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Abstract. A general class of conditional U-statistics was introduced by W. Stute
as a generalization of the Nadaraya-Watson estimates of a regression function. It
was shown that such statistics are universally consistent. Also, universal consisten-
cies of the window and kn-nearest neighbor estimators (as two special cases of the
conditional U-statistics) were proved. In this paper, we extend these results from the
independent case to dependent case. The result is applied to verify the Bayes risk
consistency of the corresponding discrimination rules.

Key words and phrases: Universally consistent conditional U-statistics, absolute
regularity, Bayes risk, Hidden Markov Models.

1. Introduction

In this paper we work with the so-called conditional U-statistics introduced by
Stute (1991). These statistics may be viewed as generalizations of the Nadaraya-Watson
estimates of a regression function.

To be precise, let {(X;,Y;),i > 1} be a sequence of random vectors in some Eu-
clidean space IR? x IR®, defined on some probability space (2,4, P). We assume that
{(Xi,Y;),i > 1} is absolutely regular with rates

(1.1) Z mB 7" (m) < 400,

m>1

where 0 < B(m) < 1 and r is a positive integer. Also assume that the random vectors
(r.v.’s) {(Y; | Xi),¢ > 1} are independent.
Recall that a sequence of random vectors {X;,7 > 1} is absolutely regular if

max E { sup  |P(A]o(Xi,1<i< ) - P(A)I} = B(m) L 0.
jzl A€o(X;,i>5+m)

Here 0(X;,1 <4 < j) and 0(Xj,i > j + m) are the o-fields generated by (X1,...,X;)
and (Xjim, Xjtm+1,..-,Xn), respectively. Also recall that {X;} satisfies the strong
mixing condition if max;>i{sup|P(AN B) — P(A)P(B)|; A € 0(X;,1 <i < j), B e
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o(X;,i > j+m)} = a(m) | 0. Since a{m) < B(m), it follows that if {X;} is absolutely
regular, then it is also strong mixing.

Let h be a function of k-variates (the U kernel) such that for some r > 1, h € L},
which means that E{supg|h(Y3)|"} < 400 (where sup extends over all permutations
B = (B1,...,0k) of length k, that is, over all pairwise distinct 3, ..., 8 taken from IN*)
which implies that for all integers i1,42,...,5 (i1 < iz < --- <ix) h(Yi,,...,Y;) € L,
the space of all random variables Z for which |Z|" is integrable. In order to measure the
impact of a few X'’s, say (Xi,...,Xk), on a function h(Y7,...,Y%) of the pertaining Y'’s,
set

(1.2) m(xz) = m(zy,...,z%) := Eh(Y1,...,Ye) | X1 =21,..., Xk = 24

where m is defined on IR,
For estimation of m(z), Stute (1991) proposed a statistic of the form

Zﬁ h(Y,Bl PR ’YBk) H;c:1 K[(x] - Xﬂj)/hn]
S5 oy Kl(zj — Xa,) /]

where u,, is defined on IR% | K is the so-called smoothing kernel satisfying [ K (u)du =1
and {hn,n > 1} is a sequence of bandwidth tending to zero at appropriate rates. Here
summation extends over all permutations 3 = (81,...,03%) of length k, that is, over
all pairwise distinct B1,..., 0k taken from 1,...,n. Stute (1991) proved the asymp-
totic normality and weak and strong consistency of u,(x) when the random variables
{(X;,Y;),i > 1} are independent and identically distributed. Harel and Puri (1996) ex-
tended the results of Stute (1991) from independent case to the case when the underlying
random variables are absolutely regular. Stute (1994b) also derived the £, convergence
of the conditional U-statistics under the i.i.d. set up.

If a number of the X;’s in the random sample are exactly equal to z which can
happen if X is a discrete random variable, P¥ (- | X = x) can be estimated by the
empirical distribution of the Y;’s corresponding to X;’s equal to z. If few or none of the
X;'s are exactly equal to x, it is necessary to use Y;’s corresponding to X;’s near z. This
leads to estimators PY (- | X = z) of the form

(13) Un(-'L') :un(mlr"yxk) =

PY( 1 X =12)=)Y Wn(2)yey
i=1

where Wo,;(z) = Wyi(z, X1,...,X,) (1 <1i < n) weights those values of ¢ for which X is
close to x more heavily than these values of ¢ for which X; is far from x and [4 denotes
the indicator function of A.

