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Abstract. A unified, empirical processes based approach to the central limit theo-
rem and to the bootstrap for randomly trimmed and Winsorized means is developed,
with emphasis on Hampel’s means.
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1. Introduction

Since the sample mean is very sensitive to outliers in the data, alternative estimators
(and location parameters) have been in use since time immemorial. Randomly trimmed
means, which include as extremes the mean and the median, constitute a very general
class of location parameters whose sample counterparts that can be made as sensitive or
insensitive to outliers as one wishes, and also as asymptotically efficient with respect to
the sample mean as one wishes when considered as estimators of the center of symmetry
of a smooth symmetric distribution. A randomly trimmed mean is constructed as follows:
one fixes levels a,, < b, depending on the sample, and takes the average of those data
points that fall between a, and b,. Typically these levels are obtained by evaluation
at the empirical distribution function F, of functions a(F’), b(F') defined on probability
laws; then, if F' is the distribution function from which the data are drawn, and one
takes a, = a(F,) and b, = b(Fy,), the trimmed mean estimates the expectation of
X (with distribution F) conditioned to X € [a(F),b(F)]. If a(F) = F~!(a/2) and
b(F) = F~1(1 — a/2), one has the classical trimming, with a breakdown point of a. If
a(F) = p(F) — cs(F) and b(F) = p(F) + cs(F), where p denotes median, s denotes
median absolute deviation (MAD), and ¢ is a constant of choice, then one has Hampel’s
trimmed mean (Hampel (1971, 1985)), which has the optimal breakdown point of 1/2; in
this case one does not know in advance what proportion of the data are being discarded
(which may have some advantages). These are just two examples, but there are many
more. A companion to trimmed means are Winsorized means, which are the plug-in
estimators of the population parameters E{((X Ab) V a).
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It seems advantageous to have a unified approach at getting robustness properties,
limit distributions and the validity of the bootstrap for this relatively general and very
useful class of statistics. Shorack (1974) has a unifed approach to the central limit theo-
rem in the case of symmetric distributions; Shorack and Wellner (1986) have asymptotic
expressions for randomly trimmed and Winsorized means that fall short from being limit
theorems because the levels a and b are, in a sense, too general. Kim (1992) proposes
a type of trimmed means (not unrelated to Hampel’s) for which he obtains the cen-
tral limit theorem using the delta method. Hall and Padmanahban (1992) contains a
detailed study of the bootstrap for the studentized classical trimmed mean. In this arti-
cle we present a unified, empirical process based approach to the central limit theorem
and the bootstrap central limit theorem for the general trimmed mean under very mild
assumptions on the levels a(F) and b(F). The basic assumption is that \/n(a, — a)
can be asymptotically linearized, in the sense that it is asymptotically equivalent to
Yo (hi(X;) — Ehy(X))/+/n for some function h; square integrable for F, and likewise
for \/n(b, — b). This assumption is very natural because on one hand it allows for very
simple proofs, and on the other, it is satisfied by the median, any quantiles and the MAD
(and hence also by u — cs), as we show below. Robustness properties are also breifly
reviewed.

Then, we apply the general results to Hampel’s means and to means based on
box plots (precise definitions are given in the next section). We emphasize Hampel’s
means because they have optimal breakdown point, and, as Davies (1998) concludes af-
ter commenting on their simplicity and favorably comparing the performance of Hampel’s
trimmed mean and standard deviation with that of other robust location/scale parame-
ters, ‘It (Hmean/Hsdv) can certainly be recommended for a first course in data analysis
as an alternative to the usual mean/sdv.’ {(Here we do not deal with Hampel’s standard
deviation—the standard deviation of the data between ., — cs,, and u, + ¢s,.) Also, as
estimators of the center of symmetry of a smooth symmetric distribution, the asymtotic
efficiency of Hampel’s trimmed and Winsorized sample means with respect to the sample
mean tends to one as the tuning parameter ¢ tends to infinity, whereas the breakdown
point remains 1/2 regardless of the value of c.

Section 2 contains definitions and examples, Section 3 reviews robustness properties,
in Section 4 we obtain asymptiotic normality and in Section 5 we show that the bootstrap
is valid a.s.

2. Definitions

Let X, X1,...,Xn,... be indepedent identically distributed real random variables
with common probability law P and, for each n € N, let P, = n7' 3 " | 6x, be the
empirical measure corresponding to the first n observations Xi,...,X,. F and F, will
denote the cumulative distribution functions associated respectively to P and F,. Let
a(Q) = a(Fp) and b(Q) = b(Fg) be real valued functionals defined on a subset of the
set of probability measures @ on R containing P and P,(w) for all n € N and w € Q,
and such that a < b. Then, the trimmed mean of P based on a and b is defined as

6= 6(P) = Juiy 2@ E(X | X € [a(P),b(P)])

= @) - Fa(P)) W
and we will usually write a and b for a(P) and b(P). Likewise, we will write a,, for a(P,)
and by, for b(P,), and we impose without further mention that a, and b, are measurable
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functions, that is, random variables. The empirical trimmed mean based on a and b is
analogously defined as

bn
0 — 0(P ) — Zy:l XiI[an,bn] (XZ) — fan :L’an(:L‘)
" " Z:‘L:l I[an,bn](Xi) Fp(bn) — Falan—)
Here and elsewhere, fcd = f[c’ o~ The Winsorized population and empirical means based
on a and b are respectively defined as

E=¢&(P) = /b zdF(z) + aF(a—) + b(1 — F(b)) = E((X Ab) V a)
and

be
b0 = Ea(P) = / 2dFy (2) + nFo(an=) + bn(1 = Fu (b))

1 n
= D [ Xilja, 5, (Xi) + bady, 00) (Xi) + an(—00,0,)(Xi)]-

i=1

Most trimmed and Winsorized means in the literature are obtained by appropriately
choosing a and b. Given a distribution function F and a number o € (0,1) define,
as usual, Q,(F) = F~ (o) := inf{z : F(z) > a}, the a-quantile of F (quartiles:
a = 1/4,3/4, median: o = 1/2). We will denote by u the population median Q;/5(F')
and by p, the sample median Q,/2(Fy); likewise, we simplify the notation for quartiles
as Q1 = Qu/a(F), Qn1 = Qu/a(Fn), Q3 = Q3/4(F) and Qn3 = Q3/4(F,), and the
interquartile ranges are denoted by R = Q3 — Q1, R, = Qpn 3 — Qn,1. Finally, the median
absolute deviation or MAD s for P is defined as the median of the random variable
|X — u| (where X has law P), and the empirical or sample MAD, s,,, as the median of
the (random) set of points | X1 — tnl, .-, [ Xn — tal-

Eramples.

