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A b s t r a c t .  A unified, empir ica l  processes based  approach  to  the  central  l imit  theo-  
rem and to the  b o o t s t r a p  for r andomly  t r i m m e d  and Winsor ized  means is developed,  
wi th  emphasis  on Hampe l ' s  means.  
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1. Introduction 

Since the sample mean is very sensitive to outliers in the data, alternative estimators 
(and location parameters) have been in use since time immemorial. Randomly tr immed 
means, which include as extremes the mean and the median, constitute a very general 
class of location parameters whose sample counterparts that  can be made as sensitive or 
insensitive to outliers as one wishes, and also as asymptotically efficient with respect to 
the sample mean as one wishes when considered as estimators of the center of symmetry 
of a smooth symmetric distribution. A randomly trimmed mean is constructed as follows: 
one fixes levels an < bn depending on the sample, and takes the average of those data  
points that  fall between an and bn. Typically these levels are obtained by evaluation 
at the empirical distribution function Fn of functions a(F), b(F) defined on probability 
laws; then, if F is the distribution function from which the data are drawn, and one 
takes an ---- a(Fn) and bn = b(Fn), the tr immed mean estimates the expectation of 
X (with distribution F)  conditioned to X �9 [a(F),b(F)]. If a(F) = F - l ( a / 2 )  and 
b(F) = F - l ( 1  - a /2 ) ,  one has the classical trimming, with a breakdown point of a.  If 
a(F) = #(F) - cs(F) and b(F) = #(F) + cs(F), where # denotes median, s denotes 
median absolute deviation (MAD), and c is a constant of choice, then one has Hampel 's 
tr immed mean (Hampel (1971, 1985)), which has the optimal breakdown point of 1/2; in 
this case one does not know in advance what proportion of the data are being discarded 
(which may have some advantages). These are just two examples, but there are many 
more. A companion to tr immed means are Winsorized means, which are the plug-in 
estimators of the population parameters E ( ( X  A b) V a): 

*Research partially supported by the Center for Research, College of Science and Health, and by the 
ART program of the William Paterson University. 

**Research partially supported by NSF Grant No. DMS-0070382. 

771 



772 ZHIQIANG CHEN AND EVARIST GINI~ 

It seems advantageous to have a unified approach at getting robustness properties, 
limit distributions and the validity of the bootstrap for this relatively general and very 
useful class of statistics. Shorack (1974) has a unifed approach to the central limit theo- 
rem in the case of symmetric distributions; Shorack and Wellner (1986) have asymptotic 
expressions for randomly trimmed and Winsorized means that  fall short from being limit 
theorems because the levels a and b are, in a sense, too general. Kim (1992) proposes 
a type of trimmed means (not unrelated to Hampel's) for which he obtains the cen- 
tral limit theorem using the delta method. Hall and Padmanahban (1992) contains a 
detailed study of the bootstrap for the studentized classical trimmed mean. In this arti- 
cle we present a unified, empirical process based approach to the central limit theorem 
and the bootstrap central limit theorem for the general trimmed mean under very mild 
assumptions on the levels a(F) and b(F). The basic assumption is that  v~(an  - a) 
can be asymptotically linearized, in the sense that  it is asymptotically equivalent to 
~ i n l  (hl (Xi) - Eh l  (X))/v/-~ for some function hi square integrable for F,  and likewise 
for v/-n(bn - b). This assumption is very natural because on one hand it allows for very 
simple proofs, and on the other, it is satisfied by the median, any quantiles and the MAD 
(and hence also by p - es), as we show below. Robustness properties are also breifly 
reviewed. 

Then, we apply the general results to Hampel's means and to means based on 
box plots (precise definitions are given in the next section). We emphasize Hampel's 
means because they have optimal breakdown point, and, as Davies (1998) concludes af- 
ter commenting on their simplicity and favorably comparing the performance of Hampel's 
trimmed mean and standard deviation with that  of other robust location/scale parame- 
ters, 'It (Hmean/Hsdv) can certainly be recommended for a first course in data  analysis 
as an alternative to the usual mean/sdv. '  (Here we do not deal with Hampel's standard 
deviation--the standard deviation of the data between tt~ - csn and #n + CSn.) Also, as 
estimators of the center of symmetry of a smooth symmetric distribution, the asymtotic 
efficiency of Hampel's trimmed and Winsorized sample means with respect to the sample 
mean tends to one as the tuning parameter c tends to infinity, whereas the breakdown 
point remains 1/2 regardless of the value of c. 

Section 2 contains definitions and examples, Section 3 reviews robustness properties, 
in Section 4 we obtain asymptiotic normality and in Section 5 we show that  the bootstrap 
is valid a.s. 

2. Definitions 

Let X,  X 1 , . . . ,  X n , . . .  be indepedent identically distributed real random variables 
with common probability law P and, for each n E N ,  let Pn = n -1 ~i~=1 5X~ be the 
empirical measure corresponding to the first n observations X 1 , . . . ,  Xn. F and Fn will 
denote the cumulative distribution functions associated respectively to P and Pn. Let 
a(Q) = a(FQ) and b(Q) = b(FQ) be real valued functionals defined on a subset of the 
set of probability measures Q on R containing P and P,~(w) for all n E N and co E f~, 
and such that  a < b. Then, the trimmed mean of P based on a and b is defined as 

fa b(P) xdF(x) (P) 
0 = O(P) := F(b(P)) - F ( a ( P ) - )  -- E ( X  I X e [a(P), b(P)]), 

and we will usually write a and b for a(P) and b(P). Likewise, we will write an for a(Pn) 
and bn for b(Pn), and we impose without further mention that  an and bn are measurable 
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functions, that is, random variables. The empirical trimmed mean based on a and b is 
analogously defined as 

On = O ( P n )  = XiI[a 'bn](Xi) f~b2 xdFn(x)  

F (bn) - 

Here and elsewhere, f / =  f[c,d]" The Winsorized population and empirical means based 
on a and b are respectively defined as 

and 

jfa b 
= ~(P) = xdF(x )  + a F ( a - )  + b(1 - F(b)) = E ( ( X  A b) V a) 

= = xdF (x) + a n F n ( a n - - )  + b (1 - 

n 

= L  [xdcao,b l(xi) + bnI(bo, )(Xi) + anI(_ ,oo)(Xd]. 
n i=1 

Most trimmed and Winsorized means in the literature are obtained by appropriately 
choosing a and b. Given a distribution function F and a number a C (0, 1) define, 
as usual, Q~(F) = F - l ( a )  := inf{x : F(x )  > a}, the a-quantile of F (quartiles: 
a = 1/4, 3/4, median: a = 1/2). We will denote by # the population median Q1/2(F) 
and by #n the sample median Q1/2 (Fn); likewise, we simplify the notation for quartiles 
as Q1 -- Q1/4(F),  Qn,1 = Q1/4(Fn), Q3 -~ Q3/4(F) and  Qn,3 = Q3/4(Fn), and the 
intcrquartile ranges are denoted by R = Q3 - Q1, Rn ---- Qn,3 - Qn,1. Finally, the median 
absolute deviation or MAD s for P is defined as the median of the random variable 
IX - #] (where X has law P), and the empirical or sample MAD, s~, as the median of 
the (random) set of points IX1 - #~] , . . . ,  ]Xn - ,~l .  

