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Abstract .  In this paper we deduce a confidence bands construction for the non- 
parametric estimation of a regression curve from length biased data, where a result 
from Bickel and Rosenblatt (1973, The Annals of Statistics, 1, 1071-1095) is adapted 
to this new situation. The construction also involves the estimation of the variance of 
the local linear estimator of the regression, where we use a finite sample modification 
in order to improve the performance of these confidence bands in the case of finite 
samples. 
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1. Introduction 

One of the main aims of nonparametric regression is to highlight an important 
structure in the data without strong assumptions being made about the particular rela- 
tionship between the variables. For this reason, together with the development of current 
computer-intensive methods, an enormous amount of effort has been devoted to smooth- 
ing methods, and a prolific literature has recently appeared on this topic. However, the 
study of confidence bands for the regression function has been somewhat slower to de- 
velop. Methods for constructing such confidence bands in a fixed design regression model 
can be found in Hall and Titterington (1988), who present an approach based on the 
discretization method introduced in Knafl et al. (1985). Hs and Marron (1991) use 
the wild bootstrap technique to construct variability bands by first establishing simulta- 
neous confidence intervals for a set of grid points. In a random design, Johnston (1982) 
(with known marginal density) and H~rdle (1989) (by way of M-smoothers) develop the 
confidence bands, based on the extreme value theory of Gaussian processes. Eubank 
and Speckman (1993) study the properties of a bias-corrected method for constructing 
data-driven confidence bands. Diebolt (1995) links techniques for confidence bands with 
the elaboration of a test for the regression function. Neumann and Polzehl (1998) ob- 
tain confidence bands based on a local polynomial estimator, via wild bootstrap. Other 
authors have extended these results to dependent data  (see Xia (1998), among others). 
Another useful way to construct confidence bands in both the parametric and nonpara- 
metric setting is the "tube formula", see Sun and Loader (1994). This method is based 
on an important result from Hotelling with respect to tube volume, 

Against this background, our aim is to deduce confidence bands for the regression 
function in a nonparametric setting when the data in the response variable is drawn 
in a length-biased sampling. This kind of sampling appears naturally in many fields of 
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research. Thus, if we record an observation by nature according to a certain stochastic 
model, such an observation will not have the original distribution unless every observa- 
tion is given an equal chance of being recorded. In some situations, the probability of 
selecting any individual from within a population is proportional to its length. Thus, 
in analyzing discovery data, the size-bias phenomenon, in which the larger units tend 
to be discovered first, is a common problem; in aerial census data collected for estimat- 
ing wildlife population characteristics, visibility bias is generally present, because groups 
with a larger number of animals are more likely to be sighted; the sojourn time of tourists 
in a country, as reported by those contacted at their hotels, has a size biased distribu- 
tion, since the longer the time spent by the tourist at the hotel, the more probability 
there is of this being collected in the sample. Models of this kind arise quite naturally 
in econometric and epidemiological contexts and, more generally, in problems related to 
renewal processes. A wide range of examples are analyzed in Patil and Rao (1978), Patil 
et al. (1988), Rao (1997), and Cristdbal and Alcalg (2001) among others. Of course, 
from the point-of-view of practical applications, the most interesting problems appear 
when covariables are involved and where the response is length or size biased. In these 
cases, if the sampling bias in the response variable is ignored, a distortion is caused in the 
determination of the regression function and the direct application of kernel regression 
estimators produces inconsistencies (see Cristdbal and Alcalg (2000)). 

In this paper, we analyze the relationship between a response variable Y, such 
that Y > C > 0 (a.s.), and a covariable X, where the data is observed by way of length 
biased sampling in the variable Y. For simplicity, we assume that X E [0, 1] with density 
function f x ,  and if f x g  denotes the joint density of (X, Y), then the density associated 
with the length biased vector is given by: 

(1.1) f~g(x ,  y) -- y fay(X,  y) 
I.Zy 

where py  = f y f x y ( x , y ) d x d y  is the mean of Y, which is assumed to be finite. Let 
us also denote by EW[ -] and VarW[ .] the expectation and variance, respectively, when 
these are calculated with density fYer, in order to distinguish them from E[.] and Var[-], 
which are obtained from f xg .  

