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A b s t r a c t .  We develop a method of randomizing units to treatments that  relies on 
subjective judgement or on possible coarse modeling to produce restrictions on the 
randomization. The procedure thus fits within the general framework of ranked set 
sampling. However, instead of selecting a single unit from each set for full measure- 
ment, all units within a set are used. The units within a set are assigned to different 
treatments. Such an assignment translates the positive dependence among units 
within a set into a reduction in variation of contrasting features of the treatments. 

A test for treatment versus control comparison, with controlled familywise error 
rate, is developed along with the associated confidence intervals. The new procedure 
is shown to be superior to corresponding procedures based on completely randomized 
or ranked set sample designs. The superiority appears both in asymptotic relative 
efficiency and in power for finite sample sizes. Importantly, this test does not rely on 
perfect rankings; rather, the information in the data on the quality of rankings is ex- 
ploited to maintain the level of the test when rankings are imperfect. The asymptotic 
relative efficiency of the test is not affected by estimation of the quality of rankings, 
and the finite sample performance is only mildly affected. 
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i .  Introduction 

In many  applications,  there  are several potent ia l  measurements  of a response tha t  
ma y  be made, ranging from an expensive or t ime-consuming gold s t anda rd  th rough  
quicker, numerical  methods  tha t  have substant ia l  bias or measurement  error,  to fully 
subject ive forecasts tha t  give only the rank order  of a small set of the  gold-s tandard  
measurements .  These  subject ive forecasts may  be accurate,  or they  may  misorder  the 
gold-s tandard  measurements .  A classic example of this appl icat ion is the es t imat ion  
of a pas ture  yield described by McIntyre  (1952). In his mot iva t ing  example,  the field's 
yield is to be es t imated  by close clipping of a number  of quadrats ,  each one meter  square, 
creat ing an es t imate  of the yield per  quadrat ,  p, and thence the to ta l  yield of the pasture .  
T he  gold-s tandard measurement  is the yield of each quadrat ,  measured  by close clipping. 
Ignoring the cost of measurement ,  the best  es t imate  of p would be c rea ted  by harvest ing 
and measuring the yield of each quadrat ;  then  averaging. However, the  cost of measuring 
a quadra t ' s  yield is substantial .  A conventional  design would choose a simple r andom 
sample (srs) of n quadra ts  and measure  the yield of each of these quadrats .  Th e  mean  
of the measured quadrats ,  Ysrs, provides an es t imate  of #. However,  the  above s t ra tegy  
ignores substant ia l  informat ion tha t  is available to the  e x p e r i m e n t e r - - n a m e l y  subject ive  
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estimation of the relative yield of various quadrats. 
An alternative cheap design is to partition the pasture into N > n sets, with each 

set consisting of, say, k quadrats. The ranker visually inspects each set of k quadrats 
and at tempts  to order them, from least yield to greatest yield. A simple random sample 
of n sets is chosen. Each selected set produces a single measured observation. To do 
this, the n selected sets are randomly partitioned into k groups of sets, each of size n / k .  
In the first group, the quadrat judged to have the least yield is measured; in the second 
group, the quadrat judged to have the second least yield is measured, and so on, until, in 
the k-th group, the quadrat judged to have the greatest yield is measured. Exactly one 
quadrat is measured from each set. A blinding technique is used to prevent hidden biases 
from entering the selection procedure. This design, called a balanced ranked set sample 
(rss) ,  makes use of the tanker's subjective judgement to create k strata. A quadrat 's  
s tratum is the judged rank of the quadrat 's  yield within a set. Having created these 
strata, the sample is nearly a stratified random sample. The dependence of the samples 
across the strata (notice that two units in same set cannot both appear in the sample) 
is what makes this sampling plan different. However, when one passes from the finite 
population setting to an infinite population setting, where N -- ce and the ranked sets are 
generated as i.i.d, draws from some distribution, the samples from the different s trata are 
independent random samples from the within-stratum distributions, and the sampling 
plan becomes a stratified sampling plan. Furthermore, since the strata are all of equal 
size and the same number of observations is drawn from each stratum, the sample is a 
proportionally allocated stratified random sample. The standard results from sampling 
theory carry over. The stratified sampling estimate of # happens to be the sample mean 
of the measured units, l~T88. Provided a second moment exists, var(l~Tss) < var(]~srs), 
with strict inequality if the means of the s t rata  differ. The reduction in variance can be 
substantial if the quality of ranking is good. 

McIntyre's early work has given rise to a growing literature on the benefits of ranked 
set sampling as compared to simple random sampling. Some of this research concentrates 
on nonparametric estimation of population characteristics, such as the mean Takahasi 
and Wakimoto (1968), Dell and Clutter (1972), Stokes (1977); the variance Stokes (1980), 
Sinha et el. (1996), Yu et al. (1999), MacEachern et el. (2002); the location shift between 
two populations Bohn and Wolfe (1992), Ozturk and Wolfe (2000a, 2000b); and the entire 
distribution function Stokes and Sager (1988), Kvam and Samaniego (1994), Ozturk 
(2002). Kaur et al. (1995) provided an annotated bibliography of the literature on 
ranked set sampling. Since 1995, there has been an increased research activity in the 
allocation of order statistics in a ranked set sample. See Barnett  (1999), Ozturk and 
Wolfe (2000c), Chen (2001), gau r  et al. (1997) to name a few. 

Several authors have examined the impact of imperfect judgement on estimation 
and testing, in a ranked set sample setting Dell and Clutter (1972), Stokes (1977), Bohn 
and Wolfe (1994), Barnett  and Moore (1997), Nahhas et al. (2002), Stark (2001). This 
research uniformly indicates that an increase in judgement ranking error decreases the 
efficiency of the statistical procedure based on a ranked set sample with respect to a 
corresponding procedure based on a simple random sample. On the other hand, the 
efficiency of the ranked set sample procedure is never worse than the simple random 
sample procedure, even when rankings are completely random. In this worst case of 
random rankings, both sampling methods yield procedures that  have the same efficiency, 
indicating that nothing is lost by using a ranked-set sampling procedure. 

There is one persistent criticism of ranked set sampling in comparison to simple 
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random sampling. Namely, that  a ranked set sample of size n relies on a greater number 
of experimental units than does a corresponding simple random sample. With a set size 
of k, a balanced ranked set sample will make the cheap measurement on nk units and 
the gold-standard measurement on n units; the simple random sample makes only the 
gold-standard measurement on n units. Nahhas (1999), Nahhas et al. (2002) and Stark 
(2001) have studied the impact of cost, and have found that  it is beneficial to collect a 
ranked set sample under a broad range of costs. Nevertheless, there are some settings 
where one wishes to use every available unit; for example in many clinical trials, it is 
difficult to recruit enough patients for the study. In this circumstance, the limiting factor 
is the number of experimental units rather than cost. 