Examples. 
1. Hampel's means. (Hampel (1971, 1985)). The trimmed and Winsorized Hampel 

means are obtained by taking a = # - cs and b = # + cs for some c > 0 (Hampel takes 
c = 5.2). So, the Hampel means are averages of the data  points that  are close to the 
(sample) median by at most a fixed multiple of the (sample) MAD. These means are 
remarkable because they inherit the excellent robustness properties of the median and the 
MAD. Their asymptotic normality in the symmetric case can be obtained from Shorack 
(1974), Example 9, given the asymptotic normality of the MAD, that  was proved by Hall 
and Welsh (1985). We are not aware of any proofs in the literature of the asymptotic 
normality of these estimators in general (without assuming symmetry of F) or of the 
validity of the bootstrap for them. 

2. Box plot means. The box plot trimmed and Winsorized means are obtained by 
taking a = Q1 - c R  and b = Qa + c R  for some e > 0, or what is the same, a = 
(Q1 + Q3)/2 - dR, b = (Q1 + Qa)/2 + dR for some d > 1/2. Asymptotic normality in the 
symmetric case follows from Shorack (1974). We call these box plot means for obvious 
reasons. We could take other quantiles as well in the definition of these trimmed means. 

3. Symmetrically trimmed means. For these means, one takes a = Q~ and b = 
QI-~.  Classical, well studied (for asymptotic normality, see e.g., Huber (1969) and 
Stigler (1973), and for the bootstrap, Hall and Padmanabhan (1992)). 
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4. Kim's  metrically trimmed means. This (Kim (1992)) is obtained by taking a = 
p - Flxl_t,l(1 - a) and b = p + ~x1_,1(1 - c~). For c~ = 1/2 Kim's metrically trimmed 
mean coincides with Hampel's with the choice of c = 1. The asymptotic normality when 
'F  possesses a density f which is positive and absolutely continuous on its support' was 
obtained by Kim (1992); in the symmetric case it does follow from Shorack (1974) given 
the asymptotic normality of an and bn, that  was obtained later. The results in the next 
sections imply that Kim's theorem is true under the weaker assumption that  the density 
exists in an open set containing p, a and b and is positive and continuous there; they also 
imply that  the bootstrap works as well. However, these results will neither be stated nor 
proved because of their similarity with the corresponding results for Hampel's means. 

3. Robustness 

It is obvious that  if a and b, as functions of P,  are equivariant under affine trans- 
formations, then so are On and ~n, and this is a basic property to have for location 
parameters and estimators. It is also interesting to note that  if P is symmetric about a 
point c, then O(P) -- ~(P) = c and 0n and ~n are unbiased estimators of the center of 
symmetry c. Although these are desirable and important properties, randomly trimmed 
means are most appealing because of their robustness properties. We look now a little 
more closely at robustness in terms of breakdown points and influence curves. 

We recall (Hampel (1974)) that  the finite sample breakdown point of an estimator is 
' the smallest percentage of free contamination that  can carry the value of the estimator 
over any bounds'. 

PROPOSITION 3.1. The finite sample breakdown points of On and ~n, defined from 
an and bn as in Section 2, are the smallest of the breakdown points of an and bn. In 
particular, Hampel's trimmed and Winsorized means have breakdown points of 50%, 
whereas the box plot trimmed and Winsorized means have breakdown points of 25%. 

PROOF. For any portion of contamination points that  keep an and bn unbroken 
(bounded), the estimators 0n and (n also remain bounded by their very definition. Con- 
versely, if a portion of contamination can take an or bn beyond any bound, then it 
can also take On and ~n beyond any bound, proving the general result. The result for 
Hampel's and box plot means follows from this because, as is well known, the breakdown 
points of the median and the MAD are both equal to 1/2, and that  of the quartiles is 
1/4. [] 

The influence curve or function at P of a parameter  0 = O(P) is defined (Hampel 
(1974)) as 

IC(x ,  0, P) = lim O(P(e, x))  - O~,P)," " 
r 

where P(e, x) := (1 - s ) P +  ~Sx, e E [0, 1]. The next proposition follows by direct simple 
computations that we omit. 

PROPOSITION 3.2. Assume the distribution function F of P has a continuous 
derivative f on an open set containing a -- a(P)  and b = b(P). Let ax(e) := a(P( s , x ) )  
and bx(e) := b(P(e,x)) ,  and assume ax and b~ are differentiable (with respect to e) at 
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' and b~. I f  0 O(P) and ~ = ~(P) are defined from a and b as zero, with derivatives a x = 
in Section 2, we have: 

I C ( x ,  O, P) = bb~f(b) - aa~f(a)  + XI[a,b] (X) b~f(b) - a~f(a)  + I[a,b] (x) 
F(b) - F(a)  - F(b) - F(a)  �9 O, 

and, for  x 7~ a, b, 

I C ( x ,  ~ ,  P) = a~xF(a) + b;(1 - F(b)) + XX[a,b ] (X) -~- aI(_~,a)(x)  + bI(b,oo)(x) - c s .  

In particular, these parameters have bounded influence functions. 

The previous proposition gives the influence functions of the Hampel and the box 
plot means just by replacing a and b by their values in terms of the median, the MAD 
and the quartiles, whose influence functions are (Hampel (1974), nuber  (1981) or direct 
computation): 

and 

0 
I C ( x ,  Q a , P )  = o~ - I (_~ ,Q , ) ( x )  

f ( Q ~ )  

if x = Qa 

otherwise 

1/2 - I(t,-s,,+8] (x) - [f(# + s) - f ( #  - s )]IC(x ,  #, P)  
I C ( z ,  s, P)  = 

f ( #  + s) + f ( # -  s) 

4. Limit distributions 

Given X,  Xi ,  i E N ,  we let P be their common law, with c.d.f. F and density 
f ,  and, for each n E N ,  we let Pn := n -1 ~in=i 6x~ be the empirical measure and 
Vn :-- x/n(Pn - P) the empirical process. In this notation, the classical empirical process 
is Vn(-C~,x] = v/-n(Fn(x) - F(x) ) .  Given a measure # (in paticular, P,  Pn or l]n) and 
an integrable function f ,  we will often write # ( f )  for f f d# .  