Let g be a Borel function on IR® such that g(Y) € £,. Corresponding to W, is the
estimator ¢, (z) of ¢(z) = E(g9(Y) | X = z) defined by

lo(z) = Z Wai(z)g(Yi).

More generally if we now consider the estimates of m(x) defined in (1.2), this leads to
weighting those values of 8 for which X3 = (Xg,,...,Xg,) is close to  more heavily
than the values of 8 for which X g is far from .
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This is why, as in Stute (1994a), we study a fairly general class of conditional
U-statistics of the form

(1.4) mn(2) =Y Wpn(@)h(Y g)
B

designed to estimate m(xz), where Ws,(z) is defined from a function W,(x,y) by
Won(z) = Wo(x,Xs), Y = (Ya,,...,Ys,), and the summation in (1.4) takes place
over all permutations 8 = (f1,...,0k) of length k such that 1 < g3, <m,i=1,...,k.

Remark 1.1. The estimator defined in (1.3) is a special case of the estimator de-
fined in (1.4), see (2.6).

In order to make m,(x) a local average, W3, () has to give larger weights to
those h(Yg) for which Xj is close to . For this general class of conditional U-statistics
(defined in (1.4)) and for i.i.d. random variables, Stute (1994a) derived the universal
consistency. We extend his results for the case of absolutely regular r.v.’s which allow
broader applications that include, among others, hidden Markov models described in
detail in Section 3.

We shall call {Wp ,} universally consistent if and only if

mp(X) —»m(X) in L,

under no conditions on h (up to integrability) or the distribution of {(X;,Y;),¢ > 1}.
Here X = (X?,...,X}) is a vector of X’s with the same distribution as (Xj,..., X)
and independent of {(X;,Y;),7 > 1}.

For the ease of convenience, we shall write Wy for Wy ,,.

Assumptions and main results are gathered in Section 2. In Section 3, we will
show how our results are useful for the problem of discrimination that is considering
an unobservable random vector Y which is correlated to an observable vector X. To
estimate the value of Y from the value of X by using the minimal conditional risk, we
need to know the distribution of (X, Y") which is unknown. That is why we use a sequence
of observations (X1,Y1),...,(Xn,Y,) independent of (X,Y) and often called a training
sequence in pattern recognition to estimate the unknown conditional probabilities. The
most adapted estimates to this situation are those which have the form given in (1.4)
because we need to use the (X;,Y;) where X; is near x. At last, we will see an application
to the hidden Markov model. Then we give the proofs in Section 4. The main idea is to
show that the estimator m,, is the ratio of two U-statistics.

2. Assumptions and main results

Consider the following set of assumptions.
(i) There exist functions Vi (®,y) on IR2% such that for each £ € £%, z(™ =

(z1,...,2) € R™ and y™ = (y1,...,y,) € R*"
Zﬂ Vn(wvzﬂ)e(yﬁ)
Zﬂ Valz, zﬁ)

Z Wn(m7 Z,@)e(yﬁ) =
B

where zp = (23,,...,2g,) and y5 = (YBys--->YBi)-
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(ii) There exists a function V(z) on IR% satisfying
/ IV (@)|dz < o0

such that for each scalar function ¢ on IR% verifying

sup [g(x)} < o0
mGRka

we have

k
lim z2)Vou(zx, 2 H (dz;) = q(z w)/V(z)dz

n—o0

where F is the d.f. of X; and f(z) = szl f(x;j) where f is the density function of F.

Remark 2.1. Our conditions (i) and (ii) are completely different from conditions
(ii) to (v) in Stute (1994a). Our conditions are more general and more easy to verify.
More, the condition (i) in Stute (1994a) is not necessary.

The following theorems generalize Theorems 1.1, 1.2 and 3.1 in Stute (1994a) from
the independent case to the absolute regularity case.

THEOREM 2.1. Assume that h € L. Then under (i), (ii), and (1.1),
mp(X) - m(X) in L,
that is
2.1) 5| [ (@) - m@)utda)| — 0
where u denotes the distribution of (X1, Xa,...,Xk).

COROLLARY 2.1. Assume that h is a bounded function, and

(2.2) Z nf exp(—n'~*d,) < co

n>1

for some p (0 < p < 1) and

= sup /V (z, 2) HF(dz])//Vn(w,z)Ii—IlF(dzj)

P i
ie{1,..., k}
then, under the conditions of Theorem 2.1, my(x) — m(x) with probability one for

p-almost all x.