In seeking to reduce the number of units used for cheap measurement, several groups 
have investigated making gold-standard measurements on more than one unit per set 
Ozturk and Wolfe (2000d), Bhoj (1997). For the one-sample problem described above, 
if one samples n/k sets and measures all units in each set, the sampling plan becomes 
identical to a simple random sample of size n. Thus all benefits of the ranked set sample 
are lost. The mechanism by which the benefits are lost is the positive correlation between 
the gold-standard measurements of units in the same set. We propose to exploit this 
positive correlation in multiple sample problems through pre-experimental judgements 
about the units. These judgements are then used to assign members of the same set to 
different treatments. To estimate a difference in treatment means with a set size of two, 
the positive correlation of observations within a set, and hence of the two treatment 's 
sample means, becomes a negative correlation for the difference of the two treatment 's 
sample means, thus reducing the variance of the estimated contrast. 

The benefits that we see for contrasts extend to sign procedures and to rank pro- 
cedures. In this paper, we examine the implications of a full-use ranked set sample on 
such "nonparametric" procedures. Section 2 outlines the model and randomization plan 
for the m-sample (rn _> 2) problems, Section 3 develops the sign test, Section 4 describes 
the setting of multiple treatments versus a control. Section 5 discusses practical imple- 
mentation of the procedure when perfect rankings are suspect, and Section 6 provides 
simulations that  document the benefits of full-use of the ranked set sample. Finally, 
Section 7 provides concluding remarks. 

2. Model and randomization 

In this section, we describe a data  collection procedure that  improves the statistical 
inference in an anova model with rn treatments m >_ 2. Let F(x-Oi), i -- 1 , . . . ,  rn, be the 
i-th treatment population having the unique median 0i. Throughout the remainder of 
this paper, we reserve the subscripts C and 1 for the control group. Subscripts 2 , . . . ,  rn 
denote the treatment groups. We wish to test 

Ho :01 - -Oi ;  i---2,. . . ,rn 

against the alternative hypothesis 

HA : O1 ~ Oi at least for one i, i _> 2 

or 

HA, : O1 < Oi at least for one i, i _> 2. 
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Note tha t  the al ternat ive hypothesis  HA corresponds to a two-sided test  whereas HA, 
corresponds to a one-sided test.  Procedures  for hypothesis  HA are well-known for a 
simple random sample He t tmanspe rge r  (1984), Chakrabor t i  and He t tmanspe rge r  (1996) 
and has been investigated for a ranked set sample in Ozturk  (1999a) and Ozturk  et al. 
(2004). 

To test  this hypothesis,  we use a variant  on ranked set sampling, tha t  we call full-use 
ranked set sampling, to assign the  units  to the two t rea tments .  For simplicity, we first 
assume tha t  we have two sample problems (m = 2). In this case, for a full-use ranked 
set sample, 2n pairs of exper imenta l  units  are obta ined  for use in the study. The  two 
units in each pair  are ranked as the  "smallest" (rank 1) and "largest" ( rank 2), based 
on some perhaps  subjective general  qual i ty measure  of the units. Since the units  have 
not  yet  been t reated,  this is an assessment of the unit  itself r a the r  t h an  the response of 
a unit ,  as is t radi t ional  in ranked set sampling. A simple r andom sample of n of the 2n 
sets is chosen. In these sets, the unit  ranked 1 is assigned to the control,  and the  unit  
ranked 2 is assigned to the t r ea tment .  For the remaining n sets, the unit  ranked 1 is 
assigned to the t r ea tmen t  and the unit  ranked 2 is assigned to the control.  Let  Yc[j]k 
be  the response variable in the control  group,  from the  j - t h  ranked unit  in the k- th  set, 
j -- 1, 2; k = 1 , . . . ,  n. Similarly, YT[j]k denote  the response variable in the  t r ea tmen t  
group,  from the j - t h  ranked unit  in the k- th  set, j = 1,2; k = 1 , . . .  ,n .  Th e  design of 
the exper iment  is i l lustrated in Table 1. 

The  design just  described is a balanced design, where n units  of each rank are 
assigned to the  t rea tment .  A more  general class of designs allows unbalanced designs, 
including those where the number  of t r ea tmen t  units with each rank is random.  For 
example,  a complete  randomiza t ion  may be used, where 2n independent  Bernoulli(0.5) 
variates determine whether  a set is of the first type  (i.e., assigns the lower ranked unit  
to  the control  and the higher ranked uni t  to the t r ea tmen t )  or of the second type  (i.e., 
assigns the lower ranked unit  to the t r ea tmen t  and the higher ranked unit  to the control).  
Condit ioning on the observed number  of sets of the two types,  inference proceeds as if 
these numbers  were fixed by design. When  the number  of each type  of set is fixed by 
design, we refer to the full-use ranked set sample as an order  res t r ic ted randomized  (orr) 
design. The  work to follow focuses on balanced,  order  restr icted,  randomized  designs. 

When  m > 2, for t r ea tmen t  versus control  comparisons,  all m - 1 contras ts  will be 
of the form 0i - 0 1 ,  i ---- 2 , . . . ,  m. To focus on these contrasts ,  we select a set size of 2 and 
choose a design tha t  is balanced across the t rea tments .  Each set will contain the  control  

Table 1. Sampl ing design for a two sample  tes t  for the  cont ras t  p a r a m e t e r  A = 0C -- 0T. 

Set Rank  T r e a t m e n t  Response  Rank  T r e a t m e n t  Response  

1 1 Contro l  YC[1]I 2 T r e a t m e n t  YT[2] 1 

2 1 Contro l  YC[112 2 T r e a t m e n t  YT[212 

n 1 Control  YC[1]n 2 T r e a t m e n t  YT[2]n 
1 1 T r e a t m e n t  YT[lll 2 Contro l  YC[211 

2 1 T rea tmen t  YT[1]2 2 Contro l  YC[212 

n 1 T rea tmen t  YT[1]n 2 Contro l  YC[21n 
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and a single t rea tment .  In this case, the basic design in Table 1 (T being replaced with 
i), is replicated for each t rea tment  i, i = 2 , . . .  , m  - 1. 

The following remarks provide impor tant  features of these designs: 
1- For each t rea tment  condition, the design produces a balanced ranked set sample 

since each t rea tment  (and the control) is repeated an equal number of times within each 
rank. 

2- The observations obtained from the same set are not independent.  They  are, in 
general, positively correlated. 

3- All observations coming from different sets are independent.  
2 m 4- When  m > 2, the control group will have N1 = }-~i=2 ni observations whereas 

the i-th t rea tment  group, i = 2 , . . . ,  m, will have Ni = 2ni observations. 
The analyses tha t  we propose in this paper are motivated by the addit ive model 

(see, for example, Ramsey and Schaefer (2002)). The additive model s tates tha t  the 
t rea tments  and control are members of a location family with cdf F when the median  is 
0. An observation from a member of the family with median 0 is Y = 0 + e, where e ~ F .  
The value c is a t tached  to the experimental  uni t  so tha t ,  if assigned to a t r ea tment  wi th  
median 0i, the measured value for the unit  becomes Y / =  0i + e. 