It is worth considering some simple consequences of equation (1.1). First, note that  
the regression function of the biased data does not agree with the regression function 
re(x) = E l Y  J X = x]. In fact, we have that: 

EW[ Y I X = x] = m(x)(1 + c2(x)), 

where c2(x) is a2(x)/m2(x), the squared conditional coefficient of variation. This is a 
simple consequence of f~' (y ] x), the observed response conditional density, being equal 
to y f (y  I x)m(x) -1. On the other hand, the marginal density function f~  of the observed 
X is different from the unobserved one fx :  

#r  

Hence, the direct application of kernel estimation methods to length biased data  for both 
density and regression leads to inconsistencies. 

Crist6bal and Alcalg (2000) propose estimating re(x) from an i.i.d, sample (xi, Yi) 
by adapting the local polynomial fitting technique (see Fan and Gijbels (1996)) to length 
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1 a t  biased data. Since the empirical distribution function has a mass proportional to y-7 

each sampling point (xi, Yi) they minimize: 

n 

( 1 . 2 )  - . . . . .  9p(x  - x)' )21Kh(x  - x )  

i = 1  

and demonstrate that ?Tth(X ) ~- ~0 is consistent, also studying its asymptotic mean 
squared error. A paper by Wu (2000), dealing with general weighted distributions, 
appeared at about the same time as Cristdbal and Alcals (2000). Previously, Ahmad 
(1995) had already considered Nadaraya-Watson type kernel regression estimators in this 
framework, and later, Sk51d (1999), introduced a local linear estimator. 

Our main goal here is to obtain a fimction l~(x) such that: 

(1.3) lim P{[m(x) - rhh(X)[ < l~(x), Vx e [0, 1]} > 1 - ct 
m---* OO 

for ?Tt h the local linear estimator, i.e.: the first order local polynomial estimator, p = 1 in 
equation (1.2). To that  end, we consider a suitable estimation error process, proving that  
its path is close to a Gaussian process with known covariance structure. An asymptotic 
uniform confidence band can then be constructed from the distribution of the supremum 
of such a Gaussian process (by extending the result in Bickel and Rosenblatt (1973)). 
Because the data are length biased, to proceed in this way requires some inverse moment 
conditions on Y. 

We also make the following set of assumptions, that  we will refer to as the A con- 
ditions: 

A1. The kernel K is a symmetric function, twice continuously differentiable in the 
interior of its compact support I -a ,  a]. 

A2. Let hn, the bandwidth used in the nonparametric estimation, be O(n-'l), where 
1 / 5 < ~ <  1/2. 

A3. We assume that  there are constants C1 and C2, such that  0 < C1 < fx (x )  < 
C2 < c~ for all x E [0, 1]. 

A4. Let G(x) = E w [ ( ~ )  2 IX  = x] and further, let there be constants C 3 and 
C4, such that  0 < C3 < G(x) < C4 < ec for all x C [0, 1]. 

Ah. re(x) and G(x) are twice continuously differentiable, while f~: (x) is continuous 
in (0, 1). 

Hypothesis A1 is usually made in nonparametric estimations. For its part K support 
compactness holds for simplicity in technical developments, but can be relaxed using 
more general assumptions on the integrability for K. Hypothesis A2 ensures consistency. 
Hypotheses A3-A5 are technical assumptions to obtain the uniform and almost sure 
convergence and the error term convergence. 

The rest of the paper is organized as follows. In Section 2 we derive the strong 
convergence of the proposed estimator, besides an almost sure representation for the 
error process. As a consequence, we provide the confidence bands for the regression 
curve. Section 3 is devoted to the different functionals that  appear in the confidence 
bands. In particular, a finite sample adapted estimator is proposed to overcome what is 
a cumbersome direct implementation. In Section 4 we report a brief simulation study 
with a view to analyzing the behavior of the proposed confidence bands. Finally, the 
proofs of the main results are given in the Appendix. 
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2. Estimation from length biased data and the error process 

As is shown in Crist6bal and Alcals (2000), one of the methods that can be used 
to overcome the problem raised by the length biased mechanism is the compensation 
of the length bias. While this is not the only technique available to solve the problem, 
it is general enough to provide estimations not only for the regression curve, but also 
for its derivatives. Such a compensation can be carried out by balancing the effect 
that  large data values exhibit due to the length bias sampling. This is achieved using 
! K ( ~ j - - ~ )  instead of K ( ~  --~) as weight for the nonparametric estimation. The use of 
Y l  n 

this "modified kernel" in the local linear estimation of the regression curve leads to the 
following estimator: 

n W:Vh(X ) 
(2.1) ~nh(x) = ~ Ein l W~h(X) Yi 

i=1 

where: 

