergence rate, of order
n~1/3  is attained by setting m o n®/3. Our results apply to the variance of X(;) and
to densities f under less stringent smoothness conditions. Densities violating Arcones’
but satisfying our smoothness conditions include those which are Lipschitz continuous
of order v € (1/2,1) near &,. A simple example is f(z) = (7/6)(1 — |z|3/4), for [z] < 1,
which is Lipschitz continuous of order 3/4 at x = 0.

4. Empirical determination of m

It follows from Corollary 3.1 that fixing m = cn" for some constants ¢ and vy
independent of n, yields the best convergence rate for 52,. In practice vy is unknown and
so is the optimal value of ¢. We sketch below a simple algorlthm, based on the bootstrap,
for empirical determination of both ¢ and -y and hence the optimal choice of m.

First fix S distinct bootstrap sample sizes my,...,mg < n, for some S > 2. For
each s =1,...,9, calculate 02 = (n/m;)62, , the variance of the p-th bootstrap sample
quantile induced by the drawing of bootstrap samples of size m,. Generate a large
number, B say, of bootstrap samples X7,,..., & g, each of size mg, from Xi,...,X,.
For each X, calculate the £ out of m, estlmate of 622, namely

J/ms . .
/ ¥ 11 - z)¢ % dr,

5% = <e/ms>z<xb 0~ X% (1)
(G-1)/m,

where k* = [fp] + 1, 7* = [msp] + 1 and X ;) denotes the i-th smallest datum in X7,.
The mean squared error of the £ out of m, bootstrap variance estimate is then estimated
by MSE,(¢{) = B! Zb—1(5sbe - 0*2)2 Select ¢ = £, which minimizes MSE(¥)
over £ € {1,... ms} Asymptotically £; ~ c¢m7, so that logfs ~ logc + ylogms, for
s=1,...,5. Standard least squares techniques yield that ¢ ~ exp{D~1(M2L, — M, K)}
and v ~ D~Y(SK — MyL;), where M; = ¥5_ logm,, My = 35 (logms)?, Ly =
Ele logts, K = Zle (logms)(log ) and D = SM, — M2. Finally calculate the
optimal m to be m = [en”], with ¢ and ~ fixed at the above approximate values.

5. Simulation study

We conducted a simulation study to compare the mean squared errors of 62, 2, and

n ps for p = 0.1, 0.5 and 0.9 and for fixed values of m and b. Random samples of sizes n =
50 and 200 were generated from three distributions: (i) the standard normal distribution,
N(0,1), (ii) the chi-squared distribution with 5 degrees of freedom, x%, and (iii) the
double exponential distribution with density function f(x) = (1/2) exp(—|x|). All three
distributions have densities satisfying the Lipschitz condition of order one, so that the
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Fig. 1. Normal Example: mean squared errors of 62, 2, (plotted against m) and oy (plotted
against b) for n = 50 and 200, and p = 0.1, 0.5 and 0.9.

conditions of Theorem 3.1 hold for ¢ = 1/2. For the smoothed bootstrap estimator
62 ,, the second-order Epanechnikov kernel function k(t) = max{(3/4)(1 — t?),0} was
eniployed. Note that the first derivative of the double exponential density function does
not exist at .5 = 0, so that the density there lacks the smoothness condition sufficient
for proper functioning of the smoothed bootstrap method based on the kernel k above.
Each smoothed bootstrap estimate &31» was derived from 1,000 smoothed bootstrap
samples. The estimates 62 and 62, were directly computed using explicit formulae (1.2)
and (3.1) respectively. Each mean squared error was obtained by averaging over 1,600
random samples drawn from F'.

Figure 1 plots the mean squared error of 62, against m (bottom axis) and that of
&%,b against b (top axis) for the normal distribution. Similar comparisons for the chi-
squared and double exponential distributions are given in Figs. 2 and 3 respectively. The
mean squared error of 62 is also included in each diagram for reference.

For the N (0, 1) data, as predicted from asymptotic results, the n out of n bootstrap
yields for 62 the largest mean squared error, except for cases of large b or m, for all
combinations of n and p. The mean squared error of the smoothed bootstrap estimate
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Fig. 2. Chi-squared Example: mean squared errors of 62, 62, (plotted against m) and 6"21 b
{plotted against b) for n = 50 and 200, and p = 0.1, 0.5 and 0.9.

&i,b varies with b parabolically. Although it is asymptotically less accurate, the m out of
n bootstrap estimate 62, has mean squared error comparable to that of 62 , constructed
using an optimal b, and maintains a more stable performance than &i,b for n = 200.
Among the values of p studied, all three estimators tend to be most accurate at p = 0.5
for both n = 50 and 200.