Throughout  the paper we use f[j](t - 0~) and F[j](t - 0i) to denote the pdf  and 
cdf of the j - t h  judgement  order statistics of size 2 from the i- th t rea tment  populat ion,  
i = 1 , . . . , m .  A square brackets subscript indicates possible ranking errors. A round 
brackets subscript indicates perfect rankings. Thus,  ranking the two members of a set 
induces a distr ibution on the two ranking classes, so tha t  Y[Jl = 0 + e[j I for j = 1, 2. 
If rankings are perfect, the vector (e[l], el21) is dis tr ibuted as (e(1), e(2)); if rankings are 
imperfect, the order statistics of the vector (e[ll, e[2]) are distr ibuted as (e(1), e(2)). For 
the i- th t rea tment  group responses Y/lj]k; J = 1, 2; k = 1 , . . .  , n  are independent  but  not 
identically distributed; however g/[j]k, k -- 1 , . . . ,  n, are identically dis t r ibuted with pdf  
f[j l(t  - Oi) for fixed j .  

3. One sample sign statistic 

The control and t rea tment  samples, considered individually, are balanced ranked 
set samples. The one-sample sign test has been developed for this sampling plan in 
Het tmansperger  (1995), Koti  and Babu  (1996), and Ozturk (1999a). Results and nota- 
t ion follow. 

Let 

= - 1/2 = 2n E { I ( Y q j ] k  - O) - 1/2}, 
k=l  j = l  

i = 1, 2, 

where I (a)  = 0, 1 as a <_, > 0. Note tha t  S+(O) and S+(0) are sign statistics for the 
control and t rea tment  groups. They  are monotone decreasing functions of 0. Therefore,  
the one-sample sign test  rejects 01 = 0 (02 = 0) against 01 ~ 0 (02 # 0) if S+(0) 
(S+(0)) is too small or too large. As with a simple random sample, we can use the 
monotonici ty of S+(0) to construct  a 100 x (1 - a~)% confidence interval for 0i. Let 
I:1(1) < Y{(2) < " < l(2n) be the ordered values of Yl[j]k; k = 1 , . . . , n ;  j = 1,2. 
Similarly, let Y~I) < I:2"(2) < "'" < Y2"(2~) denote the ordered values of Y2[jlk; k = 1 , . . . ,  n; 
j = 1 , 2 .  Then 

I i  = [Y/~d~+l)' ~/~2n-dl)] = [Li, Ui], 
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is a 100 x (1 - cti)% confidence interval for 0i, i = 1,2 where P(S+(O) <_ di) ~ ~i/2. 
Because of the discrete nature  of S + (0) exact 1 - c~i confidence level may not be  achieved. 

The choices of the depths  di, i -- 1, 2, for a specified confidence interval require 
one to know the exact  dis tr ibut ions of S +(0).  The exact dis tr ibut ion of this statist ic 
is given in Koti  and Babu  (1996) in the context  of a balanced ranked set sample and 
in Ozturk  (1999b) in the context  of an unbalanced ranked set sample. We s ta te  the 
following theorem wi thout  proof. 

THEOREM 3.1. Assume that the units are ranked perfectly and that the ej are drawn 
from a continuous distribution, F.  Further assume that the data have been collected with 
the balanced design described in Section 2, and that the additive model holds. Then the 
exact distribution of S+(0) ,  under the assumption that 01 = 0 and 02 = 0, is given by 

2 
( ~ ) [ 1 -  I1/2(r, 3 -  r)]J~[lx/2(r, 3 -  r)] n-j~ (3.1) = t) = Z l-I .Jr  

Jt r=l  / 

for t = O, 1 , . . . ,  2n where 

1 ua_l( 1 __ ~t)b_ldu, 
Ix(a, b) -- B(a, b) 

J t  = { ( j l , j 2 ) : j l  + j2 = t,O <_jr < n , r  = 1,2}, 

and B(a, b) is the beta function. 

This theorem extends to imperfect  rankings. To do so, replace I1/2(r, 3 - r) with 
F[r](0) in (3.1). By  using the extended version of the theorem, it is trivial to construct  
dis t r ibut ion free confidence intervals for the populat ion medians. The  following results 
follow from Het tmansperger  (1995) and Ozturk(1999a) .  Wi thou t  loss of generality, we 
take Oi = 0, i = 1, 2. 

1 2 82 
ESi (0)  = 0, var(Si(0))  = ~n E F M ( 0 ) { 1  - F[jl(O)}/2 = ~n '  i = 1,2. 

j = l  

The quant i ty  v / ~ S ~ ( 0 ) / 8  is asymptot ical ly  dis t r ibuted as the s tandard  normal.  Relying 
on asymptot ic  normality, we obta in  

P(S+(O) _< di + 0.5) = P (v/-2nSi(O)/8 <_ x/~n{(di + 0.5)/(2n)5= - 1 / 2 } )  

,~ P ( Z  <_ v ' r~{ (d '+  O'5) / (2n)-  l /2}  ) .  

The continuity corrected depth  di becomes 

di = 2n/2 - v/-~SZl_~/2 - 0.5, i = 1, 2, 

where Zb is the b-th quantile of the s tandard  normal distr ibution.  
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THEOREM 3.2. Let 01 = 02 = O. Suppose F( t )  is differentiable, then for any B > 0 

v / ~ S i  (--b-b-~ - x/2-nSi(O) + f(O)b ~ O, i =  1,2, s u p  
151<_13 \ Y z n /  

where Po denotes convergence in probability when 0i -- 0, i -- 1, 2. 

The proof of this theorem is given in Ozturk (1999a) for a balanced ranked set 
sample with perfect ranking. The proof in this case is essentially the same, so it is 
omi t ted  here. In order to use Theorem 3.2, we need to show tha t  v/-~Li and v/'2-nUi are 
bounded in probability. 

LEMMA 3.1. Under the assumptions of Theorem 3.2, and also taking f (O) > 0, for 
e > 0 there exists a B < co, such that 

(i) l iminf  P(vf2~lLil  < B) > 1 - e 
n ---* O O  

and 
(ii) liminf P(x/2-nlUil < B) > 1 - e. 

n - - - ~  ( i )  

From the asymptot ic  normali ty  of the sign statistic,  we can establish tha t  
limn~oo v f ~ S i ( L i ) / 5  = zl-~,/2 and tha t  limn--,oo v /~S i (Ui ) /5  = za~/2, for i = 1,2. 

In the previous theorem, by replacing b/v/-~ with L, and Ui, and solving for these 
quanti t ies we obtain 

L i -  z1-,~,/25 + Si(O) 
v/-~f(O ) ~ + op(1/x/"~), (3.2) 

and 
(3.3) Ui - z1_,~,/25 + E;i(O) -f(6T + op(llv' ). 

The expressions in equations (3.2) and (3.3) are used to establish the asymptot ic  prop- 
erties of the tests and intervals presented in subsequent sections. When  01 (02) r 0, the 
interval is shifted up or down by 01 (02). 

4. Control versus treatment multiple comparisons 

In this section, our interest is to test  whether  any one of the m -  1 t r ea tment  group 
means differs from the control group mean. Let 

gi[j]k=Oi-{-s i = l , . . . , m ;  j = 1 , 2 ;  k = l , . . . , n i ,  

be the response measurement  from the i- th t rea tment  on the j - t h  ranked unit  and k-th 
replication. 