4.1 General tr immed and Winsorized means 
Let - o c  < a < b < ec and let an, bn be random variables such that  - c ~  < an < 

bn < cc a.s.. The following assumptions will be in force in this subsection: 
(D.1) The c.d.f. F has a derivative f on an open set containing a and b and f is 

continuous there, hence, f is uniformly continuous on a compact set K whose interior 
contains a and b. 

(D.2) f (a )  + f(b)  ~ O. 
(L) There exist measurable, P-square integrable functions hi and h2 such that  

(4.1) v/n(an - a) = yn(hl) § OF(l) and v~(bn  - b) -- ~n(h2) + op(1). 

In particular, by the central limit theorem, an and bn are weakly consistent (that 
is, an --* a and bn ~ b in probability) and asymptotically normal (when centered at a, 
resp. b, and multiplied by v/n). Note that,  although fairly general, these assumptions 
are slightly stronger than the assumptions in Theorems 1 and 2, Shorack and Wellner 
(1986), pp. 678 and 682. But, on one hand, they will allow us to get stronger results than 
in their theorems and, on the other, they are satisfied by all the examples in Section 2. 
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and 

Then, 

LEMMA 4.1. 
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Assume (D.1) and (L). Define, for  x E R,  

gl(x)  = I[a,b](X) + f(b)h2(x)  - f (a)h l (X)  

g2(x) = xl[a,b] (x) + b f (b)h2 (x) - a f (a)hl (x). 

(4.2) v ~  aF~(x) - aF(x) = -~(g l )  + op(1) 
n 

and 

(4.3/ v ~  zdFn(z )  - x d F ( z )  = u~(g2) + op(1). 
f L  

PROOF. We have 

dFn - = V ~  , d( Fn - F) + v/-~ dF  + v/-n dF. 
n n 

Since f is uniformly bounded  on K we have that  IIfl[K := supxeK f ( x )  is finite, and 
that  if [x,y] C K then P[x,y] <_ lif]IK(Y-- x), hence, P[x,y] - (P[x,y]) 2 <_ l i f l IK(Y-  x). 
Also, there  is 5o > 0 such that  [ a - 5 0 ,  a + 5 0 ] u [ b - 5 0 ,  b + 5 0 ]  c_ K .  Therefore,  by 
the asympto t ic  equicontinuity of the classical empirical process (e.g., Theorem 3.7.2 and 
Corollary 6.3.17, pp. 118 and 215, in Dudley (1999)), we have 

(4.4) lim l i m s u p P r  ~ sup I r , n [ x , y ] - u n [ a , b ] ] > e } = O  
5-*0 n I, Ix-al<_5,1Y-bl<_5 

for all e > 0. Since 

< Pr  / sup ir, n [ x , y ] - v , ~ [ a , b ] i > e }  
( Ix-al<_5,fy-b[<_5 

+ Pr{Ib~ - b I > 5} + Pr{la~ - at > 6}, 

the equicont inui ty  condit ion and condit ion (L) give, upon taking limits first as n -~ c~ 
and then as 5 --* 0, 

v'~ d(Fn - F)  = un[a,b] + op(1). 
r ~  

Given 0 < 5 _< 5o and M~, n E N ,  such that  M~ ~ c~ and M ~ / v , ~  ~ O, set Tn := 
sup{I f (b )  - f (c ) l  : Ib - cr < (5 + M n ) / v ~ } ,  which tends to zero by uniform cont inui ty 
of f on K .  Then, on the event where lu~(h2) - v'~(b~ - b)l <_ 5 and lun(h2)l <_ M~, we 
have 

dF - f(b)vn(h2) ~b bn <_ ~ I f(x)  - f (b) ldx + Ix/n(bn - b) - ~'~(h2)lf(b) 

v/-~lbn - blTn + [v~(b,~ - b) - z:n(h2)lf(b), 
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and this bound tends to zero in probability. So, for any e > 0, 

proving 

P r {  v / -n f f bb '~dF- f (b )~ ,n (h2 )>r  

_ P r { v ~ l b n  - bl~'~ + I v ~ ( b ~  - b) - ~ ' ~ ( h ~ ) l f ( b )  > ~} 

+ P r { k ' ~ ( h ~ )  - v ~ ( b n  - b)l > 6} + P r{ l~ 'n (h~) l  > M ~ }  --~ O, 

fb b~ v/n dF = f(b)z4~(h2) + op(1). 

A similar proof gives 

L ~ dF = - f (a)un(hl )  + op(1). 
n 

Collecting terms we obtain (4.2). To prove (4.3) we write 

v ~  xdFn - xdF  = v ~  xd(F,~ - F) + v ~  x d F  + ~ x d F  
n ~ n 

and then proceed as in the proof of (4.2) (we note that the asymptotic equicontinuity 
condition also holds for the empirical process indexed by the class of functions xI[c,d] (x), 
Ic--al <_ 50, Id-b[ <_ 6o, also by Theorem 3.7.2 and Corollary 6.3.17 in Dudley (1999)). [] 

THEOREM 4.1. Assume (D.1), (D.2) and (L), and set 

1 f : t d F ( t )  
g(x) . -  f :  dF(t) g2(x) ( f :  dF(t))2gl(x) ,  x C R ,  

with gl and 92 as defined in Lemma 3.1. Let On be the trimmed mean based on a,~ and 
bn and let 0 be its population counterpart, as defined in Section 2. Then, 

,/-n(On - O) ~ ~ Z  

in distribution, where Z is standard normal. 

PROOF. By (D.2), f : d F  > 0 and, with probability tending to 1 by (4.2), 

fb2dF,~ > 0. We then have 

[S2x Fo 1 

: =  (s) • (ss). 

By (4.2), 

1 1Lbn 
- ~  -- f ~ d F  n dFn - ~ 0 in pr. 
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Hence also 

f : d F  1 --~ 0 in pr., 
f:b: d E  n 

that is, 
( I )  - -  1 + o ~ ( 1 ) .  

And, also by Lemma 4.1, 
(II)  = z:n(g) + op(1). 