1. Hampel’s means. (Hampel (1971, 1985)). The trimmed and Winsorized Hampel
means are obtained by taking a = p — ¢s and b = u + ¢s for some ¢ > 0 (Hampel takes
¢ = 5.2). So, the Hampel means are averages of the data points that are close to the
(sample) median by at most a fixed multiple of the (sample) MAD. These means are
remarkable because they inherit the excellent robustness properties of the median and the
MAD. Their asymptotic normality in the symmetric case can be obtained from Shorack
(1974), Example 9, given the asymptotic normality of the MAD, that was proved by Hall
and Welsh (1985). We are not aware of any proofs in the literature of the asymptotic
normality of these estimators in general (without assuming symmetry of F') or of the
validity of the bootstrap for them.

2. Boz plot means. The box plot trimmed and Winsorized means are obtained by
taking a = Q7 — cR and b = Q3 + cR for some ¢ > 0, or what is the same, a =
(@1+Q3)/2—dR, b= (Q1+Q3)/2+dR for some d > 1/2. Asymptotic normality in the
symmetric case follows from Shorack (1974). We call these box plot means for obvious
reasons. We could take other quantiles as well in the definition of these trimmed means.

3. Symmetrically trimmed means. For these means, one takes a = @, and b =
Q1. Classical, well studied (for asymptotic normality, see e.g., Huber (1969) and
Stigler (1973), and for the bootstrap, Hall and Padmanabhan (1992)).
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4. Kim’s metrically trimmed means. This (Kim (1992)) is obtained by taking a =
- Fl}l—ul( —a)and b= pu+ F X #I(l a). For @ = 1/2 Kim’s metrically trimmed
mean coincides with Hampel’s with the choice of ¢ = 1. The asymptotic normality when
‘F possesses a density f which is positive and absolutely continuous on its support’ was
obtained by Kim (1992); in the symmetric case it does follow from Shorack (1974) given
the asymptotic normality of a,, and b,, that was obtained later. The results in the next
sections imply that Kim’s theorem is true under the weaker assumption that the density
exists in an open set containing u, a and b and is positive and continuous there; they also
imply that the bootstrap works as well. However, these results will neither be stated nor
proved because of their similarity with the corresponding results for Hampel’s means.

3. Robustness

It is obvious that if a and b, as functions of P, are equivariant under affine trans-
formations, then so are 8, and £,, and this is a basic property to have for location
parameters and estimators. It is also interesting to note that if P is symmetric about a
point ¢, then (P) = {(P) = ¢ and 6,, and &, are unbiased estimators of the center of
symmetry c. Although these are desirable and important properties, randomly trimmed
means are most appealing because of their robustness properties. We look now a little
more closely at robustness in terms of breakdown points and influence curves.

We recall (Hampel (1974)) that the finite sample breakdown point of an estimator is
‘the smallest percentage of free contamination that can carry the value of the estimator
over any bounds’.

PROPOSITION 3.1. The finite sample breakdown points of 8, and &,, defined from
an and by, as in Section 2, are the smallest of the breakdown points of a,, and b,. In
particular, Hampel’s trimmed and Winsorized means have breakdown points of 50%,
whereas the box plot trimmed and Winsorized means have breakdown points of 25%.

PrOOF. For any portion of contamination points that keep a, and b, unbroken
(bounded), the estimators 6,, and &, also remain bounded by their very definition. Con-
versely, if a portion of contamination can take a, or b, beyond any bound, then it
can also take 6, and £, beyond any bound, proving the general result. The result for
Hampel’s and box plot means follows from this because, as is well known, the breakdown
points of the median and the MAD are both equal to 1/2, and that of the quartiles is
1/4.0

The influence curve or function at P of a parameter .8 = §(P) is defined (Hampel

(1974)) as
1C(,0, P) = gl_r)% O(P(E,ml) - B(P),

where P(e,z) := (1—¢€)P +¢€b,, € € [0,1]. The next proposition follows by direct simple
computations that we omit.

PROPOSITION 3.2. Assume the distribution function F of P has a continuous
derivative f on an open set containing a = a(P) and b = b(P). Let az(¢) := a{P(e, x))
and by(e) := b(P(e,xz)), and assume a; and b, are differentiable (with respect to €) at
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zero, with derivatives al, and bl,. If 8 = 0(P) and £ = {(P) are defined from a and b as
in Section 2, we have:
bb, £ (b) — aaz f(a) + xliapy(x) Y f(b) — azf(a) + fja ) (7)

CeO =" -Fw FO-F@

and, for x # a,b,
IC(z,€, P) = azF(a) + by (1 — F(b)) + 211 () + al(—c0,a) (Z) + b(b,00)(2) — &
In particular, these parameters have bounded influence functiohs.