As in the one sample problem, let Y1~1) < Y1~2) "'" < Y~(N1) be the ordered values 
of the N1 observations from the control group and let Y* * .. * i(1) < Y~(2) " < Y/(Nd be the 
ordered values of the Ni observations from the i - th  t rea tment  group. Then 100(1 - c~i)% 
confidence intervals for 0i, i = 1 , . . . ,  m can be constructed as 

Ii -- [Yi~d~+l), Yi*(N~-dd] = [Li, Ui], 
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where P(Si(O) <_ di) = c~i/2, and 

1 2 nl 

Sl(a) = ~11 E E I(Yl[y]k - a ) ,  
j = l  k=l  

1 2 nl 
S,(a) = -~ E E I(Yi[j]k - a), 

i j = l  k=l 
i -- 2 , . . . , m .  

Rejection rule I. We reject the null hypothesis H0 in favor of HA if, for some i _> 2, 
I1 and Ii are disjoint. 

Rejection rule II. We reject the null hypothesis H0 in favor of HA, if, for some 
i _> 2, I1 and Ii are disjoint and I1 is located to the left of Ii.  

Rejection rule I provides a test for the two-sided al ternat ive HA whereas Rejection 
rule II provides a test for the one-sided alternative HA,. Note tha t  bo th  rejection rules 
make m - 1 comparisons. To preserve the level of the test,  we must  match  the familywise 
error rate  to the specified level. The familywise error rates for Rejection rule I and 
Rejection rule II can be wri t ten as follows 

CtE ~-- PHo (I1 and Ii are disjoint  for at least one i > 2) 

and 
O~E, =- PHo (11 and Ii are disjoint and I1 is on the left of I/ for at least one i > 2). 

Let Ai = Ni/N,  where N = N1 + Y~im2 Ni. Then,  by using the linear representations in 
Section 3, we obtain 

(4.1) 

and 

(4.2) 

where 

aE = PHo(Li - U1 > 0 or Ui - L1 < 0 for at  least one i , i  >_ 2) 

= PHo(IT~I > Di for at  least one i , i  >_ 2) 

PHo ( m a x  ITi l>  min Di~ < 
-- \ 2 ~ i < m  2<i<rn / 

aE, < PHo ( max Ti > min Di~ 
-- 2 ~ i < m  2<i<rn f 

T~ _- 

and 

V ~ { S i ( 0 )  - -  ~1(0)} Di = Z1- -a l /2~)~71 /2  -t- Zl--o~1/2~)~11/2 

i i ~2 ~2 2511,2] ~2 ~2 2511,21 

511,21 = ri1,21 (0 ,0 )  - FI11 (0)Ft21 (0).  

i = 2 , . . . , m .  

In bo th  expressions above, equality holds if all of the Di are equal and inequality holds 
if some of the Di differ. It  is clear tha t  the familywise error rates are determined by the 
distr ibution of T = (T2 , . . . ,  Tm). 
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THEOREM 4.1. Under H0, as N ~ c~, T converges to an (m - 1) dimensional 
normal random variable with mean zero, variances var(Ti) = 1, i -- 2 , . . .  ,m  and covari- 
ances 

c o v ( T i ,  = r i j  = 
~2/)~ 1 -- 511,2]/A 1 

~V/~ll -I- ~2/~i 2511'2],'~-"~ 5fA-1-1 + Aj~2 2511,21,kl 

, i 7 s  and i , j > 2 .  

Remarks: 
i. If A~ = Aj, for all i,j >_ 2, then 

r i ,  j ~ -  r ~ -  
$2 _ 511.,21 

m5 2 - 2511,2]" 

2. I f  ~[1,2] ---- 0, then the asymptotic distribution of T in orr is the same as the 
distribution of T in a balanced ranked set sample and a simple random sample. In this 
case, r~,j, the correlation coefficient between T/ and Tj, does not depend on 5. It is 

r i  = 

/~1 --1 

V/A1-1 + Ai-1 V/A1-1 + Aj -1 " 

Let 3'~ be the u-th quantile of the max(TA),  where TA = (IT21,..., ITml). Then, 
for a given value of the familywise error rate, aE, we need to determine the (1 - aE)- th  
quantile of the max(TA).  Although the asymptotic distribution of T, under perfect and 
random judgement, does not depend on the underlying distribution F(.),  it is not readily 
available for tabulation. The following lemma provides a computationM formula for the 
u-th quantile of the max(TA).  

LEMMA 4.1. Assume that Ai = A, for all i >_ 2. Let T* = max(TA).  Then the 
u-th quantile of the asymptotic distribution of T*, 3'~, can be obtained as a solution of 
the following equation 

\ lx/-f-L-~-r] lx/-f-L~_r] } r 

In a similar fashion, we also evaluate the asymptotic quantiles of T + = max(T)  for 
a one-sided test. 

LEMMA 4.2. Assume that Ai = A, for all i >_ 2. Let T + = max(T) .  Then the u-th 
quantile of the asymptotic distribution of T +, y~+, can be obtained as a solution of the 
following equation 

\ - - - ~  / r 

The tabulated quantiles of T* and T + depend on the correlation coefficient r. The 
correlation coefficient depends on the judgement ranking process. We do know, however, 
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Table 2. The  (1 - a E ) - t h  quant i les  of the  asympto t i c  d i s t r ibu t ions  of T* and T + for perfect  
j udgmen t  ranking  a n d  different values of m. 

Two-sided One-sided 

m ,.`/0.95 ,.`/0.99 70§ 70+.99 

3 2.230 2.804 1.940 2.570 

4 2.382 2.932 2.108 2.708 

4 2.379 2.931 2.103 2.706 

Two-sided One-sided 

m 70.95 ,.`/0.99 ,.̀ /'/0+.95 7 + 0.99 
5 2.487 3.021 2.223 2.803 

6 2.566 3.088 2.310 2.874 

6 2.563 3.087 2.304 2.872 

that  when the additive model holds, the correlation varies between 1 / m  (random judge- 
ment) and 2/(3m - 2) (perfect judgement). Numerical computations have shown that  
quantiles of T* and T + did not change much within the range from random judgement 
to perfect judgement. The maximum discrepancy (-/(perfect) - ~/(random)) is less than 
or equal to 0.002, which can be ignored for practical purposes. Therefore, in Table 2, we 
tabulate the 95th and 99th percentiles of T* and T + for perfect judgement ranking. 

For a given Type I error rate, aE, an upper bound on the familywise error rate 
can now be determined from the individual confidence coefficients for the control and 
treatment confidence intervals. For a fixed aE,  from equations (4.1) and (4.2) we have 
that  

(4 .3 )  7 ~  = min Di = 

2 < i < m  
rain{ 2<i<_rn 

and 

Zl_al/2~A~ 1/2 -~- Z1_(x1/2~A11/2 

I~ 2 ~2 2511,21 

-b Ai A1 

} 

(4.5) Z - %~ ~/vm~2 
2511,2l 

and 

% V/m  - 2gEl, j 
Z + 

8{v - 1 + 1} 

The individual confidence coefficient can then be determined by the relation 1 - ai  
1 - 2 ~ ( - Z ) ,  i -- 1 , . . . , m ,  for the two-sided test and l - a i  = 1 -  r  i = 1 , . . . , m ,  
for the one-sided test. Table 3 provides the individual confidence coefficients for 5% and 
1% two-sided tests, under perfect and random ranking, when m = 2, 3, 4, 5, 6. 