Now the theorem follows because, by the central limit theorem, ~'n(g) ~ v/Varg(g)Z in 
distribution. [] 

Next we establish the asymptotic normality of the Winsorized means ~n- 

LEMMA 4.2. Under (D.1) and (L), we have both, 

C a  n ~2~=~ I(bn,~)(X~) _ b(1  - F(b)) = un(bI(b,~) + [1 -- F(b) - bl(b)]h2) + O R ( l )  
n 

and 

Ca (an E ~  I(_~,oo)(X~)n - aF(a)) = ~'~(aI(-~,a) + IF(a) + aI(a)lh,) + o~(1). 

and 

PROOF. If we write 

Ca (bn E~=I I(bn,~)(X~ln 

C a  ( a n  ~-~i~1 I(-~,an)n (Xi) 

) E - b(1 - F(b)) = v~(bn - b) dFn 

+ b~(bn,~) + Cab dF 
n 

)) F n - aF(a = v/-n(an - a) dFn 
( x )  

+ aYn(--~,  an) + v ~ a  dE, 
J a  

and then apply the Glivenko-Cantelli theorem together with (L) to the first term at the 
right hand side of each of these two identities, asymptotic equicontinuity of the empirical 
process to the second, and (D.1) and (L) to the third, the result follows. [] 

THEOREM 4.2. Assume (D.1), (D.2) and (L), and set 

w(x) := xI[a,b] (x) + bI(b,o~)(x) + aI(_o~,a)(x) + (1 -- F(b))h2(x) + F(a)hl  (x), x �9 R. 

Let ~n be the Winsorized mean based on an and bn and let ~ be its population counterpart, 
as defined in Section 2. Then, 

V~(r - r ---+ v/VarF(W)Z 

in distribution, where Z is standard normal. 
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PROOF. Since 

- = xdF  - x d F  

-~- V ~ [a n f anoodF n - aF(a) ]  -~- V ~ [b n ~b~ d F n - b ( 1 - F ( b ) ) ]  , 

the result follows from Lemmas 4.1 and 4.2 together with the central limit theorem. [] 

With somewhat different assumptions, namely, that a and b are Hadamard differ- 
entiable tangentially to the distribution functions with non-vanishing densities at a(P)  
and b(P),  and that ax(e), bx(c) are differentiable at zero, Theorems 4.1 and 4.2 may be 
deduced by the delta method together with Proposition 2.2 (see, e.g., van der Vaart and 
Wellner (1996)). This was the approach taken by Kim (1992) for metrically trimmed 
means, assuming much more regularity than is needed with our approach, which, more- 
over, is more direct and elementary. This comment applies as well to the remaining 
results in this section and the next. 

4.2 Hampel's tr immed and Winsorized means 
To apply the results from the previous section to Hampel's trimmed mean, it suffices 

to check that a~ = Pn -- C8n and bn = I-tn q- CSn, where ~t n and Sn are respectively the 
sample median and the sample MAD and c > 0 is a fixed constant, satisfy condition (L) 
for appropriate functions hi and h2. This will be a consequence of the following lemma, 
which may have some independent interest. 

LEMMA 4.3. Assuming  the c.d.f. F has a continuous derivative f on an open set 
containing #, # + s and # -  s, and that f ( # )  > 0 and f ( #  + s) + f ( # -  s) > O, we have: 

(4.5) Pn ~ ~ a.8., 8 n ---o 8 a.8., 
1 

(4.6) x/n(pn - p) - f ( # )  un( -oo ,  #] + OF(l) 

and 

(4.7) 

1 
f ( p  + s) + f ( p -  s ) " n [ " -  s ,p  + s] 

1 f ( p  -~- s) -- f ( .  -- ~))/]n(--OO, .]  ~- Op(1). 
+ f(#----) f ( ,  + s) ~ f ( ,  

PROOF. It is well known that #n ---* # a.s. and that the sequence {x/~(pn - #)} 
is stochastically bounded, in fact, asymptotically normal with mean zero and variance 
(2f(#))  -2 (e.g., Pollard (1984), pp. 7 and 53). Next we prove (4.6) by adapting an 
argument from Pollard (1984), p. 98 (which we basically repeat because it is also used 
in the proof of (4.7)). The existence and continuity of f near # and the convergence of 
#n to # (in pr. suffices) then give 

1 f " ~  1 F ( # n )  = -~ + d F ( x )  -- ~ + (#n - # ) ( f ( # )  + OR(l)) 

and 
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1 
Fn(#n) = -~ + O(1/n)  a.s. 

(note that  the sample points in a neighborhood of #, hence eventually of # , ,  are all 
different with probability 1). Then, by subtracting, the stochastic boundedness of the 
sequence {v~(pn - # ) }  give 

v ~ ( F n  - Y) (pn)  = - -V~(#n  -- #) ( / (# )  + oR(l)) + OR(l) = --V~(pn -- # ) f (p )  + oR(l). 

Continuity of f ,  and the asymptotic equicontinuity condition for the processes x/~(Fn - 
F)(y)  = un( -oc ,  y], - c ~  < y < c~, (e.g., results cited above from Dudley (1999)), give, 
just as in (4.4), 

(4.8) e-~01im lim sup Pr { n _ . _ , o o  ,~-o,<<~-< <e~'~:~ [ L , n [ x , y ] l > e } = O  for all e > 0 ,  

for a = p, p + s, p - s. Then, (4.8) together with the fact that #n -- P ---* 0 in probability 
(actually, a.s.) finally give 

v/-n(Fn - F)(#)  = - v ~ ( P n  - p ) f (p )  + OR(l), 

which is (4.6). (To see that v/n(Fn - F) (#n)  = v/-n(Fn - F) (p)  + op(1) just consider 
that for all ~ > 0 and 5 > 0, 

Pr{[un( - (x~ ,pn) -  un(-c~,#)]  > r < Pr ~ sup [/]n(-Oo, x ) -  Un(-CO, p)[ > s 
(l~--t'l<a 1 

+ Pr{l#~ - #[ > 5} 

and apply (4.8) and that Pn ~ #.) 
Next we prove the second part  of (4.5) and (4.7). If gn is the median of the set 

[XI - # [ , . . . ,  [X~ - #[, by the definition of Sn we have 

and, s being the median of Y = IX - #[ and ~ its empirical counterpart, it follows 
that  ~ ~ s a.s. and that  v~(g~ - s) is asymptotically centered normal with variance 
(2g(s)) -2, where 

(4.9) g(x)  := f ( .  + x) + f ( .  - x),  x > 0, 

is the density of IX - #1, for x > 0 in a neighborhood of s. So, 

(4.10) sn - s ---* 0 a.s. and v/-n(s, - s) = OR(l). 