The previous proposition gives the influence functions of the Hampel and the box
plot means just by replacing a and b by their values in terms of the median, the MAD
and the quartiles, whose influence functions are (Hampel (1974), Huber (1981) or direct
computation):

0 if z= Qa
IC(.T, Qas P) =43y - I(—oo,Qa)(‘r)
f(Qq)

1/2 - I(u—s,;H-s] (.’L‘) - [f(ﬂ + 3) - f(,Ll, e S)]IC(.’L‘,N, P)
flu+s)+ f(u—s) '

otherwise

and
IC(z,s,P) =

4. Limit distributions

Given X, X;, ¢ € N, we let P be their common law, with c.d.f. F' and density
f, and, for each n € N, we let P, := n=1)_ | 6x, be the empirical measure and
v, = y/n(P, — P) the empirical process. In this notation, the classical empirical process
is vp(—00,z] = /n(Fy(z) — F(z)). Given a measure u (in paticular, P, P, or v,) and
an integrable function f, we will often write u(f) for [ fdpu.

4.1 General trimmed and Winsorized means

Let —00 < a < b < o0 and let a,,, b, be random variables such that —oc < a, <
b, < 0 a.s.. The following assumptions will be in force in this subsection:

(D.1) The c.d.f. F has a derivative f on an open set containing a and b and f is
continuous there, hence, f is uniformly continuous on a compact set K whose interior
contains a and b.

(D.2) f(a)+ f(5) #0.

(L) There exist measurable, P-square integrable functions h; and hg such that

(41)  n(an —a) =va(h1) +0p(l) and /n(b, —b) = vy(h2) + op(1).

In particular, by the central limit theorem, a,, and b, are weakly consistent (that
is, a, — a and b, — b in probability) and asymptotically normal (when centered at a,
resp. b, and multiplied by /n). Note that, although fairly general, these assumptions
are slightly stronger than the assumptions in Theorems 1 and 2, Shorack and Wellner
(1986), pp. 678 and 682. But, on one hand, they will allow us to get stronger results than
in their theorems and, on the other, they are satisfied by all the examples in Section 2.
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LEMMA 4.1. Assume (D.1) and (L). Define, for z € R,

91(x) = Ija 5 () + f(b)ha(z) — fa)hi(z)

and

92(z) = xljq 4(z) + bf(b)ho(z) — af(a)hi(z).
Then,

( bn b
(42) Vi | [ dbae) - [ aF@)| = valon) + op)
and - ,
(4.3) Vn / man(x)—/ zdF(z)| = vn(g2) + op(1).

Proor. We have

b b
ﬁ{/ i, ~ [ ar

Since f is uniformly bounded on K we have that || f|x := sup,cx f(z) is finite, and
that if [z,y] C K then Plz,y] < ||f|lx(y - 2), hence, Pz,y] — (P[z,y])? < || fllx (y — z).
Also, there is 6o > 0 such that [a — 8p,a + 8] U [b — 80,b + o] C K. Therefore, by
the asymptotic equicontinuity of the classical empirical process (e.g., Theorem 3.7.2 and
Corollary 6.3.17, pp. 118 and 215, in Dudley (1999)), we have

:ﬁ/zind(Fn—F)—i—\/ﬁ/aadF+\/7_z/bbndF.

(4.4) lim lim sup Pr sup |vnlz,y] — vnla,b]| >3 =0
6=0 m |z—al <8,|y—bl<s

for all € > 0. Since

.

the equicontinuity condition and condition (L) give, upon taking limits first as n — oo
and then as § — 0,

25} < Pr{ sup [Vnx, y] — vnla, b]| 26}

[z~a]<8,ly—b|<6

+ Pr{|b, — b| > 6} + Pr{|a, — a| > 6},

bn
\/ﬁ/ d(Fy — F) — vn[a, b

bn
Vn d(F, — F) = vyla,b] + op(1).
Given 0 < 6 £ §p and My, n € N, such that M,, — oo and M, /\/n — 0, set 7, :=
sup{|f(b) — f(c)| : |b—¢| < (6 + My)/+/n}, which tends to zero by uniform continuity
of f on K. Then, on the event where |v,(hy) — /n(b, — b)| < 6 and |vn(he)| < M, we
have

bn

bn
vn b dF — f(b)rn(ha)| < ﬁ/b |f(z) = f(b)ldz + [v/n(by — b) — v (h2)|f(b)

< Vnlby = blTa + [V1e(bn — b) — va(ha)| (D),




RANDOMLY TRIMMED MEANS e

and this bound tends to zero in probability. So, for any € > 0,

bn
Pr{ \/;z/b dF — f(b)vn(ha)| > s}

< Pr{v/nb, — bltn + [v/1(by — b) — vn(h)|f(b) > €}
+ Pr{|vn(h2) — Vn(by, — b)| > 8} + Pr{|vn(h2)] > M,} — 0,

proving
bn
vn [ dF = f(b)vn(h2) +op(1).
b
A similar proof gives

\/ﬁ/a dF = —f(a)vn(hy) + op(1).

Collecting terms we obtain (4.2). To prove (4.3) we write

bn b bn a bn
\/ﬁ[/ xan—/xdF}zx/ﬁ/ :vd(Fn—F)—l-\/ﬁ/ :UdF+\/ﬁ/ zdF
an a an Qn b

and then proceed as in the proof of (4.2) (we note that the asymptotic equicontinuity
condition also holds for the empirical process indexed by the class of functions z1. 4/(z),
le—a| < &g, |d—b] < 8¢, also by Theorem 3.7.2 and Corollary 6.3.17 in Dudley (1999)). O

THEOREM 4.1. Assume (D.1), (D.2) and (L), and set
1 o tdF(t)
Fare ™~ (Farwy”

with g1 and g2 as defined in Lemma 3.1. Let 0,, be the trimmed mean based on a, and
b, and let 0 be its population counterpart, as defined in Section 2. Then,

Vn(6, — 0) — \/Varp(9)Z

in distribution, where Z is standard normal.

g(z) = (), <z€R,

Proor. By (D.2), f:dF > 0 and, with probability tending to 1 by (4.2),
f:“ dF,, > 0. We then have

Jor wdF, [ zdF

[2]

[ dFa [} dF

\/7_1(97&"0) :\/ﬁ[

[PaF \ vA([ dF [* dF, - [* dF, [ 2dF)
-\ [ dF, (J; dF)?
= (I) x (II).
By (4.2),
Jur dFy 1| b
fzdF - :fbdF/ an—/dF — 0 inpr.
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Hence also ,
fa dF )
b -
fan dF,

— 0 in pr.,

that is,
(I) =1+o0p(1).