[ 
Z1_oli/2~/~71/2 ZI_o~1/2~)~I I/2 + 

(4.4) 7+E = min Di ---- rain 
2<i<m 2<i<m / ~2 ~2 25[1,21 [ V ~1 + Ai A1 

In our simulations, we have used equal confidence coefficients for the control and each 
of the treatments. Let Z = Zl-c~i/2 -- z1-~1/2, for i -- 2 , . . . , m .  If the sample sizes 
are all equal in the treatment groups, we have that  ~1 = 1 / 2  and Ai -- 1 / ( 2 ( m -  1)), 
i -- 2 , . . . , m .  Then, putting these in equations (4.3) and (4.4) and solving for Z, we 
obtain 
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When m = 2, an alternative construction of the proposed test can be considered 
directly from the confidence interval of the difference parameter A. We note that  
[L1 - U2, U1 - L2] is a 100(1 - c~t)% confidence interval for A. Thus, we reject the 
null hypothesis H0 if zero is not contained in the confidence interval for the difference 
parameter which is equivalent to the decision rule that  rejects the null hypothesis if the 
individual median confidence intervals do not overlap. Then, the asymptotic efficiency 
of the proposed test is measured in terms of asymptotic length of the confidence interval 
for A. Readers are referred to Randles and Wolfe (1991) for details of the efficiency of 
tests based on confidence intervals. 

THEOREM 4.2. Assume  m = 2, and let N = 4n and define the width of  the con- 
fidence interval based on N observations to be WN = (U1 - L2 - L1 + Us). Under the 
conditions of Theorem 3.2, as n ---* oo, N1/2WN converges in probability to w*, where 

W* = 4(~2 --  511'2])1/2"Ya~ 

f(O) 

Theorem 4.2 and equation (4.3) indicate that  although there are infinitely many 
z1-~1/2 and z1-~2/2 for a given V~E, the asymptotic length of the confidence interval 
does not depend on them. All choices produce the same asymptotic length. This provides 
a flexibility in practice. A researcher can choose any z 1 - ~ / 2  > 0 and z1-~2/2 > 0 as 
long as they produce the desired Type I error rate. 

In order to compare the proposed procedure with its competitors in the literature, we 
use the asymptotic Pi tman efficacy of the test. The quantity (v/-Nw/(2VaE))2 converges 
to the reciprocal of the Pi tman efficacy of the confidence-interval-based test. Thus, the 
Pitman efficacy of the order restricted randomized (orr) two-sample median test is 

f2(O) 
ef f (orr)  = 4{~2 _ 511,2]}" 

The Pitman efficacies of the ranked set sample and simple random sample two-sample 
median tests are given in Ozturk (1999a) 

ef f ( rss )  -- f~(O) e f f ( srs )  = f2(0). 
452 ' 

We now obtain the Pi tman asymptotic relative efficiency of orr with respect to rss  and 
8 r s  

A R E ( o r r ,  r s s )  = e f f (o r r ) / e f f ( r s s )  -- 

1 
A R E ( o r r ,  srs )  = 4(~2 _ 511,21)" 

Note that,  under the additive model, 511,21 >_ 0. 
A R E ( o r r ,  rss)  >>_ 1. 

1 -  ~[1'2l 
$2 

It is then immediate to observe that  

Remark  1. Under perfect ranking, A R E ( o r r ,  r s s )  -- 1.5 and A R E ( o r r ,  srs)  -= 2. 
This compares to A R E ( r s s ,  s rs )  = 4/3. 
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5. Implementation of the procedure 

For the implementation of the proposed procedure, we need to determine individual 
confidence coefficients which depend on the quantiles of T*, T + and the parameters 
and 511,2]. The quantiles change only slightly with the quality of judgement ranking, and 
so we use the asymptotic quantiles for perfect judgement ranking in Table 2 in all cases. 
On the other hand, the parameters 5, 511,2] and the individual confidence coefficients 
can change dramatically with the quality of ranking, so must be estimated from the 
data. Let 0i, i - 1 , . . . ,  m, be the sample medians of the control and treatment groups. 
In order to provide a pooled estimator, we center the observations by subtracting the 
appropriate sample median from each observation; Z{lj] k = Yli/lk - 0 1 ;  k = 1 , . . . , n l ;  

j = 1,2 and Z~]j] k = Yi[j]k- t}i; k = 1 , . . . , h i ;  j = 1,2; i = 2 , . . . , m .  Let Z[1]k, 
k = 1 , . . . ,  N / 2 ,  and Z[2]k, k = 1 , . . . ,  N/2 ,  be the pooled centered observations of the 
first and second judgement order statistics over all t reatment and control groups. For 
example, in this notation, Z[1]k, k = 1 , . . . ,  N / 2 ,  represent the collection of all Zi*[]]k, 
k = 1 , . . . ,  n i ;  i = 1 , . . . ,  m.  Now we define 

2 N/2 
F[jl(t) = ~ ~ I * ( Z [ j l k  -- t), j = 1,2. 

k=l  

2 N/2 
k[1, l(t, s) = Z I*(zi lk - t ,  zI ik - 

k=l  

where I*(a) = 1,0 as a <, > O, I*(a,b) = 1 if a <_ O, b _< 0 and zero otherwise. We 
estimate ~2 with 

2 
(i s 1 

= kljl(o)(1 - ki,  l(o)) 
j = l  

and (~[1,2] w i t h  

(~[1,2] = F[1,2](0, 0) -- P[1](0)F[2](0)  �9 

In practice, we first estimate ~2 and (f[12] and then compute the value of Z, Z = za,/2; 
i = 1 , . . . , m ,  which corresponds to the individual confidence coefficients for a given 
value of Type I error rate. We construct the median confidence intervals either by using 
the asymptotic results or by appealing to the exact distribution of the sign statistic in 
Theorem 3.1 and subsequent paragraph. We, of course, replace/1/2 (r, 3 -  r) with t~[r] (0), 
a consistent estimate of FM(0), r = 1,2. Then, we proceed with the decision rule that  
corresponds to the hypothesis of interest. The asymptotic results for the one-sample, 
two-sample and m-sample problems are unaffected by consistent estimation of ~ and 
6[1,21. Consistency of (~ and (~11,21 for 6 and 611,2l follows from the consistency of _f]j] (0) 

and F[1,21 (0, 0) for F[j I (0) and F[1,2] (0, 0), respectively. 

6. Empirical power and simulation study 

This section looks at the empirical power of the proposed testing procedure under 
different sampling schemes and under varying quality of judgement ranking. The simu- 
lation study considers simple random samples, ranked set samples and order restricted 
randomized samples. 