For data drawn from the asymmetric x2, the mean squared errors of the estimators
are in general larger than those observed in the N(0,1) example, and increase as p
increases. As in Fig. 1, we see from Fig. 2 that 62 is generally the least accurate,
while the mean squared errors of 62, and &ﬁ,b are of similar magnitudes. The optimal
choice of bandwidth, which yields the minimum mean squared error for &ﬁ’b, increases
considerably as p increases; the optimal choice of m for 2, by constrast, stays within
the same range as p varies, rendering its empirical determination less difficult than that
of the optimal bandwidth.

Figure 3 displays the findings for the double exponential data. For p = 0.1 and 0.9,
we see that 572@ and 62, have comparable mean squared errors, which are notably smaller
than that of 62, provided b and m are selected sensibly. For p = 0.5, the mean squared
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Fig. 3. Double Exponential Example: mean squared errors of 42, 42, (plotted against m) and
6'721 » (plotted against b) for n = 50 and 200, and p = 0.1, 0.5 and 0.9.

error of 6,2%,, increases significantly as b increases, and is much larger than those of 62
and 62, for n = 200, due plausibly to the lack of smoothness of the double exponential
density at {5 = 0. In general the m out of n bootstrap performs much better than
the n out of n bootstrap for n = 200, except for a small m = 9. Similar to the N(0,1)
example, all three methods are most accurate at p = 0.5 among the values of p studied.

We note that in most of the investigated cases the accuracy of the m out of n
bootstrap deteriorates markedly for some very small values of m. A heuristic explanation
is as follows. We see from the proof of Theorem 3.1 that asymptotic properties of 62,
depend critically on the weights w,y, ; for j close to r. Lemma A.1 shows that the w,, ;
sequence, for j close to r, resembles asymptotically the central shape of a normal density.
Thus our asymptotic findings can reliably predict finite-sample behaviour only when the
Wn,,; attains its mode at some j strictly between 1 and n. Examination of the wy, ; in
detail shows that the latter condition holds only when m exceeds a certain value, M (n, p)
say, depending on both n and p. Under the settings of our simulation study, we find that
for both n = 50 and 200, M(n,p) =9, 2, 10 for p = 0.1, 0.5 and 0.9 respectively. Indeed
Figs. 1-3 all suggest that the m out of n bootstrap performance begins to stabilize once



286 K. Y. CHEUNG AND STEPHEN M. S. LEE

Table 1. Mean squared errors of various variance estimates. In the case of &2, results are
shown for both the smallest error obtained in the simulation study using fixed m and the error
given by empirically selecting m using the algorithm in Section 4. Mean and standard deviation
of the empirical m are also included.

Normal example

n = 50 n = 200
p=0.1 p=0.5 p=09 p=20.1 p=0.5 p=0.9
52 27x107° 41x107% 42x107° 75%107° 1.2x107° 9.0x107°
52, (fixed b) 6.7x107% 1.2x10"* 98x10°* 1.6 x1075 25x107% 1.4x107°
&2, (fixed m) 6.0x10"% 7.8x107% 1.1x1073 1.8x107% 15x107% 1.6x107°
02 (empirical m) 15x107% 1.2x107% 20x107° 23x107% 3.0x107% 35x107°
mean of empirical m 8.0 5.9 7.9 11.5 7.8 13.5
s.d. of empirical m 6.5 4.2 6.2 11.3 8.8 14.5
Chi-squared example
n = 50 n = 200
p=20.1 p=0.5 p=09 p=01 p=10.5 p=09
&2 12x1072 3.7x1072 3.4x10° 3.3x107% 9.4x107* 48x1072
62, (fixed b) 39x107% 9.8x107% 47x107?! 6.1 x107° 1.6 x107*% 4.8x1072
52 (fixed m) 34%x107% 84x107% 6.0x107! 45%x107% 1.4x107% 1.4x1072
&2 (empirical m) 35x1073 14x1072 1.4x10° 1.0x107% 33x107% 2.5x1072
mean of empirical m 8.3 7.7 10.1 8.2 7.6 13.9
s.d. of empirical m 4.2 8.9 7.1 5.8 9.4 12.3
Double exponential example
n = 50 n = 200
p=201 p=205 p=09 p=0.1 p=05 = 0.9
52 35x1072 40x10"% 72x107° 86x10"7 74x107% 1.0x107°
52, (fixed b) 41x10"% 23x107* 87x107? 59 x107% 54x107% 5.7x107°
52, (fixed m) 78x107% 28x107% 1.2x1072 3.0x107% 48x107% 27x1074
&2, (empirical m) 29x10°2 35x107*% 32x107? 39x107% 83x107¢ 63x107¢
mean of empirical m 9.1 15.7 10.3 13.1 34.6 14.8
s.d. of empirical m 7.8 19.3 7.3 11.1 34.2 13.5

m exceeds M (n, p), especially for n = 200. On the other hand, the optimal choice of
bandwidth for 62 » depends crucially on F', n and p, and its mean squared error increases
considerably if b deviates from its optimal value.