Theorems 2.2 and 2.3 deal with two special cases: window weights and NN-weights.
Consistency of window estimates for the regression function has been obtained by
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Devroye and Wagner (1980) and Spiegelman and Sacks (1980). NN-weights for the
regression function have been studied in Stone ((1977), Theorem 2).
In what follows, | - | denotes the maximum norm on IR%. We also write

|1Xp — =il = max | X5, —ail.

To define window weights, put (see Stute (1994a))

L p=sl<hn]/ 25 L[| X p—sl<ha]  if well defined,
0, otherwise.

(2.3) Wp(a) = {

Here h,, > 0 is a given window size to be chosen by the statistician. Then we have the
following result:

THEOREM 2.2. Assume h, — 0 and nhé — oo as n — oco. Then, under (i), (ii)
and (1.1), we have
mp(X) » m(X) in L,

where Wg(x) in (1.4) is given by (2.3).

For the NN-weights, recall that X, is among the k,-NN of z € IR? iff d;(z) =
| X; — x| is among the k,-smallest ordered values di.n(z) < -+ < dp.n(z) of the d’s.
Ties may be broken by randomization.

For a given 1 < k, < n, set

ky¢ if Xp, is among the k,-NN of z; for 1 <i <k

0, otherwise.

(24) Ws(z) = {

THEOREM 2.3. Assume that k, — 0o and kp/n — 0 as n — oo. Then under (i),
(ii) and (1.1)
mp(X) - m(X) in L,

where Wg(x) in (L.4) is given by (2.4).
We now consider as estimator of m(x), the statistics of the form
(2.5) Mn(T) = un(z)

where u,(z) is defined in (1.3). Then, in view of (1.4), we have

IT5_, Kl(z; — Xp,)/ ]
2.6 Wgn(x) = J 2 ,
( ) 4 ( ) Zﬁ H?:l K[(xj - Xﬁj)/hn]

where K(z) is a so-called smoothing kernel satisfying [K(u)du = 1 and
limy, oo |u|K(u) = 0 and {h,,n > 1} is a sequence of bandwidths tending to zero.
This special case was studied by Stute (1991) for i.i.d. random variables, and further
investigated by Harel and Puri (1996) for dependent random variables. The following
theorem establishes that the universal consistency still holds for conditional U-statistics
involving kernel K and a sequence of bandwidth h,,.
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THEOREM 2.4. Assume that h, — 0 and nh? — oo as n — oco. Then under
conditions (i), (ii) and (1.1), we have

ma(X) - m(X) in L,
where m(x) is given by (1.2).
3. Application to the Bayes risk consistency in discrimination

Now, we apply the results of Section 2 to the problem of discrimination described
in Section 3 of Stute (1994a). Then we apply it to the Hidden Markov Model (HMM)
which satisfies condition (1.1). At last, we give an example such as a multivariate mixing
process defined in (3.4) below. We give a generalization of Theorem 3.1 of Stute (1994a).

Let h be any function taking at most finitely many values, say 1,..., M. The sets

Aj:{(ylv'"wyk);h(yl’--wyk):j}v 1§]SM

then yield a partition of the feature space. Predicting the value of h(Y7,...,Y%) is
tantamount to predicting the set in the partition to which (Y3,...,Y}) belongs. For any
discrimination rule g, we have

M .
P(g(X) = h(¥)) < g /{ oy, TR @(dm) ()
where
(3.1) m/(z) = P((Y)=j| X ==%), =zclRP

The above inequality becomes an equality if

_ j
(3:2) go(z) = arg max m (z)
go is called the Bayes rule, and the pertaining probability of error
*=1 - = =1 J
(53) L =1 = Rao(X) = (¥)) =1~ B | max m(z)|

is called the Bayes risk. Each of the above unknown function m/’s can be consistently
estimated by one of the methods discussed in Section 2. Let

mi (x) = ZWﬁ(m)l[h(Y,@)zj]y 1<j<M
B

and set
— J
gno() = argénj%x ml (x).

Write
Ly, := P(gno(X) # h(Y)).

Then, the following theorem shows that the discrimination rule g,, is asymptotically
Bayes’ risk consistent (i.e. L, — L*).
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THEOREM 3.1. Assume that the weights {Wpg,} are universally consistent. Then
for almost oll x
L,—L" as n— .