And, also by Lemma 4.1,
(1) = vn(g) + op(1).

Now the theorem follows because, by the central limit theorem, v,(g) — y/Varp(g)Z in
distribution. O

Next we establish the asymptotic normality of the Winsorized means &,.

LeEMMA 4.2. Under (D.1) and (L), we have both,

Ja (bn 2iz1 I:",oo) (X:) _ b(1 — F(b))) = Un(bI(p,00) + [L — F(b) — bf(b)]h2) + 0p(1)
and
vn (an Lzt I(Tzoo’a")(Xi) - aF(a)) = Vp(al(—oo,a) + [F(a) + af(a)]h1) + op(1).

Proor. If we write

\/ﬁ(bn D iet Ir(Lbn,OO)(Xi) b1 - F(b))> — b —b) /: iF,

b
+ bup (bp, 00) + \/ﬁb/ dF
bn

and

n

va (ki leme @) _opw) < e, - [ ar,
+ avp(—00,a,) + v/na /aan dF,

and then apply the Glivenko-Cantelli theorem together with (L) to the first term at the
right hand side of each of these two identities, asymptotic equicontinuity of the empirical
process to the second, and (D.1) and (L) to the third, the result follows. O

THEOREM 4.2. Assume (D.1), (D.2) and (L), and set
w(z) = i 4 (x) + bl (p,00) (%) + 0l (~c0,0)(Z) + (1 — F(b))ho(z) + F(a)1(z), =€ R.

Let &, be the Winsorized mean based on a, and b, and let £ be its population counterpart,
as defined in Section 2. Then,

Vn(én — &) — v/ Varr(w)Z

in distribution, where Z is standard normal.
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PrOOF. Since

Ve —€) = ﬁl/:xan—/:xdF

+¢5P?/%d&_ﬂpmﬂ+V%PMATMQ—M1—F@4,

— 00

the result follows from Lemmas 4.1 and 4.2 together with the central limit theorem. O

With somewhat different assumptions, namely, that ¢ and b are Hadamard differ-
entiable tangentially to the distribution functions with non-vanishing densities at a(P)
and b(P), and that a;(¢), by(e) are differentiable at zero, Theorems 4.1 and 4.2 may be
deduced by the delta method together with Proposition 2.2 (see, e.g., van der Vaart and
Wellner (1996)). This was the approach taken by Kim (1992) for metrically trimmed
means, assuming much more regularity than is needed with our approach, which, more-
over, is more direct and elementary. This comment applies as well to the remaining
results in this section and the next.

4.2 Hampel’s trimmed and Winsorized means

To apply the results from the previous section to Hampel’s trimmed mean, it suffices
to check that a, = p, — ¢sp and b, = u, + cs,, where p,, and s, are respectively the
sample median and the sample MAD and ¢ > 0 is a fixed constant, satisfy condition (L)
for appropriate functions h; and hy. This will be a consequence of the following lemma,
which may have some independent interest.

LEMMA 4.3. Assuming the c.d.f. F has a continuous derivative f on an open set
containing p, g+ s and p— 8, and that f(u) > 0 and f(u+s) + f(n—s) > 0, we have:

(4.5) Pn — 1 @.S., S, — S8  a.s,
1
(46) Vian = 1) = = vl =00, 1] + 0p(1)
and
Vl(sn — 8) = : = s+ s]

BEDE D
1 f(u+s)— fu—s)

.0 T Fu e T fu )

Un(—00, ] + op(1).

PrOOF. It is well known that p, — u a.s. and that the sequence {/n(u, — u)}
is stochastically bounded, in fact, asymptotically normal with mean zero and variance
(2f(1))~2 (e.g., Pollard (1984), pp. 7 and 53). Next we prove (4.6) by adapting an
argument from Pollard (1984), p. 98 (which we basically repeat because it is also used
in the proof of (4.7)). The existence and continuity of f near p and the convergence of
tn to p (in pr. suffices) then give

Bn

Flun) =5+ [ dP@) = 5+ (un — m) () + 0p(1)
and
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Fa(in) = 5 +0(1/n)  as,

(note that the sample points in a neighborhood of p, hence eventually of u,, are all
different with probability 1). Then, by subtracting, the stochastic boundedness of the

sequence {/n(u, — )} give
VA(Fn — F)(n) = —v/iin — 5)(£(2) + 0p(1)) + 0p(1) = —/(tin — 1) £ (1) + 0p(1).

Continuity of f, and the asymptotic equicontinuity condition for the processes /n(F, —
F)(y) = vp(—00,y], —00 < y < 00, (e.g., results cited above from Dudley (1999)), give,
just as in (4.4),

n—oo z,y:0<e—y<§,
|lx~a|<é,|ly—a|<é

(4.8) }iII(l) limsup Pr { sup lvnz,y]| > 6} =0 forall >0,

for a = p,u+ s, p—s. Then, (4.8) together with the fact that u, — u — 0 in probability
(actually, a.s.) finally give

VI (Fn = F)(p) = =vn(pn — 1) f (1) + op(1),

which is (4.6). (To see that \/n(F, — F)(usn) = V/n(F, — F)(u) + op(1) just consider
that for all € > 0 and 6 > 0,

Pr{|vn (=00, un) — vn(—00, )| > €} < Pr {I sup (=00, ) — vn(—00, )| > 6}

+ Pr{|pn — p| > 6}

and apply (4.8) and that p, — p.)
Next we prove the second part of (4.5) and (4.7). If 3, is the median of the set
| X1 — p],-..,|Xn — p|, by the definition of s, we have

|sn — 8| < lsn — 8nl| + {80 — 8| < |pn — p| 4130 — s,

and, s being the median of ¥ = |X — u| and §, its empirical counterpart, it follows
that 3, — s a.s. and that \/n(3, — s) is asymptotically centered normal with variance
(2g(s))~2, where

(4.9) 9(x) :=flu+ o)+ flu—=), x>0,
is the density of | X — pl, for z > 0 in a neighborhood of s. So,
(4.10) sn—s—0 as. and n(s,—s)=O0p(1).