In particular, the limits (4.5) hold. Then, using (4.10) and letting P be the c.d.f, of 
IX - p[ and f',~ be the empirical c.d.f, for the data I X / -  #n [ , . . . ,  [Xn - Phi, arguing as 
in the first part of the proof of (4.6) (but now comparing Fn(s , )  with Fn(sn)),  we get 

(4.11) v/-n(s. - s) = v/-n(_P. - / > ) ( s . )  + OF(l). 
g(*) 
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Next,  using (4.8) and (4.10), 

V~(Pn -- P ) ( s n )  = V ~ ( P n [ i x n  -- Sn, i x .  + S d  --  P[IX --  S . ,  ix + Sn]) 

= v,~[ixn - Sn, ixn + S,~] + v/-n(P[ixn - Sn, ix. + sn] - P[IX - sn, ix + sn]) 

= Vn[ix - s, ix + s] + (f(ix + s) - f(ix - s ) )v~( ixn - ix) + op(1) .  

Now, (4.7) follows from this, (4.6), (4.11) and g(s) # O. [] 

Remark.  The asymptot ic  normali ty of v~ (Sn  - s) was obta ined by Hall and Welsh 
(1985), and Falk (1997) gave the asymptot ic  joint  dis t r ibut ion of X/~(ixn --ix, Sn --S), from 
where he deduced,  in particular,  that  in the symmetr ic  case ix,~ and sn are asymptot ica l ly  
independent .  Of course Lemma 4.1 provides another,  shorter,  proof  of Falk's result: by 
the bivariate central limit theorem, this lemma readily implies tha t  the  limiting joint  
dis t r ibut ion of v~n(ixn - ix, sn - s) is centered normal  with covariance 

CovF { (/(ix + s)- :(ix- } 
s(ix) ' f(ix + s) § s(ix- s) + 7 F a T ( f ~ 7 7 ) 7 : 7 7 7 7 ) )  ' 

which is Falk's result. Then, one immediate ly  sees tha t  the off-diagonal terms of this 
covariance matrix,  in the case when F is the dis t r ibut ion of a probabi l i ty  law symmetr ic  
abou t  #, are zero because E(I(_~,.]I[._s,~+s]) = 1/4 = E(I(_o<.l)E(I[~,_s,.+sl) and 
f(ix - s) = f(ix + s). 

L e m m a  4.3 shows that  condition (L) is satisfied for a = ix - cs, an = ixn - cs,~, 
b = ix + cs and bn = ixn + CSn, with 

1 
(4.12) h i -  f(ix) I(-oo,,l 

c [ f ( i x + s ) - f ( i x - s ) i ( _ o o , t d ]  
+ f(ix + s) + f(ix - s) I[.-s,u+s] - -f-@y 

and 
1 

(4.13) h 2 -  f(ix) I(-oo,,l  

c [ f(ix+s)-f(ix-s) I(_~o,. , ] .  
- f(ix + s) + f(ix - s) l[**-s,.+sl - f(ix) 

So, Theorem 4.1, and likewise Theorem 4.2, give the following: 

THEOREM 4.3. (Asymptot ic  normali ty  of Hampel ' s  t r immed and winsorized 
means.) Let F be a distribution funct ion with median ix and M A D  s, and let c be a 
positive constant. Assume F has a continuous density on an open set containing It, 
i x + s ,  i x - s ,  ix + cs and ix - cs, and that f ( # )  > O, f ( #  + s) + f( ix - s) > 0 and 
f(ix + cs) + f(ix - cs) > O. a) Let On, n e N ,  be Hampel's tr immed mean corresponding 
to the constant c and let 0 be its population counterpart. With hi and h2 defined by 
(4.12) and (4.13), set 

g(x) := x_ I[~-cs,t,+cs](x) + bf(b)h2(x)  - a f ( a ) h l ( x )  

:2 +2 d F 
(f2+fi: t dF( t ) ) ( l [ ._c . , .+cd(x )  + f (b)h2(x)  - f ( a ) h l ( x ) )  

(:2?2 dF)2 
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Then, 
,/-~(on - o) ~ ~ z ,  

in distribution, where Z is standard normal, b) Let ~n, n E N ,  be Hampel's Winsorized 
mean corresponding to e and let ~ be its population counterpart. With hi and h2 defined 
by (4.12) and (4.13), set 

w(x) : =  xI[g_~,.+~s](x) + (# + cs)I(t,+~,~)(x ) + ( #  - cs)I(_~,g_c~)(x) 
+ (1 - Y ( .  + c~))h2(x) + F( .  - es)h,(x). 

Then, 
x/n(~n - ~) --~ v /VarF(w)Z,  

in distribution, where Z is standard normal. 

The expressions for g and w are quite complicated. They  simplify if F is the c.d.f. 
of a symmetr ic  distr ibution (meaning F(x) + F ( - x )  = 1 for all x). In this case 

and 

1( 
9(x) -- 2 fos dF xII-cs,cs] (x) 

2c~:(c~) x(_~,oj (x)) 
f(o) 

) 1 cs (cs f (cs)  ~ 2 4csf(cs) xdF 
VarF(g) -- (2 fo sdF) 2 ~ x2dF(x) + \ ] @  ] + f ( O ~  " 

And (also in the symmetr ic  case), 

and 

2F(-cs) 
w(x) = xI[_c~,r + csI(cs,oo)(x ) - csI(-o~,-cs) f(O) I(-~'~ 

f -.s ( F(-cs) ) 2 VarF(w) = ~s x2dF + 2(cs)2F(-cs) + \ 

4F(-cs)  / 9  4csF2(_cs) 
f(O) cs xdF + f(O) 

Suppose F is symmetr ic  and f(x)  is continuous and  bounded,  and decreasing on 
[0, oc). Then,  if we let gc and wc be the functions g and w in the above two theorems 
corresponding to the tuning parameter  c, we see tha t  both,  Var gc and Var Wc tend to 1 as 
c ---* cc and tend to 1/(4f2(0))  as c --~ 0. In part icular,  it is possible to choose, within the 
family of Hampel 's  t r immed (Winsorized) means, est imators  of the center of symmet ry  
of F wi th  breakdown point 1/2 and with  asymptot ic  efficiency with respect to the mean 
as good as one wishes. Hampel 's  means are always more asymptot ical ly  efficient than  the 
median but  if c is chosen too small they  become almost  as 'asymptot ical ly  inefficient'. 