,22, 

and where 

n-h1 n 1K (~__~)y~ (~__~)3. s~(x;  h) = 

As a consequence, we can also write ?Tt h a s  

s~(x; h)t~(x; h) - s~(x; h)t~(x; h) 
~ ( x )  = ~ ( x ;  h )~(x ;  h) - ~ ( x ;  h )~(x ;  h) '  

with t~" being the functions given by 

1 K t~(x; h) = - ~  ~=1 

Crist6bal and Alcalg (2000) also provide expressions for the asymptotic bias and 
variance of such an estimator. Moreover, they derive a criterion for bandwidth selection 
based on AMISE minimization. As a consequence: 

~ho(X) = m(x)(1 + op(1)) 

and, therefore, the consistency of the proposed estimator is proved and asymptotic nor- 
mal distribution can be used to obtain confidence interval for m(x). 

Assuming that the regression curve is differentiability up to a large enough order, 
it is possible to develop confidence bands by means of a pointwise confidence intervals 
using the Bonferroni technique over a grid of points in [0, 1] (see for example KnMi 
et al. (1985)). Since the use of the Bonferroni method on a large number of points 
involves the use of large normal quantile values, these bands are too wide and, hence, 
although they can be useful, they are not sufficiently accurate. In Bickel and Rosenblatt 
(1973), they proposed a new method for constructing confidence bands for the density 
curve estimation that relies on the supremum distribution of Gaussian processes. Other 
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authors have also taken advantage of this technique: see H/irdle (1989), Johns ton  (1982), 
among others. Although these confidence bands are much more accurate, they  require 
more technical results about  the supremun of processes and in this context they  have to 
deal with ratios of random variables. 

In order to take full advantage of such a method,  we must be able to deal with 
the supremum distribution of an error process. This implies tha t  simple consistency is 
not enough and tha t  a stronger result: i.e. the uniform strong consistency is essential. 
Following Masry (1996), and using the assumptions referred to in the previous section, 
we can prove the following theorem, which will be used as the basis to establish the 
strong uniform consistency and weak convergence required in order to apply the Bickel 
and Rosenblatt  result. As is usual, we will denote f uiK(u)du by #i and f uiK2(u)du 

by ~ .  R(g) will denote fg2(u)du, ("0 = R(K) ) ,  while 5~ stands for , o ~  which 
V ~ - : ,  

will appear as the order in the remainder te rm in the strong convergence terms. Let 
us also introduce the quantities e~(x; hn) tha t  will play a central role in our further 
developments: 

1 

nhn i=l Yi ~ hn ] ~ hn /I 

THEOREM 2.1. If  conditions A1-A5 are satisfied and the kernel K is chosen such 
that #0 = it2 :- 1, and Pl = #3 =- 0 then: 

= m"(x) + O(h~Sn) (2.3) rhhn (x) re(x) + f x  (x) + 

uniformly in [0, 1] and almost surely. 

This theorem, together with the fact tha t  e~(x; hn) = o(Sn) uniformly in [0, 1] and 
almost surely, as is proven in Proposit ion A.4 in the Appendix,  leads to the following 
corollary where the strong uniform consistency is established. 

COROLLARY 2.1. Under conditions in Theorem 2.1 we have that: 

mh.  (X) = re(x) + O(h2n + ~,~) 

uniformly in [0, 1] and almost surely. 

Thus, as a consequence of Theorem 2.1, we can ensure tha t  there is a constant  
C > 0, such that :  

P{llrhh.(X) - m(x)l I < C(h 2 + ~,) a.e.} = 1, 

where ][']1 denotes the supremum norm, and a.e. means tha t  there is an no such tha t  
the property holds for every n > no. This, of course, means tha t  with probability one 
the supremum over all x in the unit  segment does not  grow faster than  C(h 2 + 5n), a 
quant i ty  tha t  tends to 0 as n increases. 

Moreover, Theorem 2.1 leads to the following expansion for the error process, i.e. 
the difference rhh. (x) - re(x): 

rhhn(X) -- re(x) -- #ye~(x;  hn) f x ( x )  + O(h~ + hnSn) 
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uniformly in [0, 1] and almost surely. The relevance of the error process lies in the fact 
that  its distribution provides us with the quantiles required in order to construct the 
confidence band. Thus, being able to obtain a distribution for the error process is crucial 
to our objectives. It is easy to see that  the asymptotic conditional variance of e~(x; hn) 
is given by: 

(2.4) AVar~[e~(x;h,)] = n-~-G(x)f~(x)R(K)= n~S(x)R(K)  

where G is introduced in assumption A4 and S(x) = G(x)f~(x). Therefore, Theorem 
2.1 ensures that  the standard error process can be represented by some summation 
process (i.e.: e~(x; hn)), in such a way that the difference between both process paths 
is uniformly and almost surely bounded by a quantity that  decreases to 0 as n grows to 
infinity. Hence, and under condition A2, we have that  for 9' -- (5~ - 1)/2 > 0: 

e~(x; hn) (2.5) ~ fx(x--) (~hh.(X)- re(x))-  + O(n -~) 

V nhn 

uniformly over [0, 1] and almost surely. Notice that  in case rl = 1/5 the distributional 
behavior of e~(x; h~) will not be sufficent to address the asymptotic behavior of the left 
term in equation (2.5). 