In particular, the limits (4.5) hold. Then, using (4.10) and letting F be the c.d.f. of
|X — u| and F, be the empirical c.d.f. for the data [X; — pinl,...,[Xn — pn|, arguing as
in the first part of the proof of (4.6) (but now comparing F),(s,) with F,,(s,)), we get

\/ﬁ(sn_s) — _\/E(FH_F)(SH)

(4.11) o

+Op(1).
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Next, using (4.8) and (4.10),

\/ﬁ(pn - F)(Sn) = \/ﬁ(Pn[ﬂn = Sny i+ 8n] — Pl — 8, + 8p)
= Un[ptn — Sny fin + 8n] + \/H(P[/J‘n — Sn, fn + 8n] — Plit — 5, 4 84])
= Un[p = 5,1+ 8]+ (f(u+ 8) = f(u = 8))vVn(pn — 1) + op(1).

Now, (4.7) follows from this, (4.6), (4.11) and g(s) # 0. O

Remark. The asymptotic normality of v/n(s, — s) was obtained by Hall and Welsh
(1985), and Falk (1997) gave the asymptotic joint distribution of v/n(un — i, 8, — ), from
where he deduced, in particular, that in the symmetric case u, and s, are asymptotically
independent. Of course Lemma 4.1 provides another, shorter, proof of Falk’s result: by
the bivariate central limit theorem, this lemma readily implies that the limiting joint
distribution of /n(pn — i, $Sn — s) is centered normal with covariance

COVF {_I(_oo,u] . I[“—s,u-}—s} + (f(,u + S) - f(u — S))I(—oo,u] }
fw) 7 futs)+ flu—9)  fW(fp+s)+flu—9) J
which is Falk’s result. Then, one immediately sees that the off-diagonal terms of this
covariance matrix, in the case when F is the distribution of a probability law symmetric
about p, are zero because E(J(_oo yjlju—su+s]) = 1/4 = E(l—oo,u)) E({j—s,u+s)) and

flp—s)=f(p+s).

Lemma 4.3 shows that condition (L) is satisfied for a = pu — ¢s, an = pn — CSn,
b= p+ cs and b, = py + sy, with

1
(412) b= —osloou

¢ fluts)—flu—3s)
DR iCED) [I[“—s‘““] - () I(’“’“']
and )
(413) h2 = —m](_oo,“]

_ c w9~ i)
rrEnEy ] Lo ]

So, Theorem 4.1, and likewise Theorem 4.2, give the following:

THEOREM 4.3. (Asymptotic normality of Hampel’s trimmed and winsorized
means.) Let F be a distribution function with median p and MAD s, and let ¢ be a
positive constant. Assume F has a continuous density on an open set containing p,
p+s, p—8, p+cs and p — cs, and that f(p) > 0, f(u+s)+ f(p—s) > 0 and
fu+cs)+ f(r—cs)>0. a) Let 0,, n € N, be Hampel’s trimmed mean corresponding
to the constant ¢ and let 0 be its population counterpart. With hy and ho defined by
(4.12) and (4.13), set

xI[u—cs,u+cs] (J)) + bf(b)h2(z) - af(a)hl (.’E)
ptcs dF

pn—cs

(223 tdF () (s ptes) () + F(B)h2(z) — f(a)ha(2))
( w+cs dF)2 :

p—cs

9(z) =
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Then,

Va(bn — 0) — /Varr(9)Z,

in distribution, where Z is standard normal. b) Let £,, n € N, be Hampel’s Winsorized
mean corresponding to ¢ and let & be its population counterpart. With hy and hy defined
by (4.12) and (4.13), set

w(x) = xI[u—cs,u-}-cs] (z) + (N + CS)I(u+cs,oo)(x) +,(N - cs)I(—oo,u—cs) (ZL‘)
+ (1 — F(u+ cs))ha(z) + F(u — cs)hi(z).

Then,

V(én — €) = /Varp(w)Z,

in distribution, where Z is standard normal.

The expressions for g and w are quite complicated. They simplify if F is the c.d.f.
of a symmetric distribution (meaning F(z) + F(—z) =1 for all z). In this case

fcs dF (xI[—cs,cs] (IE) - g’%%sl](~oo,0] (‘T)> 5

cs 2 cs
Varp(g) = 2 fcs aF)? (/_ a:2dF(3:) + (Cé}f((oc)s)) + 46;{5)68) A xdF) )

And (also in the symmetric case),

g(x) =

and

w(x) = zI[—cs,cs] (.11) + CSI(cs,oo)(x) - CSI(—oo,—cs) - 2_};&(%3—)[(—00,0)
and )
Varp(w) = / 22dF 4 2(cs)*F(—cs) + (F}(—;)s))
4F(—cs) [° 4csF?(—cs)
"0 LS T

Suppose F' is symmetric and f{z) is continuous and bounded, and decreasing on
[0,00). Then, if we let g. and w, be the functions g and w in the above two theorems
corresponding to the tuning parameter ¢, we see that both, Var g, and Var w, tend to 1 as
¢ — oo and tend to 1/(4f2(0)) as ¢ — 0. In particular, it is possible to choose, within the
family of Hampel’s trimmed (Winsorized) means, estimators of the center of symmetry
of F' with breakdown point 1/2 and with asymptotic efficiency with respect to the mean
as good as one wishes. Hampel's means are always more asymptotically efficient than the
median but if ¢ is chosen too small they become almost as ‘asymptotically inefficient’.