O R D E R  R E S T R I C T E D  R A N D O M I Z E D  DESIGNS 713 

T h e  simulat ion relies on a model  for the judgement  ranking process. Specifically, we 
follow Dell and Clut te r ' s  (1972) bivariate  normal  model  of X and ~ wi th  corr (X,  ~) = p. 
Bo th  X and e are marginal ly  s t anda rd  normal.  In order  to generate  judgement  ranked 
order  statistics,  we first generate  a pair  of bivariate normal  vectors,  (X1, el) ,  (X2, e2). 
The  vectors are sorted on their  first (X)  coordinate ,  yielding e[1] and c[2]. T h e  c[j] 
are then  tu rned  into responses by  adding the appropr ia te  t r e a tm en t  median.  W h e n  
p -- corr (X,~)  -- 1, ranking is perfect ,  and c[11 < c[2]; when p = 0, ranking is random,  
and P(c[l] < ~[2]) -- 0.5. For 0 < p < 1, ranking of in te rmedia te  qual i ty can be 
investigated. 

In the simulation, the number  of t rea tments  are taken as m -- 2, 3, the sample 
sizes in the t r ea tmen t  groups are taken  as ni -- 10, 15, 20, 30, for i -- 2 , . . . ,  m, and the  
familywise error  ra te  is taken as 0.05 and 0.01. To save space, we only repor t  the  results 
for Ni = 10, 30. In order  to evaluate the empirical power of the test ,  the  control  samples 
are shifted by adding the shift pa ramete rs  (shift = 0(2)0.1). Th e  empirical  power of the  
test  is computed  for orr, ranked set and simple r andom samples for different values of 
p = 0.50, 0.75, 1.00. Figure 1 presents  the empirical  power of the test  for a two-sample 
procedure  at the 5% level, and Fig. 2 presents the empirical  power of the tes t  when 
m = 3. The  solid lines represent  the  empirical power of order  res t r ic ted randomized  
samples while the  dashed lines represent  the empirical  power of the s t anda rd  ranked set 
samples. The  power curve of the simple r andom sample median  test  is marked wi th  V.  

We can summarize  the main features of the figures as follows: 
1. The  level of the test  holds quite  well for sample sizes as low as n = 10 when 

m -- 3 and n -- 20 (this is not  repor ted  due to a l imitat ion on space) when m = 2. As 

r 
0 

I 

0 ~d 

0 
o 

0.0 O~ 1,0 1.5 2,0 

S~ 

L 0 
$ 

o 
d 

0,0 O~ 0.4 0,6 0,8 1,0 

'~ple~e,n:30 

Fig. 1. Empir ical  powers of two-sample  median  tests:  Solid lines represent  order res t r ic ted  

randomiza t ions ;  dashed  lines represent  ranked set  samples;  corr = p ---- corr(X,  c). 
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A c~:o.2s 0 ~:1.oo 
§ ~:0,5 V 

o 

0,0 0.2 0.4 0.6 0,8 1.0 12 

Sz~ple~,n=lO 

d 

+ ~T=O.5 ~7 Sm o. 
o 

0,0 02 0,4 0,6 0,8 

Sh~ 
Sam~ze, n=30 

Fig. 2. Empirical powers of three-sample median tests (m = 3): Solid lines represent order 
restricted randomizations; dashed lines represent ranked set samples; corr = p = corr(X, e). 

to be expected,  the actual  level tends to move closer to the nominal  level as the sample 
size increases. 

2. For p > 0 there  is a clear dis t inct ion between all three sampling procedures;  s r s  

provides the  least power, r s s  has the next  highest power and o r r  sample has the greatest  
power. T h e  grea ter  the  p is, the  bigger is the  differential  among the  sampling procedures.  

3. It  is very  clear from the figures tha t  the o r r  samples can handle  imperfect  ranking 
be t t e r  t ha n  the ranked set samples. The  power curves of o r r  samples for a given value 
of p almost  always lie above the power curves of ranked set samples wi th  a p* > p. For 
example power curves of o r r  designs with p = 0.75 s tay above the  power curves of ranked 
set sample with p -- 1.00. Similar results can also be observed for o ther  p values. 

In the s imulat ion study, we also es t imated  the coverage probabil i t ies  of the individ- 
ual confidence intervals. Table 4 presents the empirical  coverage probabil i t ies  in percent  
for intervals based on the 5% and 1% two-sided tests.  As the  corre la t ion coefficient, p, 
increases, indicat ing be t t e r  ability to rank  the units,  the  theoret ical ,  a sympto t i c  indi- 
vidual  coverage necessary to obta in  the ta rge ted  familywise error  ra te  decreases. This  
is a consequence of the increased correlat ion between the cj wi thin  a set, as p increases. 
This  behavior  is to be ant ic ipated from equat ion  (4.5). For m = 2, we have tha t  

{~2 __ (~[1,21 }1/2 
Z = Z l - c ~ 1 / 2  = Z l - a 2 / 2  ~-~ V/-~  ")'aE" 

Since ~[1,2] is an increasing funct ion of p (recall t ha t  p > 0) and 7~E does not  change 
much wi th  p, z is a decreasing funct ion of p. A compar ison  of selected values from 
Tables 3 and 4 show tha t  the individual intervals '  coverage rates  are very  close to their  
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Table 3. Individual confidence coefficients (in percent)  for 5% and 1% tests.  

a E  Judg. m =  2 m =  3 m =  4 m =  5 m =  6 

0.05 Pe r~c t  74 84 89 92 93 

0.01 Pe r~c t  86 92 95 96 97 

0.05 Random 84 89 92 94 95 

0.01 Random 93 96 97 98 98 

715 

Table 4. Empirical coverage probabili t ies (in percent)  of the individual confidence intervals; 
m is the number of t rea tment  groups; n i  is the sample size in each t r ea tmen t  group; p is 
the correlation coefficient between the concomitant  and response variable; o r r  denotes  order 
restricted randomized sample; r s s  denotes  ranked set sample. 

m----2 m----3 

5% Test 1% Test 5 ~  Test 1~  Test 

n i  p o r r  r s s  o r r  r s s  o r r  r s s  o r r  r s s  

10 0.00 81.26 84.06 91.49 94.26 88.76 89.28 95.49 95.71 

30 0.00 82.73 83.49 92.66 93.72 89.00 89.24 95.54 95.70 

10 0.25 80.98 84.08 91.31 94.29 88.64 89.31 95.40 95.76 

30 0.25 82.45 83.50 92.46 93.75 88.88 89.22 95.43 95.70 

10 0.50 80.14 84.15 90.72 94.40 88.21 89.33 95.17 98.87 

30 0.50 81.53 83.58 91.82 93.81 88.38 89.25 95.13 95.63 

10 0.75 78.39 84.26 89.58 94.45 87.44 89.50 94.60 96.02 

30 0.75 79.48 83.74 90.40 93.75 87.17 89.26 94.46 95.69 

10 1.00 75.43 84.36 87.35 94.45 85.48 89.87 93.03 96.07 

30 1.00 74.76 83.74 86.86 93.81 84.65 89.26 92.76 95.72 

targets. This indicates that  asymptotic intervals for a single median, based on the sign 
test with estimated 5, have actual coverage very nearly equal to nominal coverage. 

As a specific example, when m = 3 and the Type I error rate is 0.05, the empirical 
coverage probabilities for a single treatment median for o r r  samples are 85.48%, 84.91%, 
84.91% and 84.65% respectively for perfect ranking and n~ -- 10, 15, 20, and 30. These 
values are close to 84%, the theoretical value of the asymptotic coverage probability. 