Proor. Follows from the obvious relation

|Ln — L*| < 2E | max |mi(X)—m/(X)]|. O
1<G<M

Remark 3.1. From Theorem 2.1, as h is bounded, we can apply Theorem 3.1 when
the conditions (i), (ii) and (1.1) are satisfied.

Now, we consider models for which the Bayes risk consistency in discrimination is
available. One very useful should be the Hidden Markov Model (HMM) introduced by
Baum and Petrie (1966). First we explain the elements and the mechanism of the type
of HMM’’s.

There are a finite number, say M, of states in the model; we shall not rigorously
define what a state is but simply say that within a state the signal possesses some mea-
surable, distinctive properties. At each time i, a new state is entered based upon a
transition probability which depends on the previous state (Markovian property). After
each transition is made, an observation is produced according to a probability distribu-
tion which depends on the current state. This probability distribution is held fixed for
the state regardless of when and how the state is entered.

For example, let us consider an “urn and ball” model (Rabiner and Juang (1986)).
There are M urns, each filled with a large number of colored balls. There are m possible
colors for each ball. The observations sequence is generated by initially choosing one of
the M urns (according to an initial probability distribution), selecting a ball from the
initial urn, recording its color, replacing the ball, and then choosing a new ball according
to a trausition probability distribution associated with the current urn.

Define now a Hidden Markov Model. Let (Y;);>1 be a Markov chain with state
space X C IR® and let (X;);>1 be a stochastic process with state space X C IR%.

We call (X;,Y;)i>1 a hidden Markov Model (HMM) if the (Y;) are conditionally
independent given (X;);>1 such that for a family (Q;)zcx of probability measures on ).

Pl (Yiiz € [[Ai | Xi)iz1 = (@)iz1 | =[] Qu.(40)

i>1 i>1
for any measurable A; € J where
Q. (A)=PY,€cA|X;,=1x)

is the conditional distribution independent of .

If such a process satisfies the condition (1.1), we can apply the discrimination rule
and the Bayes risk consistency is verifed if the weights {Wj ,,} satisfy the conditions (i),
(ii) and particularly the window weights, the kernel weights, and the NN-weights.

We give an example of HMM process (X;,Y;);>1 which satisfies condition (1.1). It
imaplies that we can apply Theorem 3.1.
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Consider the model
(3.4) Xi=UY)+e, i1

where X; denotes a IR%-vector of observed values, ¥ is a measurable known function, ¢; is
a multivariate white noise corresponding to the measurement errors (that is, {¢;,i € IN}
is a sequence of i.i.d. random IR%-vectors with strictly positive density) and Y; is an IR®
predictor vector. If the sequence {Y;,7 > 1} of the random vectors is absolutely regular
with a geometric rate, the process (X;,Y;) satisfies condition (1.1).

It is well known that any Markov process which is Harris recurrent, aperiodic and
geometrically ergodic is absolutely regular with a geometric rate.

For example, consider the sequence of random vectors (Y;)i>1 defined by:

P p2
(3.5) Yi + ZAJ'Y;;..J' =e; + ZBlei_[, 1e€Z

j=1 =1
where A;, ..., Ap, and By, ..., By, are px p real matrices, A,, and By, are invertible and
e = (es,,-..,e;,) is a multivariate white noise where each e;;, 2 > 1,1 < j < p admits the

same density g such that [ |z|®g(z)dz < oo and [ |g(z) — g(z — 0)|dz = 0(|6]") for some
6 >0 and v > 0. From Pham and Tran (1985), Y¥; admits a Markovian representation

Y, = HZ,, Zi=FZ,_1 +Ge

where {Z;,i > 1} is a sequence of random vectors, and H, F', G are appropriate matrices.
If the eigenvalues of the matrices H have a modulus less than 1, then Y; is absolutely
regular with a geometrical rate and the process (X;,Y;);>1 satisfies condition (1.1).