4.3 Boz plot trimmed and Winsorized means
For any 0 < a < 1 let @ = F~1(a) and assume F has a non-vanishing continuous
density f in a neighborhood of . Then, as with the median,

Vi(Qn — Q) = ———<vn(—00,Q] + op(1).

o f (Q)
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Therefore, assuming that f exists and is strictly positive and continuous on an open set
containing (J; and @3, we obtain

1 1
\/ﬁR—R:I/n(—I_ - —1I_ >+Op1.

( n ) f(Ql) ( OO,Ql] f(Q3) ( OO,Qa] ( )
For the box plot trimmed mean we use a, = Q,1 — cR, and b, = Qn3 + cR, (see
Section 2), so that, in this case,

Vn(an —a) = Vn[Qn1 — cRy — (Q1 — cR)] = vy (h1) + 0p(1)

where

1 1 1
(4.14) hy = —mf(_oo,cglj +ec [mf(—oo,cgs} - TQl)I(—OO,Qljjl )

and
(4.15) Vb, —b) = Vn|Qns + cRy — (Q3 + cR)| = vy (ha) + 0p(1)

where
1

1 1
hy = —mf(—oo@sl —c [mj(—oo,Qsl - mf(—oo@xl] ‘

So, the results of Subsection 4.1 imply the asymptotic normality of the box plot trimmed

mean. Computations simplify in the symmetric case since then we have f: zdF = 0,
Q1 = —Q3,b=(2c+ 1)Q3 and a = —b. Here is the result.

THEOREM 4.4. Assume that F has a continuous density on an open set containing
Q1, Q3, @1 — cR and Q3 + cR for some constant ¢ > 0, and that f(Q1) # 0, f(Qs) #0
and f(Q1—cR)+f(Qs+cR) # 0. Let 8, be the boz plot trimmed mean corresponding to c,
and let 8 be its population counterpart. Then, \/n(0,—0) — aZ converges in distribution
to a normal random variable with variance equal to the variance of the random varieble
9(X), g defined as in Theorem 4.1 with h; and ho given respectively by (4.14) and (4.15).
If F' is the c.d.f. of a symmetric distribution, then the variance of the normal limit is

b

[2F(b) — 112 \ J s f(Qs) F(Q3)

with b = (2c + 1)Qs.

Likewise, the box plot Winsorized mean is also asymptotically normal, and in the
symmetric case (with the same assumptions as in Theorem 4.4) the variance of the
normal limit of \/n(§, — &) is

Té = _bx2dF(:c)+2b F(—b)+2f2(Q3) 7103 Q)

with b = (2¢ + 1)Qs.

\ /b F2(-b) 4F(-b) fé;s zdF(z)  4bF2(—b)
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5. Bootstrap

The variances of the normal limits of \/n(#, — 6) and /n(§, — £) are rather com-
plicated and, even worse, depend on f. So, the results of Section 4 cannot be used to
obtain asymptotic confidence intervals for 8 or for £. The bootstrap provides a way out
of this difficulty. One can always bootstrap without replacement and with a resampling
sample size m,, — oo with m,/n — 0 (Politis and Romano (1994)). However, as we
prove in this section, depending on the properties of the estimators a,, and b,, Efron’s
bootstrap with resampling size m,, = n may also be valid. We show in addition that
this is the case for Hampel’s and the box plot means. We present a justification of this,
in all details, for Hampel’s trimmed mean, and state without proofs the corresponding
results for Hampel’s Winsorized mean and the box plot means.

We recall that the n-th bootstrap sample Xfl’l, .. .,X;‘m is obtained by sampling
with replacement n times from the original sample X, ..., X,,. We denote FfL , P? and Vg
respectively the empirical c.d.f., the empirical measure and the empirical process based on
the n-th bootstrap sample: P2(A) =n~1Y" | 6xe (A), F(z) = Pb(—00,2] and v, =
vn(Pt—P,). The bootstrap median, /42, is the median of the bootstrap sample, and the
bootstrap MAD, sb, is the median of the set of points [X5 | —ub|,...,| X}  —pb|. Finally,
we denote by Pr, = Pry(w) the conditional probability given the sample Xi,...,X,
(its dependence on w will not be displayed unless absolutely necessary). Also, £° will
denote conditional law given the sample. The symbol op, (1) will mean the following:
Un(X2 1, X2, X1, .., Xn) is 0p, (1) as. if a.s. Pry{|Uy| > €} — 0 for every £ > 0.

We briefly list the extra key ingredients needed in the proofs that follow. Since the
class of functions F = {Ij45](%), [(~00,q] (), ZI[ap)(2) : —00 < 1 S a < b < cy < oo}is
uniform P-Donsker (or, equivalently, uniformly pregaussian) (see Giné (1997), Example
2.5.2), we have (Giné (1997), Theorem 2.6.1, p. 139)

(5.1) lim sup vn(g9) —vn(h)| =0 as.
n—oo - g,.heF
Ep(g—h)2<1/(loglogn)2
Also, by the Giné-Zinn bootstrap central limit theorem (e.g., Giné (1997), Theorem
2.3.2),

(5.2) V2o Gp  in Loo(F)  as.

where — ,» denotes convergence in law conditionally on the sample and G p is a centered
Gaussian process indexed by F with covariance P(gh) — P(g)P(h). Moreover, by the
asymptotic equicontinuity associated to a limit theorem in £o.(F), we also have

(5.3) lim lim sup Pry, sup  |v8(g) —vi(h)|>ep =0
—0 n h,g€F
Ep(g—h)2<6

forall >0, as.