7. Conclusions 

The literature on ranked set sampling has largely concentrated on designs that  
consider independent order statistics or independent judgement order statistics. A more 
modest segment of the literature has considered selection of multiple units from a set, but  
only in one-sample problems. In all cases, the research shows the superiority of ranked 
set samples to simple random samples with an equivalent number of fully measured units. 
The main drawbacks to a ranked set sample are the cost of ranking units and the fact 
that  many of the experimental units are discarded, with no full measurement made upon 
them. Authors who have implemented ranked set sampling have generally found that 
the cost of ranking a unit is substantially less than that of making the gold-standard 
measurement on the unit. This research addresses the second, perhaps substantial, cost 
of obtaining, treating and then discarding a large number of units. 
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In this paper, we have described a ranked set sampling method that  relies on pre- 
experimental judgements, and have shown that,  for multiple sample problems, use of all 
units in a set leads to more accurate inference than does use of only some units or a single 
unit in a set. Thus, in terms of accuracy of inference, full-use ranked set sampling is to 
be preferred to ranked set sampling which is to be preferred to simple random sampling. 
The reduction in cost when moving from a ranked set sample to a full-use ranked set 
sample is an added bonus. 

The theory and simulations set out in Sections 3-6 demonstrate the magnitude of 
improvement that  is possible with the proposed sampling plan. The combination of 
correlated judgement order statistics and restricted randomization provides asymptotic 
relative efficiencies of 2.0 and 1.5 for the two-sample median test, compared to the same 
procedure applied to simple random sampling or ranked set sampling plans, respectively. 
Similar improvement is observed in the finite sample power comparisons in Figs. 1 and 2. 

Implementation of the testing procedure is easy and straightforward if perfect judge- 
ment ranking holds. On the other hand, if there is some doubt on the ability of the judges 
to rank the units correctly, the "estimated" quality of ranking model, where ~ and 511,2] 
are estimated from the data, is used to implement the procedure. The simulation study 
shows that  the "estimated" quality of ranking model works well for moderate sample 
sizes. It also shows that  the full-use ranked set sampling design can handle imperfect 
ranking better than does a standard ranked set sample design. For example, the em- 
pirical power of the order restricted design, when the correlation coefficient between the 
concomitant and response variable is 0.75, is better than or as good as a standard ranked 
set sample with perfect ranking. 

The tests described here can be extended to cover some models that  are more general 
than the additive model. Of particular interest is the location-scale family defined by 
e ,-~ F ,  with F having median 0 and scale 1. A treatment is defined by a location and 
scale parameter, 0 and a, respectively. The corresponding observation, if the unit is 
assigned to treatment i, is Y = 0i + aie. The median based tests and confidence intervals 
appropriate for this model would require estimation of both treatment locations and 
scales which can be accomplished in a robust fashion. 

In related work, the authors are investigating mean-based inference, with a focus on 
problems that  fall in the framework of the linear model. This includes two-sample and 
k-sample problems as well as those generally approached through regression analysis. 
Preliminary results show that  inference which relies on contrasts is improved with a full- 
use ranked set sample. This holds, whether inference is based on asymptotic theory or 
on a permutation distribution. The work on mean-based inference also facilitates study 
of robustness of the procedures to departures from the additive model. 
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Appendix 

PROOF OF LEMMA 3.1. The proofs of (i) and (ii) are similar. We focus on (ii). By 
inverting the critical region of the sign statistic, the upper limit of the 100 x (1 - c~i)% 
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confidence interval for 0~ can be writ ten as 

U i = s u p  t :  ~ > z ~ / 2  �9 

Fix n and consider an arbitrary fixed B > O. Since Si(a) is a non-increasing function of 
a, when c <_ z,~/2, the event 

< c  

implies that  Ui <_ B/v / -~ .  Hence, 

Letting n vary and noting that v~-~:~i(0) tends to a continuous random variable, from 
Theorem 3.2, we have that 

Recognizing the asymptotic normality of Si (0) yields 

lim p(V '2 -nS i (B /v '~ -n )<  z a , / 2 ) = O ( Z c , , / 2 + B f ( O ) / 8 ) .  
n - - *  (2~ 

Since I (0) /8  > 0 there exists a large enough B to ensure O(z,~,/2 + Bf(O)/5) > 1 - e/2. 
We then have that 

lim inf P(V'-~Ui < B) > 1 - e/2. 
n - - - ~  O O  

A similar argument shows that 

l i m i n f P ( - v / ~ L i  _< B) > 1 - e/2. 
n - - - ~ O O  

Noting that L~ < U~ establishes both  (i) and (ii). 

PROOF OF THEOREM 4.1. Let U N ~ -  ~v/N(Sl(0), . . . ,Srn(0)) r .  As N --* oo, 
UN converges to an m-dimensional multivariate normal distribution with mean 0 and 
variance-covariance matrix D,  with di = 82 / Ai, i = 1 , . . . ,  m and cov(d~, dj ) = 5[1,21/A1, 
i C j .  

Let A be the ( m -  1) by m matrix 

- 1 1 0 0 . . . 0 -  

- 1 0 1 0 . . . 0  

A =  - 1 0 0 1 - - . 0  

- 1 0 0 0 . . . 1  
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T h e n  A UN converges to an (m -- 1)-dimensional mul t ivar ia te  normal  d is t r ibut ion wi th  
mean  0 and variance-covariance ma t r ix  ~], where a 2 -- 52/A1 + 52/~i - 2511,2]/A1, i = 
2 , . . . ,  m,  and a id  -- 52/A1 - 511,2]/A1, i r j .  Th e  proof  of the theorem follows from the 
definit ion of T.  

(A.1) 

where F ~  1 (a) is the condit ional  cdf of the - ly 
It  is clear tha t  

PROOF OF LEMMA 4.1. Note  tha t  T* = m a x ( T 2 , . . . , T m )  and the asympto t i c  
d is t r ibut ion of ( T 2 , . . . ,  Tin) is normal  with mean  0, variance and covariances 

~2 _ 2511,2] i ~ j .  
var(Ti)  = 1, cov(T~, T/) = r -- m52 _ 2511,2], 

Let  Xo be a normal  r andom variable with mean  zero and variance r and X 1 , . . . ,  Xm-1  
be iid normal  r andom variable with mean  zero and variance 1 - r.  Assume tha t  Xo and 
X 1 , . . .  ,Xm-1  are independent .  Then  (Xo + X 1 , . . .  ,Xo + Xm-1)  and (T2 , . . .  ,Tin) are 
equal in dis tr ibut ion.  For the u- th  quanti le  of T*,  we need to  evaluate Vu, such tha t  

u = P(T* < T u ) = P (  max  ( I X o + X I [ , . . .  ] X o + Z m - l J ) < V u )  
\l<i<m--I 

: I F  ( Xl['  [Y§ X m - l ' )  <'~u ' Xo Y ) f x o ( Y ) d Y  l< n<ax_l(lY + . - . ,  = 

J ( )fx ( )d = - l ly  7u o Y Y, 

max(ly+Xll,..., ly+Xm-1 I) given X0 = y. 

f -','u F m _ l l y ( T u ) : +  m-1 

The  proof  is comple ted  by pu t t ing  this in equat ion (A.1). 