Table 1 compares numerically the mean squared error of 62 with those of 62, and
&2, at the optimal choices of m (among values greater than M(n,p)) and b as observed
from the simulation study. In the case of 62,, we include also results obtained using m
selected by the algorithm described in Section 4, in which 1,000 pilot bootstrap samples
were simulated to estimate the mean squared error of the £ out of m; bootstrap variance
estimate and the m, were chosen to be 2s + 8 for n = 50 and 12s — 2 for n = 200,
s=1,...,8. The mean and standard deviation of the empirical choice of m are reported
alongside the mean squared error findings. We see that the optimally constructed 42, and
an »» at fixed m and b respectively, have comparable errors. Both of them are cons1derably
more accurate than 62. In general, our algorithm for empirical determination of m
worked satisfactorily and produced estimates more accurate than 62, albeit to a lesser
extent than its fixed-m counterpart.
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6. Conclusion

We have shown, both theoretically and empirically, that the m out of n bootstrap
variance estimator 62, is notably superior to the conventional n out of n bootstrap estima-
tor 52. For densities satisfying a Lipschitz condition of order within (1/2, 1] near &,, 62,
incurs a relative error of smaller order than 62, provided that m is chosen appropriately.
The smoothed bootstrap estimator &i’b may yield an even smaller relative error using an
optimal bandwidth b, but requires much stronger smoothness conditions on the density
f.- The m out of n bootstrap therefore offers a convenient alternative which is more
accurate than the n out of n bootstrap and more robust than the smoothed bootstrap.
Under a smooth f for which both smoothed and unsmoothed bootstraps work properly,
we have that 62, 62, and 62 , generate relative errors of orders O(n='/4), O(n='/3) and

O(n~ 2/ %) respectlvely7 provided that m o« n?/3, b & n~1/% and a second-order kernel is
used in constructing 62 ,.

Our simulation results agree closely with the asymptotic findings. Both the
smoothed and the m out of n bootstraps, when constructed optimally, yield compa-
rable accuracies and outperform the n out of n bootstrap method substantially. The
optimal choice of bandwidth for the smoothed bootstrap varies considerably with the
problem settting. The mean squared error of & O'n p is also very sensitive to the bandwidth.
A slight deviation from the optimal value of the bandwidth may greatly deteriorate
the accuracy of the estimate. One therefore requires a sophisticatedly-designed, data-
dependent, procedure for calculating the optimal bandwidth in practice. On the other
hand, the observed mean squared error of 52, remains relatively stable over a wide range
of m beyond M (n, p), especially for large n. Also, the optimal choice of m tends to stay
within a stable region which varies little with the problem setting. This suggests that
the precise determination of m is less crucial an issue than is the choice of bandwidth for
[7,2%,,. We have proposed a simple bootstrap-based algorithm for empirically determining
the optimal m and obtained satisfactory results in our simulation study.

Unlike most bootstrap-based estimates, 62 and 62, can be evaluated directly using
formulae (1.2) and (3.1) respectively, so that no Monte Carlo simulation is necessary,
making their computation exact and very eflicient. The smoothed bootstrap estimate
6721’,, must, however, most conveniently be approximated using Monte Carlo simulation.
Use of a higher-order kernel, which effects in an improved error rate, further complicates
the Monte Carlo procedure due to negativity of the kernel estimate f5.

Appendix

Al Proof of Theorem 3.1

The proof is modelled after Hall and Martin’s (1988) arguments.

Let ¢ denote the standard normal density function, y,; = (5 — 1)/n and by, =
(Myn; — k){mYn;(1 — yn;)} /2. The following lemma states a useful asymptotic ex-
pansion for the weight wp, ;.