Also (Bickel and Freedman (1981}, see also Giné (1997)) the median and the quantiles
bootstrap a.s., that is,

Lo(Valpr, = un)) = N(0,1/(4£% (1)),
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LE(V/(@% 1 — Qn,1)) — N(0,3/(16f%(Q1)))
(5.4) L(Vr(Q 3 — Qn3)) — N(0,3/(16f%(Qs)))  as.
weakly a.s., assuming f is continuous and non-vanishing at y for the first limit, at ¢
for the second and at Q3 for the third.
Even though we could do with less, we will assume

(D.3) P has a density f on R, the set By = {f > 0} is open and f is continuous

on B f-
Then we have the following general theorem for randomly trimmed and Winsorized
means, asserting that if the a, and b,, bootstrap, so do the corresponding means:

THEOREM 5.1. Assume (D.2), (D.3), (L), a,b € By, ap, — a a.s. and b, — b a.s.
Assume also that ab and b8, defined respectively as a’ = a(F?) and b2, = b(F?), satisfy

(L) Vn(ay —an) = vh(h) + o, (1),  Va(b, —by) = vh(hs) +0p,(1)  as.
Then, if 0% is the bootstrap trimmed mean,

9b _ E’?:l Xz,il[az,ba](XfL,i)
" iy s (X5 )

and 8, 0, g and Z are as in Theorem 4.1, we have

V(8 —6,) - \/Varp(9)Z  a.s.

ne€ N,

Moreover, if &, £ and w are as in Theorem 4.2, and w®, is the bootstrap counterpart of
wy, (defined in analogy with 6°), we also have

V(€L — &n) — v mZ a.s.

PROOF. (Sketch) We only prove the result for trimmed means, as the proof for
Winsorized means is not different, aside from formalities. The proof follows the steps
of the proofs of Lemma 4.1 and Theorem 4.1. The main point consists in proving the
representations

bb

Vi [ T d(F - B = b 4+ op, (1) as,
ab

24
\/ﬁ/b dF, = f(b)v2(hg) +op,(1) as. and

n

\/ﬁ/jn dF, = —f(a)v2(h) +0p,(1) as.,

as well as similar representations for /n ff} zd(FC—F,),/n fbbf‘ zdF, and \/n [ zdF,,
as they give bootstrap versions of (4.2) and (4.3), which in turn can be used to cgmplete
the proof of the theorem just as in the proof of Theorem 4.1, but now invoking the
bootstrap CLT instead of the regular CLT.
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Let ©; be the subset of  of probability one where (Lb) holds, a,, — a, b, — b, and
(5.3) hold. Then, for any w € Q; fixed, a® is close in Pry(w) probability to a,, which is
in turn close to a, and likewise for 5, and therefore we can use the bootstrap asymptotic
equicontinuity (5.3) to get the three representations above (in the same way as we used
the asymptotic equicontinuity of v, in the proof of Lemma 4.1). O

Next we will apply Theorem 5.1 to show that Hampel’s means bootstrap a.s. By
Theorem 5.1, this reduces to obtaining representations for v/n(u’ — uy,) and v/n(s% — s,)
in terms of the bootstrap empirical process v (i.e., the bootstrap analogue of Lemma
4.3). Here is the representation for the bootstrap median.

LEmMMA 5.1. If (D.3) holds and . € By, then,

2 (—oo,u] 4+ op,(1)  a.s.

by 1
Vn(u,, — pin) 1)

PrOOF. The sample points X; are all different a.s. by the assumption on f. Also
by the assumption on f, if @ and b are near u, then e%(a,b) := (P(a,b])? > c|b — a|? for
some ¢ > 0, hence, by (5.1),

b
(5.5) sup dvp] > 0 as.,
la—bl<1/logn
la—p|<1/logn,|b—u|<1/logn
and, by (5.3), we have that, almost surely,
(5.6) lim lim sup Pr, sup |vi(a,b]l >ep — 0
50 n a,b:Pla,b]<é

for all e > 0. Let Q; C 2 be a set of probability one where i) all the X; are different,
i) pn — p, iii) v/n(ud — un) converges in law conditionally on the sample, iv) the limit
(5.5) holds, and v) the limit (5.6) holds. If m,; denotes the number of terms from
the bootstrap sample Xzyl, e ,Xf’w equal to X;, then m, ; is Binomial(n,1/n), and
therefore, by a well known inequality for binomial probabilities, for all & < n,

Pry { o s > £} < nPry{ma > k) < e/

which tends to zero for instance for k = {log n]. That is, on 4, the conditional probability
that F? has a jump of size larger than n~1logn tends to zero, which implies

Fb(ub) = % +0 (loin> with Pry-probability tending to 1.

(This statement holds a.s., more concretely, it holds for each w € §;; this will also be
true, without further mention, for the identities in this proof that follow.) Also,

Rl = 5 +0 (3 ) + (Faid) = Fulun)
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so that, subtracting this identity from the previous one and multiplying by /7,

b

b
Ho, Mo,
V2 (=00, pl] = - dvp, — v/ dF + op,(1)
Hn Hn

(note that oy, — O trivially implies a,, = op,(1)). Now, since pub — u, = Op,(1/v/n),

(5.5) gives
A
/ dl/n = Opb(l).

Since, moreover, by consistency and bootstrap consistency of the median,

Vi [ dE = b — i) (F) + or (1) + o(1)),

Hn

we obtain

A0, i) = v [ " AF + op, (1) = — F()VAKE — in) +0n (1),

On the other hand, by the bootstrap of the median, the fact that u, — p and the
conditional asymptotic equicontinuity (5.6) of the bootstrap empirical process, we have
that

Vg(_oonu?z] = z(—ooaﬂ] + OPb(]‘)'
The last two identities prove the lemma. O

To get a similar representation for the bootstrapped MAD, we need an intermediate

result. Recall that s, is the median of the set of points | X1 — tnl, ..., | Xn — unl; we
define now &, as the median of the set of points | X2} — pal,...,|X} ,, — pal, whereas
the bootstrap MAD, s, is the median of |X2,1 —ubl,..., |Xfm —pbl.