Ifp=1,q=1and k = 2, we can write the following particular case of (3.4) and
(3.5) as

(3.6) Xi=aY;+¢, a€R
where Y; is an AR(1) process defined by

(3.7) Y, =bY;_1 +e; where |b<1.
4. Proof of theorems and Corollary 2.1

First we show that m,, is the ratio of two U-statistics.
Let ¢ = (x1,...,zx) be fixed throughout. Let

(4.1) Un(h,x) = Up(z) =U,
k
_ @_;!k_ﬂzh(yﬁ)vn(x,xﬂ)//vn(m,u)Hp(duj).
B8 j=1

Hence my(x) = Uy (h,z)/Un(1, ) and Uy (h, ), for each n > k is a classical U-statistic
with a kernel depending on n.
Consider a sequence of functionals

k k
On(h,x) =6, = /m(zl, vy 26)Vi(z, 2) HF(dzj)//Vn(m, u) HF(duj).
j=1 j=1
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Note that 8,, = E(U,). For every ¢, (0 < ¢ < k) put

9en (29, y9) = g,(29,9) = g,

k
- /h (W)V(=, 2) || Glzs; dy;) F(dz; //V x, u)HF(duj),

i>c

where G(z; ) is the conditional density function of (Y1 | X1 = z),

1
VS((B,Z) = y Z Vn(wvza(k))
" alk)

and where the summation is taken over all permutations (a(V(k),...,a®(k)) of
{1,...,k}. We have gy , = 6, and

k
9k(z,y) = h('y)Vn(a:,z)//Vn(a:, u) H F(du;).

Let n= [ ={nn-1)---(n —r+1)}"L. Set

U(C) =n [CIZ/Q (Z(C) y(c))Hd I[(Xg] yﬁj)<(zj)y])] H(z],yj))

B j=1
where 8(°) is the summation over all permutations 3¢9 = (6y,... ,Bc) of {1,...,n} of
length ¢. Then
L (k
(4.2) Un =60 + c:zl (C> UL

from the Hoeffding decomposition.
To prove Theorem 2.1, the following lemmas are needed.

LEmMA 4.1. Under the conditions of Theorem 2.1

(4.3) U2 =0(n%), 2<c<k.
Proor. We shall consider the case ¢ = 2. The proofs in the cases c =3, ...,k are
analogous and so they are omitted. We first note that
(4'4) U1(12) = 'Il[_2] Z {92((Xi17Yi1)7 (X'iZ’YiQ))
1<i <i2<n

- gl(XiuYh) - gl(Xtiiz) + en}

So we have

(4.5) BH2EUP)? = 3 Y J((li16), (. d2))

1<i1<ia<n 1<j; <jo<n
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where
J((ilviQ’)’(j17j2))
—E{(g2(Xi1’ i1)7(Xi27Yi2)) gl( i1 ) gl(Xiz’Yiz)_‘_g }
{92((X Jis J1) (ijanz)) *gl(XJUYJ'x) —gl(Xza ]2)+9 }
Since

/{92((21,%), (22,92)) — 91(21,91) — g1(22,y2) + On Y H(d2z1,dy1) = 0,

we have from Lemma 2.1 in Yoshihara (1976) the following inequalities:
iflfi1<i23j1 <j2§nandj2—j1 > ig — 11 then

(4.6) J((iy,i2), (j1,J2)) € ADMY"(r, B)B' V" (o — 1)

where M(r,h) = E{supg |h(Y 3)|"}, and similarly, if 1 < i3 < iz < j1 < jo < n and
t9g — i1 > j2 —jl, then

(4.7) J((i1,42), (j1, 2)) < ADMY"(r, h)B 1" (iy — 4y).

Thus, from (4.5), (4.6) and the Assumption (1.1)

(4.8) > J((21,42), (41, J2))

1<i1 <ia<j1<j2<n

< ADM/"(r, h)n? Zn:(p +1)8 Y7 (p) = O(n?).

p=1

Similarly, we have

(4.9) > J((1,12), (j1, 52))
1<i1 <j1 <ig<ja<n
<4DMM7(r,h)n? > "(p+1)8' /" (p) = O(n?),
p=1
(410) Z J((ilai2)7(j1aj2)) = O(n2)’
1<i1<j1<j2<i2<n
and
(4.11) 3 Z J((i1,92), (41, J2))
1<iy,51<n iz=1

< 4DMY"(r, h)n (1 + Zﬂl 1/T(p)) = O(n?).

From (4.8)-(4.11) and (4.5), we obtain (4.3) for ¢ = 2. The proof follows. O
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LEMMA 4.2. Under the conditions of Theorem 2.1, for u-almost all ©

(4.12) On(h,z) — m(x) as n-— oo.

PROOF. From condition (ii) in Section 2, we have

k
nILn;O m(x)V,(x, 2) H F(dz;) = m(z)f /V

j=1
and so A
hm Vulx, 2) HF(dz,,-) = f(m)/V(z)dz.
j=1
Thus

=m(x).