4.3 Box plot trimmed and Winsorized means 
For any 0 < a < 1 let Q = F - l ( a )  and assume F has a non-vanishing continuous 

density f in a neighborhood of Q. Then,  as wi th  the median,  

1 
vr~(Q~ - Q) - f(Q) ~ ( - ~ ,  Q] + op(1). 
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Therefore, assuming that f exists and is strictly positive and continuous on an open set 
containing Q1 and Q3, we obtain 

V / - ~ ( R n  -- 1~) ---- Pn /(-co,Q1] f(~ + OR(l). 

For the box plot trimmed mean we use an = Qn,1 - cRn and b~ = Q~,3 + cRn (see 
Section 2), so that, in this case, 

v~(an  -- a) = v/-n[Qn,1 - cRn - (Q1 cR)] = pn(hl) + op(1) 

where 

(4.14) 

and 
(4.15) 

where 

1 
h i  . - -  f(Q1) I(-~176 -F c I(_oo,Q3] 

1 ] 
f (Q1) I(-oo,Q1] , 

v~(b~ - b) = v ~  [Q~,3 + cR,~ - (Q3 + cR)] = vn(h2) + OF(l) 

] h2 . -  f(Q3)I(_oo,Qa] - c I(-oo,Q3] f(Q1)I(-oo,Q1] �9 

So, the results of Subsection 4.1 imply the asymptotic normality of the box plot trimmed 
mean. Computations simplify in the symmetric case since then we have f :  xdF  = O, 
Q1 = -Q3 ,  b = (2c + 1)Q3 and a = -b .  Here is the result. 

THEOREM 4.4. Assume that F has a continuous density on an Open set containing 
Q1, Q3, Q1 - cR and Q3 + cR for some constant c >_ O, and that f(Q1) ~ 0, f (Q3) ~ 0 
and f(Q1 - c R ) +  f (Q3+cR)  ~ O. Let 9n be the box plot trimmed mean corresponding to c, 
and let 9 be its population counterpart. Then, v/-n(gn - 9 )  --~ a Z converges in distribution 
to a normal random variable with variance equal to the variance of the random variable 
g(X),  g defined as in Theorem 4.1 with hi and h2 given respectively by (4.14) and (4.15). 
I f  F is the c.d.f, of a symmetric distribution, then the variance of the normal limit is 

1 ( /b_bX2dF(x)+ i b f ( b ) ~ 2  8bf(b)fQ3 xdF(x)  
a2 _ [2F(b) - 112 \ f ( Q a )  ] + ~ - Q ~  / ' 

with b = (2c + 1)Q3. 

Likewise, the box plot Winsorized mean is also asymptotically normal, and in the 
symmetric case (with the same assumptions as in Theorem 4.4) the variance of the 
normal limit of v/-n(~n - ~) is 

f F2(_b) 4 F ( - b )  fQ3 xdF(x)  4bF2(_b) 
T 2 = x2dF(x) + 2b2F(-b) + 2f2(Q3----~ + + 

b f (Q3)  f(Q3) ' 

with b = (2c + 1)Q3. 
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5. Bootstrap 

The variances of the normal limits of v~(0n - 0) and v/n(~n -- r are rather com- 
plicated and, even worse, depend on f .  So, the results of Section 4 cannot be used to 
obtain asymptotic confidence intervals for 0 or for ~. The bootstrap provides a way out 
of this difficulty. One can always bootstrap without replacement and with a resampling 
sample size mn --- cx~ with m n / n  ---* 0 (Politis and Romano (1994)). However, as we 
prove in this section, depending on the properties of the estimators an and bn, Efron's 
bootstrap with resampling size mn -- n may also be valid. We show in addition that 
this is the case for Hainpel's and the box plot means. We present a justification of this, 
in all details, for Hampel's trimmed mean, and state without proofs the corresponding 
results for Hampel 's Winsorized mean and the box plot means. 

We recall that the n-th bootstrap sample x b , t , . ,  b . ,  Z n ,  n is obtained by sampling 
with replacement n times from the original sample X 1 , . . . ,  Xn. We denote F b, P~ and u~ 
respectively the empirical c.d.f., the empirical measure and the empirical process based on 
the n-th bootstrap sample: pb(A) = n -1 E ni=l 5x~,. (A), Fb(x) = Pb(--oc, x] and v~ = 

x/~(P b -  Pn). The bootstrap median, #bn, is the median of the bootstrap sample, and the 
bootstrap MAD, b is the median of the set of points b b b b I X n , l - P a l , ' " ,  IXn,n--Pnl" Finally, 8 n , 

we denote by Prb ---- Prb(w) the conditional probability given the sample X 1 , . . . , X n  
(its dependence on w will not be displayed unless absolutely necessary). Also, s will 
denote conditional law given the sample. The symbol ORb(1 ) will mean the following: 

X b n Un( n,l ,Xn,n, X 1 , . . . , X n )  is ORb(l) a.s. ifa.s. Prb{IUn[ > e} ~ 0 for every e > 0. 
We briefly list the extra key ingredients needed in the proofs that follow. Since the 

class of functions 9 r -- {IIa,b] (x),/(-o~,a] (X), XI[a,b] (X) : --C~ < Cl _~ a < b _~ c2 < oc} is 
uniform P-Donsker (or, equivalently, uniformly pregaussian) (see Gin~ (1997), Example 
2.5.2), we have (Gin~ (1997), Theorem 2.6.1, p. 139) 

(5.1) lim sup  I v y ( g ) -  u~(h) l  = 0 a.s. 
r t  ---~ O0 g , h E J :  

E p ( g - - h )  2 < l / ( l o g  log n) 2 

Also, by the Gin~-Zinn bootstrap central limit theorem (e.g., Gin~ (1997), Theorem 
2.3.2), 

(5.2) t "b ----~Lb Gp in g~($ ')  a.s. 

where ~ s  denotes convergence in law conditionally on the sample and Gp  is a centered 
Gaussian process indexed by ~" with covariance P(gh) - P(g)P(h).  Moreover, by the 
asymptotic equicontinuity associated to a limit theorem in 600 (hr), we also have 

(5.3) lim l imsupPrb sup IL'n(g) -- I > e = 
6---+0 rt h,gE ~ 

B p ( g - - h ) 2 < _ 5  

for all e > 0, a.s. 