PROOF OF THEOREM 4.2. From the  definition of WN we write  tha t  v/-NWN = 
x/~(U1 - L1 § U2 - L2). Hence, f rom the  linear representa t ions  in equat ions (3.2) and 
(3.3), it follows tha t  

v/-NWN = vfN(U1 - L1) + v/-N(U2 - L2) 

4 ~ / 5 2  - 5 [ 1 , 2 ] ' ~  E 
. - .+  

f(O) 

REFERENCES 

Barnett, V. (1999). Ranked set sample design for environmental investigation, Environmental and 
Ecological Statistics, 6, 59-74. 

Barnett, V. and Moore, K. (1997). Best linear unbiased estimates in ranked-set sampling with particular 
reference to imperfect ordering, Journal of Applied Statistics, 24, 697-710. 

Bhoj, D. S. (1997). New parametric ranked set sampling, Journal of Applied Statistical Sciences, 6, 
275-289. 

Bohn, L. L. and Wolfe, D. A. (1992). Nonparametric two-sample procedures for ranked-set samples 
data, Journal of the American Statistical Association, 87, 552-562. 



ORDER RESTRICTED RANDOMIZED DESIGNS 719 

Bohn, L. L. and Wolfe, D. A. (1994). The effect of imperfect judgment rankings on properties of pro- 
cedures based on the ranked-set samples analog of the Mann-Whitney-Wilcoxon statistics, Journal 
of  the American Statistical Association, 89, 168-176. 

Chakraborti, S. and Hettmansperger, T. P. (1996). Multi-sample inference for the simple tree alternative 
based on one-sample confidence interval, Communications in Statistics. Theory and Methods, 25, 
2819-2837. 

Chen, Z. (2001). The optimal ranked-set sampling scheme for inference on population quantiles, Statis- 
tica Sinica, 11, 23-27. 

Dell, T. R. and Clutter, J. L. (1972). Ranked-set sampling theory with the use of ranked-set sampling 
on grass clover swards, Grass and Forage Science, 40, 257-263. 

Hettmansperger, T. P. (1984). Two-sample inference on one-sample sign statistics, Journal of  the Royal 
Statistical Society. Series C, 33, 45-51. 

Hettmansperger, T. P. (1995). The ranked-set sample sign test, Journal of Nonparametric Statistics, 
4, 263-270. 

Kaur, A., Patil, G. P., Sinha, A. K. and Taillie, C. (1995). Ranked set sampling: An annotated 
bibliography, Environmental and Ecological Statistics, 2, 25-54. 

Kaur, A., Patil, G. P. and Taillie, C. (1997). Unequal allocation models for ranked-set sampling with 
skew distributions, Biometrics, 53, 123-130. 

Koti, M. K. and Babu, G. J. (1996). Sign test for ranked-set sampling, Communications in Statistics. 
Theory and Methods, 25, 1617-1630. 

Kvam, P. H. and Samaniego, F. J. (1994). Nonparametric maximum likelihood estimation based on 
ranked set samples, Journal of the American Statistical Association, 89, 526-537. 

MacEachern, S. N., Ozturk, O., Stark, G. and Wolfe, D. A. (2002). A new ranked set sample estimator 
of variance, Journal of the Royal Statistical Society. Series B, 64, 177-188. 

McIntyre, G. A. (1952). A method of unbiased selective sampling using ranked-set sampling, Australian 
Journal of Agricultural Research, 3, 385-390. 

Nahhas, R. (1999). Ranked set sampling: Ranking error models, cost, and optimal set size, Ph.D. 
Thesis, Department of Statistics, The Ohio State University. 

Nahhas, R., Wolfe, D. A. and Chen, H. Y. (2002). Ranked set sampling: Cost and optimal set size, 
Biometrics, 58, 964-971. 

Ozturk, O. (1999a). Two-sample inference based on one-sample ranked-set sample sign statistics, Jour- 
nal of Nonparametric Statistics, 10, 197-212. 

Ozturk, O. (1999b). One and two-sample sign tests for ranked-set samples with selective designs, 
Communications in Statistics, Theory and Methods, 28, 1231-1245. 

Ozturk, O. (2002). Ranked-set sample inference under a symmetry restriction, Journal of Statistical 
Planning and Inference, 102, 317-336. 

Ozturk, O. and Wolfe, D. A. (2000a). Optimal allocation procedure in ranked set two-sample median 
test, Journal of Nonparametric Statistics, 13, 57-76. 

Ozturk, O. and Wolfe, D. A. (2000b). An improved ranked-set two-sample Mann-Whitney-Wilcoxon 
test, Canadian Journal of Statistics, 28, 123-135. 

Ozturk, O. and Wolfe, D. A. (2000c). Optimal allocation procedure in ranked-set sampling for unimodal 
and multi-modal distributions, Environmental and Ecological Statistics, 7, 343-356. 

Ozturk, O. and Wolfe, D. A. (2000d). Alternative ranked set sampling protocols for the sign test, 
Statistics and Probability Letters, 47, 15-23. 

Ozturk, O., Wolfe, D. A. and Alexandridis, R. (2004). Multi-sample inference for simple-tree alternatives 
with ranked-set samples, Australian and New Zealand Journal of Statistics, 46, 443-455. 

Ramsey, F. L. and Schafer, D. W. (2002). The Statistical Sleuth: A Course in Methods of Data Analysis, 
2nd ed., Duxbury, Pacific Grove, California. 

Randles, H. R. and Wolfe, D. A. (1991). Introduction to the Theory of Nonparametric Statistics, Krieger 
Publishing Company, Malabar, Florida. 

Sinha, B. K., Sinha, B. K. and Purkayastha, S. (1996). On some aspects of ranked set sampling for 
estimation of normal and exponential parameters, Statistics and Decisions, 14, 223-240. 

Stark, G. (2001). Imperfect ranking models and their use in the evaluation of ranked-set sampling 
procedure, Ph.D. Thesis, Department of Statistics, The Ohio State University. 



720 OMER OZTURK AND STEVEN N. MACEACHERN 

Stokes, S. L. (1977). Ranked set sampling with concomitant variables, Communications in Statistics. 
Theory and Methods, 12, 1207-1211. 

Stokes, S. L. (1980). Estimation of variance using judgment ordered ranked set samples, Biometrics, 
36, 35-42. 

Stokes, S. L. and Sager, T. W. (1988). Characterization of a ranked-set sample with application to 
estimating distribution functions, Journal of  the American Statistical Association, 83, 374-381. 

Takahasi, K. and Wakimoto, K. (1968). On unbiased estimates of the population mean based on the 
sample stratified by means of ordering, Annals of  the Institute of Statistical Mathematics, 20, 1-31. 

Yu, P. L., Lain, K. and Sinha, B. K. (1999). Estimation of normal variance based on balanced and 
unbalanced ranked set samples, Environmental and Ecological Statistics, 6, 23-46. 