LEMMA 5.2. If (D.3) holds and p,pu+ s, — s € By, then, the sequence {\/n(3% —
Sn) Y52, converges in conditional distribution given the sample, almost surely.

Note that if yu, were replaced by u in the definitions of s, and 8%, this lemma
would follow from the bootstrap of the median for |X — u|. We cannot, however, do
this directly because p, — p is not o(1/4/n). On the other hand, we can prove Lemma
5.2 by a straightforward adaptation of the proof of the bootstrap of the median in Giné
(1997) pp. 141-142, keeping in mind that 1) s, — s a.s., 2) almost surely, there are
no three equal terms among | X7 — pnl,...,|Xn — pn| for any n (this is so because,
given that all the X; are different, if three terms are equal here then, for some 1, j, k,
(Xi+X;)/2 = (X; 4+ Xk)/2 = myp, which implies X; = X;) and 3) one must apply (5.1),
(5.2) and (5.3) to the empirical process indexed by the class of sets {z : |z — b| < a},
be R, a> 0, instead of to the classical empirical process. We skip the details.

LEmMA 5.3. If (D.3) holds and p,pn+ s, — s € By, then,

b _ = — 1 Wlu—s s
Vn(sy, — sn) PP T b — 8, pu+ 8]
1 flu+s)— flp—s)

T Fluts) + flu—s)

v2(—oo, ] +op,(1)  a.s.
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PROOF. Since
|85 = sl < |sb = Sl + 185 — sal < b — pal + 155 — snl,

it follows from the bootstrap of the median and from Lemma 5.1 that

(5.7) 88 —s,=o0p,(1) and V(L —s,)=0p,(1) as.
Let now H, be the c.d.f. of | X1 — ptnl,...,|Xn — in) and let H. be the c.d.f. of | X% | —
pbl,...1XE, — ph|. Since all the X; are different a.s., by an argument just before

the statement of the lemma, H,, has jumps of size at most 2/n a.s., and then, by the
argument below (5.6) in the proof of Lemma 5.1, H? has jumps of size most of the order
of n~! log n with bootstrap probability tending to 1 a.s., so that we have

logn

Ab(sb) = % +0 ( ) and  H,(sl) = % +0 (%) + (Ho(s2) = Hn(sn))

with Pry-probability tending to 1 a.s. Also, (5.3) and (5.7) imply

N [/:mz d(F, — F) - /”m" d(F, — F)

=op,(l) as.

Hn—8n

n_sz

and therefore we get

+op,(1) as.

(5:8) VAU — Ha(sh) = v [/ “ar [ ar

n_sg n—Sn

By the hypothesis on F' and since y, — p and s, — s a.s. and sfl — 85, — 0 in Pry a.s.,
this gives

VR(HL () — Ha(sh)) = v(sh = sa)(f(u+ 8) + f(u— 8)) +op,(1)  as.

On the other hand, for the same reasons plus the conditional asymptotic equicontinuity
of the bootstrap empirical process ((5.3) or (5.6)), the left hand side of (5.8) becomes

VR(H), — Hp)(sh) = Vn(PY[ub, — sh, o, + 5] = Palin — s%, i + 55))
= Vﬂ[uz - S?ul‘l;:, + 32]
+ \/E(Pn[ﬂtr’z - Sf,,,u?z + 52] — Polpn — S?Laﬂn + SIrJL])
po+sh, fintsy,
[ aE-p - [T aE - F
M b

nsh =8t

b +sh, pnts,
++/n / dF — / dF
p p

b_gb _gb
n " 8n n =Sy

=lu—s,u+s+vn

= Vi{u—s,pu+ 8]+ (Fu+s) — flu—)Vad — pa)
+op,(1) as.

The lemma. follows from the last three displays and Lemma 5.1. O
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In particular, this lemma shows that the MAD bootstraps a.s.

As a consequence of Theorem 5.1, Lemma 5.1 and Lemma 5.3 give the bootstrap
central limit theorem for the Hampel’s sample trimmed and Winsorized means. Here
are the precise statements:

THEOREM 5.2. (Bootstrap of Hampel’s trimmed and Winsorized means.) Let F'
be a c.d.f. satisfying condition (D.3) and such that p, p+ 8, p— s, p+cs and p—cs are
in By for some constant ¢ > 0. Let 8, be Hampel’s trimmed mean corresponding to the
constant ¢ and let 00 be its bootstrapped version,

g . imt Xnalips ot it rest) (X )
" > ic1 I[ui’,%SZ,MZﬂSH(Xg,i) ’

for each n € N. Then,
V(8 —6,) = /Varp(9)Z  a.s.

where g and Z are as in Theorem 4.3. Also, if &, is Hampel’s Winsorized mean for some
¢ > 0 and €8 is its bootstrap counterpart, then, almost surely, /n(&5 — £,) converges in
conditional law given the sample to \/Varp(w)Z, where w and Z are as in Theorem 4.3.

Clearly, similar arguments prove that the bootstrap works as well for the box plot
trimmed and Winsorized means. We skip the proofs since they are so similar to the
proof of Theorem 5.2.

THEOREM 5.3. Let F be a c.d.f. satisfying condition (D.3) and such that the den-
sity [ is positive at @1, Q3, Q1 — cR and Q3 + cR for some ¢ > 0. Let 8,, and £, be
the box plot trimmed and Winsorized means corresponding to the constant ¢ respectively,
and let 6% and £ be their bootstrap counterparts. Then, almost surely, the conditional
distributions given the sample of /n(08 — 0,) and /n(£L — &,) respectively converge to
the limiting distributions of \/n(8, — 8) and \/n(&, — §).
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