Also (Bickel and Freedman (1981), see also Gin6 (1997)) the median and the quantiles 
bootstrap a.s., that  is, 

/:b(x/~(#bn -- #n)) ~ N(0, 1/(4f2(#))) ,  
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b b s (x/n(Qn,1 - Qn,1)) ~ N(O, 3 / (16f2(Q1)))  

(5.4) b b s (x/n(Qn,a - Q,~,3)) ~ N(O, 3/(16f2(Q3)))  a.s. 

weakly a.s., assuming f is continuous and non-vanishing at # for the first limit, at Q1 
for the second and at Qa for the third. 

Even though we could do with less, we will assume 
(D.3) P has a density f on R,  the set Bf  = {f  > 0} is open and f is continuous 

o n  B f .  
Then we have the following general theorem for randomly trimmed and Winsorized 

means, asserting that if t h e a ~  and bn bootstrap, so do the corresponding means: 

THEOREM 5.1. Assume (D.2), (D.3), (L), a, b C B f ,  an ~ a a.s. and bn ~ b a.s. 
b a (F  b) and b b b(Fb), satisfy b and bbn, defined respectively as a n Assume also that a n = = 

(Lb) v/-n(abn - an) = Vnb (h i )  -+- opb(1 ), x/~(b b - bn) -- //nb (h2) + opb(1 ) 

Then, i f  ob is the bootstrap trimmed mean, 

(xn,i) ob --__ E i = l  xb,il[a~,b~] b 

~--~"i=1 I[a~,b~] b ' n ( z ~ # )  

and On, O, g and Z are as in Theorem 4.1, we have 

v~(e~ - en) - ~  v4V~(g)z 

h E N ,  

a.s. 

a.s. 

b is the bootstrap counterpart of Moreover, i f  ~ ,  ~ and w are as in Theorem 4.2, and w n 
Wn (defined in analogy with Obn), we also have 

v/-n(r - ~n) --+Lb v / V a r F ( w ) Z  a.s. 

PROOF. (Sketch) We only prove the result for trimmed means, as the proof for 
Winsorized means is not different, aside from formalities. The proof follows the steps 
of the proofs of Lemma 4.1 and Theorem 4.1. The main point consists in proving the 
representations 

v ~  d(Fn ~ - Fn) = ~ [ a ,  bl + op~(1) a.s., 

v '~  dFn = f(b)ub(h2) + op~(1) a.s. and 
n 

v ~  dEn = -f(a)~,~(hl)  + o,~(1) a.s., 

as well as similar representations for v '~  f~b~ x d ( F  b - Fn), ~ fbb: n xdF~ and v '~ s  '~ xdFn,  

as they give bootstrap versions of (4.2) and (4.3), which in turn can be used to complete 
the proof of the theorem just as in the proof of Theorem 4.1, but  now invoking the 
boots t rap CLT instead of the regular CLT. 
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Let ftl be the subset of ~ of probability one where (Lb) holds, an ~ a, bn ~ b, and 
b is close in Prb(w) probability to an which is (5.3) hold. Then, for any w E gtl fixed, a~ 

in turn close to a, and likewise for b b, and therefore we can use the bootstrap asymptotic 
equicontinuity (5.3) to get the three representations above (in the same way as we used 
the asymptotic equicontinuity of ~n in the proof of Lemma 4.1). [] 

Next we will apply Theorem 5.1 to show that  Hampel 's means boots t rap a.s. By 
Theorem 5.1, this reduces to obtaining representations for v ~ ( #  b - # n )  and v/n(s b - S n )  
in terms of the bootstrap empirical process Vn b (i.e., the bootstrap analogue of Lemma 
4.3). Here is the representation for the bootstrap median. 

LEMMA 5.1. If  (D.3) holds and # E B/ ,  then, 

1 +opb(1) vZn(# b-pn) - f(#) a.s. 

PROOF. The sample points Xi are all different a.s. by the assumption on f .  Also 
by the assumption on f ,  if a and 5 are near #, then e2p(a, 5) :-- (P(a, 5]) 2 > c[5 - aI 2 for 
some c > 0, hence, by (5.1), 

I ~a b d~'n (5.5) sup --* 0 a.s., 
]a--hi<l~ l o g  n 

]a--,u.[<l/ log ~,lb--t~[<l / log ~ 

and, by (5.3), we have that, almost surely, 

( / 
(5.6) lim l imsupPrb { sup Ivb(a,b][ > ~} 4 0  

5----~0 n l a,b:P[a,b]<5 J 
for all ~ > 0. Let fll C_ ~ be a set of probability one where i) all the Xi are different, 
ii) #n ~ #, iii) x/-n(# b - #n) converges in law conditionally on the sample, iv) the limit 
(5.5) holds, and v) the limit (5.6) holds. If ran# denotes the number of terms from 
the bootstrap sample Xnb,1,...,Xb,n equal to Xi, then mn,~ is Binomial(n, l / n ) ,  and 
therefore, by a well known inequality for binomial probabilities, for all k < n, 

Prb { max rn,# > <- nPrb{mn'l > k} <-- n(e/k)k '  

which tends to zero for instance for k = [log n]. That  is, on ~1, the conditional probability 
that  F b has a jump of size larger than n -1 logn tends to zero, which implies 

= 5 + o with Prb-probability tending to 1. 

(This statement holds a.s., more concretely, it holds for each w C ~1; this will also be 
true, without further mention, for the identities in this proof that  follow.) Also, 

1(1) 
= + o + " F n ( . n ) )  
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so that ,  subtract ing this identi ty from the previous one and mult iplying by x/~, 

b b ~/~b ~ b n 
l/n(--OO, p n ] =  -- dPn - ~ d F  + opb(1)  

n 

(note tha t  an --~ 0 trivially implies ctn = ORb(l)). Now, since #b n -- #n ---- Opb(1/X/~), 
(5.5) gives 

dz/n -= opb(1 ). 
n 

Since, moreover, by consistency and boots t rap consistency of the median, 

v ' ~  d F  = v ' ~ ( #  b - • n ) ( f ( • )  + oa(1) + o(1)), 

we obtain 

/f u~(--ec,#bn] = - -V~ d F  + opb(1 ) = - f (# )v / -n (#~  - #n) + oa (1 ) .  

On the other hand,  by the boots t rap  of the median,  the fact tha t  #n ~ # and the 
conditional asymptot ic  equicontinuity (5.6) of the boots t rap  empirical process, we have 
tha t  

= + o p b ( i )  

The last two identities prove the lemma. [] 

To get a similar representation for the boots t rapped MAD, we need an intermediate 
result. Recall tha t  Sn is the median  of the set of points [X1 - # n [ , . . . ,  ]X,~ - #hi; we 

~b X b define now s n as the median of the set of points IXbl  -- #n], �9 �9 �9 [ ,~,n -- #n], whereas 
X b X b the bootstrap MAD, sn,b is the median of I n,i - #bn],"' ,  [ n,n -- #bnl" 

LEMMA 5.2. / f  (D.3) holds and tL, Iz + s, l z -  s e B : ,  then, the sequence {v/-~(~ b - 
Sn)}~~176 1 converges in conditional distribution given the sample, almost surely. 