V(z)d
lim 6,(h,z) = m(z)f (z) JV(z)dz
w0 f(@) [ V(2)dz
To prove Theorem 2.1, from Lemmas 4.1 and 4.2 and the fact that h € L}, we now
have to show that p-almost all x

UM (xz) -0  in probability.

Since

UM (z) =n~ Zgl(xz,m 0n),

we have

BUD)* =

3

—2EF (i(gl(XiaYi) - 9n)>
= n2 ZE(gl(Xi,Yi) —6,)?
+2n72 Z E{(91(Xi,Yi) = 0)(91(X;,Y;) — )}

1<i<j<n
(from Lemma 2.1 of Yoshihara (1976))

< 2n72nM(2,h) +4n 7> M Y7 (r, 1) Y (p + 1B ()

p=1

o(n™h)

il

which implies

(4.13) E(UM? =0(n™?).
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From Lemmas 4.1 and 4.2 and from (4.13) we have U, (h, ) — m(z) and U,(1,z) — 1
in probability, as n — oo for u almost all . It remains to prove the uniform integrability.
By Jensen’s inequality, we have

r

sup B D ValX, Xp) (Y )/ Y Va(X, X p)
el s )

< sup E D ValX, X )WY )"/ D Va(X, X )
nelV 8 2

<E {suplh(yﬂ)r} < +00
Je]

from (i), and Theorem 2.1 is proved. D

ProoOr oF COROLLARY 2.1. From Lemma 4.1, we have
(4.14) E(U, — kUV)Y? = O(n™?).
Then, from the Borel-Cantelli lemma, it suffices to show that
(4.15) UMD -0 with probability 1.
Clearly

n
Ur(ll) — n_l Z{S,’n — E(Sz,n)}
i=1

where
Sz‘,n = gl(Xia)/i) - gn

As h is bounded, there exists two positive constants b and ¢ such that
(4.16) |Sinl <b/d, and E(S?,) < c/dn.

If Uy,Us,...,U, are independent random variables with |U;] < m, E(U2) < 02, then an
inequality due to Bennett ((1962), p. 39) states that

P Hn"l Z Un| > e] < 2exp{—ne?/2(0 + me)}

where 0?2 =n~1Y ", 02. Put ¢ = g, = [n”] + 1 for some 0 < p < 1, and write

q
U =2 Sim
j=1

where
4;

S;,n = Z{Sj+pq,n - E(Sj+pq,n)}

p=0
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and £; is the largest integer such that j + £;¢ < n. Then, proceeding as in Harel and
Puri (1996), we get

P[UVY > €] < 2n’lexp{-at;dn} + n*7PB([n"] + 1)]

where a = £2/(2¢ + 4be).
From the Borel-Cantelli lemma and conditions (2.1) and (2.3), we deduce (4.15) and
Corollary 2.1 is proved. O

PROOFS OF THEOREMS 2.2 TO 2.4. We have only to show that conditions (i) and
(ii) are satisfied.
For Theorem 2.2, we can write for every £ € L

_ k
s ha iz —al<nalf¥s)/ J Lju-ali<ha [T F(du;)
Y Loa—ali<hol/ S 1ju-sli<hn) [Tj=; Fldu;)

ZWg(wg)K(yﬂ) =
B

and (i) is proved.
Now we have

' k
lim 5% [ 1z-zi<n1a(2) [] Fdz;)
j=1

k
= nleréo hT—Lk / 1[nun51]q(m + why) f(x + ’u,hn)hlfl H du;

=1

k
~@)f@) [ 1y [ dus = 2o(a)f(2)
j=1
and (ii) is also proved for Theorem 2.2 where V,(%,2z) = ljjz_z}<h,) and V(z) =

1
el <1]-

For Theorem 2.3, from the fact that >, Wp(z) = 1, we can put Vu(z,y) =
Wh(z,y) and we have

. B Zﬂ Wn(m,z5)£(yﬁ)
Z;Wn( 26)0(Yp) = 225 Wa(z, 25)

and (i) is proved. Now we get (ii) if we put V(z) = 1.
Theorem 2.4 follows analogously, if we put

Va(@, 2) = h;;’“ﬁK (‘”’;z>

J=1

then (i) is immediate. From Cacoullos (1966), we deduce

k k
i [ ot [T (22 TLF(s) = a@ite) [ K2

= ¢(z)f (=)
and (ii) is proved for Theorem 2.4 if we put V(z) = K(x). O
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