LEMMA A.l. Assume that m x n* for some A € (0,1). There erists some constant
C > 0 such that

—m)2
W,j =m0y (1= Yn 5)} 7 2$(brmn) + O(n e Cmna =P,
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PROOF. Note that wm; = Ljm(k,m —k + 1) — Ij_1y/n(k,m — k + 1), where
I(a,b) = Z;Ig_l (“*2 1) yI(1 — y)*+>=1~4. Without loss of generality, consider j =
np + q with ¢ > 0. Tjhe proof is completed by considering the Edgeworth expansion
of the binomial distribution function for the case 0 < ¢ < Dnm~/2(Inm)!/2, for some

D > 0, and Bernstein’s inequality for the case ¢ > Dnm~1/2(lnm)/2. O

We first consider the summation over j in (3.1). The expansion for 62, then follows
trivially after multiplication by m/n. The summation is divided into two parts, for some
§>0and B8 < N\12: (i) |7 —r| > n'tPm=1/2; and (ii) |j — r| < onttPm—1/2,

For part (i), we note that max{(X(;, — X()? : j < n} < 4n*/7 in probability: see
Hall and Martin (1988). Lemma A.1 implies that, for some constant Cy > 0, wp, ; <
Com!/?n~1e=Cm(ni-P)*  Thus, with probability tending to one, we have that for some
constant C3 > 0 and any ¢ > 0,

(A.l) Z (X(j) — X(r))zwm,j <4 C2m1/2n4/"e”c3"25 = O(n_c).

[§—7|>6n1+Bm—1/2

For part (ii), we assume throughout that |j — r| < én!*#m=1/2, and that }° refers to

summation over j satisfying the above, unless specified otherwise. Let H(z) = F~!(e™?)
and Y], ...,Y,, denote independent and identically distributed exponential variables with
unit mean. Define s; = sgn(r—j), mo; = min(r, j), my; = max(r, j)—1, A, = > o_, vl
Suppose that f satisfies a Lipschitz condition of order v = % + € in a neighbourhood
of &, so that a = H'(A,) = —pf(&)~! + O(n~!). Following Hall and Martin’s (1988)

arguments, we have

(A2) Z(X(j) — X)) Wm; = S1 4+ S2 + Ty + To + T3,

J
where Sl = a2 Zj b?wm’j, S2 = 2a2 Zj bj(Bj—g{)-’me, T1 = a2 Zj(Bj_bj)zwm,ja T2 =
23 DiR1jwmj, Ts = X B wm;, By = 320200, u™'Ya, b = E(B;), D; = s;aB;,
Ry; = Ryj+Rsj, Ryj = 5;B;{H'(A,)—a] and Rs; = s;B; [, [H'(A,+ts; B;)— H'(A,)]dt.
Note also that B, = b, = 0 and that

(A-3) bj=li—rlrt + 271G = r)?r 2+ O(lj — rPr®).

Using Lemma A.1 and (A.3), we have

RV oy L AN m1/2(j—7”—1)>
s e (22 e (R

+O [ m 2=t i —rPe (ml/z(j i 1))
i

ny/p(1 - p)

= m~p~H1 - p) + O(m™%/2),
so that

(A4) Sy =m7p(l - p)f(&p) 72+ O(m=%?).
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Consider next

r—1 u
Sy = 2a2{ Z u” (Y, - 1) Z bW,

u=r—4nlt+Bm-1/2 j=r—6nltBm—1/2
r+énithm—1/2_ r4dnttPm—1/2
-1
+ E U (Yu - 1) E bjwm’j},
U=T j=u+l

so that, by Lyapounov’s central limit theorem,
(A.5) m®/4n}/25y B N(0, 2072 [p(1 - PP £(4)7Y).

We note, using Lemma A.l again, that for any ¢ > 0,

(A8) D li—npl'wm,;
i

p+dnPm=1/2 1/2( - )
le/Qnt/ ly - pltly(l —y -1/2¢ my—-p d
p—6nPm—1/2 l [ ( )] V y(l - y)

= O(m™?nt).

It follows by substituting appropriate values for ¢ in (A.6) that

E(Ti)=0 <Z - Tl?‘—zwm,j) =0(m YY),
J

]E|T2| =0 (Z[n—2(] N 7,)2n—1/4—5/2 + (n_llj _ TI)5/2+€]wm,j)
J

— O(m—5/4—5/2)

and

E(T3) =0 (Z[”_2(j R e R N (Tl rl)3+2€}wm’j> = O(m~3/2-¢),

so that, by Chebyshev’s inequality,

(A7) T1=0,(m™Y2n7Y),  To=0,(m 42,  Ty=0,(m %)
Recall, by Hall and Martin’s (1988) Theorem 2.1, that

(A-8) op =n7'p(1 - p)f(&) % + O(n~3/27¢),

Subtracting (A.8) from 62,, and expanding the summation in (3.1) using (A.1), (A.2),
(A.4), (A.5) and (A.7), we prove (3.2).

A2 Proof of Corollary 3.1
Note that m oc n?. It follows from (3.2) that the optimal value of X is obtained

by minimizing max{\/4 — 3/2,—A(1/4 + ¢/2) — 1} over A € (0,1). Corollary 3.1 then
follows by using standard linear programming to obtain the optimal \.
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