Note tha t  if Pn were replaced by # in the definitions of Sn and ~bn, this lemma 
would follow from the boots t rap  of the median for IX - #[. We cannot,  however, do 
this directly because #n - # is not o ( 1 / v ~  ). On the other hand,  we can prove Lemma 
5.2 by a straightforward adap ta t ion  of the proof of the boots t rap  of the median in Gin6 
(1997) pp. 141-142, keeping in mind tha t  1) Sn ~ S a.s., 2) almost surely, there are 
no three equal terms among ]Xl - # n ] , . . . ,  ]Xn - Pal for any n (this is so because, 
given tha t  all the Xi are different, if three terms are equal here then, for some i , j ,  k, 
(Xi-b  X j ) / 2  = (Xj--k Z k ) / 2  = ran, which implies X~ = X j )  and 3) one must apply (5.1), 
(5.2) and (5.3) to the empirical process indexed by the class of sets { x :  Ix - b I < a}, 
b E R,  a > 0, instead of to the classical empirical process. We skip the details. 

LEMMA 5.3. I f  (D.3) holds and #, # + s, # - s E B I ,  then, 

1 b s] 
v/-n(sbn -- Sn) = -- f ( p  + s) + f ( # _  S) L 'n[#-  s ' #  § 

1 f ( #  + s) -- f ( # - -  S) ,b(--O0,#] + (1) a.s. 
+ f(p~f(#§ s) ORb 



788 ZHIQIANG CHEN AND EVARIST GINt~ 

PROOF. S ince  

it follows from the bootstrap of the median and from Lemma 5.1 that  

b V ~ ( s  b Sn) O a ( 1 )  a.s. (5.7) sn -- sn = o a ( 1  ) and - = 

Let now Hn be the c.d.f, of IX1 - #n l , . . - ,  IXn - #hi and let H b be the c.d.f, of ]X~, 1 - 
ph i , . . . ,  ]xb,n -- #bn]. Since all the Xi  are different a.s., by an argument just before 
the statement of the lemma, Hn has jumps of size at most 2/n  a.s., and then, by the 
argument below (5.6) in the proof of Lemma 5.1, Hb has jumps of size most of the order 
of n -1 log n with bootstrap probability tending to 1 a.s., so that we have 

~ b b  1 ( ~ _ _ ~ )  1 ( 1 )  
Hn(sn) = ~ + O and Hn(sbn) = -~ + 0 + (Hn(s  b) - H,~(sn)) 

with Prb-probability tending to 1 a.s. Also, (5.3) and (5.7) imply 

V ~  d(F,~ - F)  d(Fn F) = ORb(l) 

and therefore we get 

i: (5.8) v/-n(Y-Ib(Sbn) -- Hn(Sb)) = V ~  dF dF  + ORb(1 ) 

b By the hypothesis on F and since ,~ -+ # and s~ -~ s a.s. and s~ - Sn -~ 0 in Prb a.s., 

this gives 

~b b 
v ~ ( H n ( s n )  - Hn(sb))  = v/--n(s b - s n ) ( f ( #  + s) + f ( #  - s)) + ORb(I) a.s. 

On the other hand, for the same reasons plus the conditional asymptotic equicontinuity 
of the bootstrap empirical process ((5.3) or (5.6)), the left hand side of (5.8) becomes 

V~(y_ibn Hn)(Sbn) b b b b b x/n(P~[#,~ + s~] Pn[#~ . .  + sb]) - -  = - -  8 n ,  P n  - -  - -  8 n ,  

b b b b 
--_ _ 8 n , [ - t n  

b b b + v ~ ( P . [ ,  b - s,~, # .  + s b] - P,~[..~ - s,~, . n  + sb]) 

d(Fn - F)  - ,,,~+8~ d(Fn - F)  = .b  n [~ -- s, ~ + s] + ~ LJ"a- 4 ~ . . - 4  

dF dF 

= ~.b[. _ ~,.+ ~] + (f(/~+ s) - f(. - s))v'~(/~ b - / ~ , . )  

Jr- OPb (1) a.S. 

The lemma follows from the last three displays and Lemma 5.1. [] 
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In particular, this lemma shows that the MAD bootstraps a.s. 
As a consequence of Theorem 5.1, Lemma 5.1 and Lemma 5.3 give the bootstrap 

central limit theorem for the Hampel's sample trimmed and Winsorized means. Here 
are the precise statements: 

THEOREM 5.2. (Bootstrap of Hampel's trimmed and Winsorized means.) Let F 
be a c.d.f, satisfying condition (D.3) and such that p, p + s, p - s, # + cs and p - cs are 
in B f  f o r  some constant c > O. Let On be Hampel 's  t r immed  mean corresponding to the 
constant  c and let 0 b be its bootstrapped version, 

E Ll Xn 
Obn : :  , ,~ ,~ 

E i = I  I , , b  esb �9 b . c o b  1 b ' n ( x n # )  
~ n - -  n I ~ n  T ~  

f o r  each n E N .  Then,  

- on) vv/V  (g)Z a.s. 

where 9 and Z are as in Theorem 4.3. Also, i f  ~n is Hampel's Winsorized mean for  some 
c > 0 and ~b n is its bootstrap counterpart, then, almost surely, x/~(~bn - ~n) converges in 
conditional law given the sample to v / V a r g ( w ) Z ,  where w and Z are as in Theorem 4.3. 

Clearly, similar arguments prove that the bootstrap works as well for the box plot 
trimmed and Winsorized means. We skip the proofs since they are so similar to the 
proof of Theorem 5.2. 

THEOREM 5.3. Let F be a c.d.f, sat is fying condition (D.3) and such that the den- 
sity f is positive at Q1, Q3, QI - cR  and Q3 + cR  fo r  some c > O. Let  On and ~n be 
the box plot t r immed and Winsorized means corresponding to the constant c respectively, 
and let Obn and ~b be their bootstrap counterparts. Then,  almost surely, the conditional 
distributions given the sample of X/~(Obn -- On) and x/~(~ b - ~n) respectively converge to 
the l imiting distributions of  v/-~(O,~ - O) and v~ (~n  - ~). 
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