Then, to obtain the confidence bands, we will approximate uniformly the path of 
this standardized version of e'~(x; hn) by way of a Gaussian process path. Specifically, 
it is possible to bound the paths of the standardized error process by the supremum of 
the following Gaussian process: 

1 /[o K z - x  dW(z), (2.6) Zn(X)--X/~n ,1] ( - - - ~ )  

where W(-) is a standard Brownian Motion. Because of this approximation, the error 
process path is uniformly close to a process path whose confidence bands can easily be 
constructed. As a consequence, and applying a result in Bickel and Rosenblatt ((1973), 
p. 1084) to the Z* process, we find that  the confidence bands can be constructed at a 
level a using the following theorem: 

THEOREM 2.2. Let L ~ be hn 

V/-21og h~ + v/_21og hn ~ \ R(K) / - X~ , 

where X~ = log( -l~ ). Then, under assumptions A1-A5, we have: 

lira P S(x) py 

Hence, for l~(x) in (1.3), we can use: 

(2.7) 
V 
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Note that  in the previous expression there are several unknown functionals that  should 
be estimated. 

From equations (2.3) and (2.4) in Theorem 2.1, we can find the AMISE, whose min- 
imization leads to a bandwidth selector. The AMISE bandwidth selector development 
can be found in Cristdbal and Alcals (2000) and Wu (2000). While the former band- 
width selector is entirely based on asymptotics, Wu (2000) also proposes a bandwidth 
selector based on Cross Validation. Nervertheless usual methods can also be applied to 
obtain a suitable bandwidth, given that: 

E ~ [(rhh(X) - m(X)) 2] = / (~h(X) - m(x))2f~(x)dx. 

This equality shows that  using Cross Validation criteria with weight w(x) = 1 is equiva- 
lent to using ISE with weight w(x) = f~(x), which is a common weight function, useful 
in order to avoid the contribution of isolated points to the ISE. 

We should also note that using the expansion for mhn given in Theorem 2.1, and 
once m"(x) is estimated, we can use it to perform bias correction (see Xia (1998)). Note 
that  this estimation has to be performed separately from that  carried out for re(x), 
given that  optimal bandwidth selection in local polynomials depends on what is going 
to be estimated (see Fan and Gijbels (1996)). It should further be recalled that  these 
results are asymptotic and, therefore, that  it is convenient to adapt the confidence bands 
construction to finite samples so as to obtain a better performance. 

3. Fin i te sample const ruct ion 

The previous sections have been concerned with the theory required in order to 
construct the confidence bands. As we have seen, the results are asymptotic, i.e. they 
have to do with sample sizes that  grow to infinity. Hence, there are unknown functionals, 
and we will have to provide estimations for them using sample data, adapting such 
theoretical results to finite samples. 

These unknown functionals are S(x), fx  (x), and, #y.  Because of the length bias, 
the estimation of #y  can be carried out by means of the harmonic mean, which, in this 
case, is a root n consistent estimator. Nevertheless, there is no need to estimate it, given 
that  for a suitable bandwidth h~ 

1 1 (xi-x'  
n i=1 K ) ' 

is a consistent estimator for g(x) = fx(x) /py .  In fact, under our assumptions, this 
estimator is a uniform strong consistent estimator for g. Note that  in the last expression 
we use 1/yi because of length bias in the response. 

The estimation of S(x) can be carried out in various ways, but since S(x) = 
G(x)f~:(x), the estimation of G(x) is required. In order to perform the estimation 
of G(x), we have chosen methods analogous to those proposed in Hs and Tsybakov 
(1997) or Fan and Yao (1998) to estimate the variance function given that  G(x) = 
E ~ [ ( y - l ( y  _ r e ( x ) ) )  2 I X = x]. Hence, the following estimator 

(3.1) 

2 

F inl Wih" (X) 
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where rh(~ ) (xi) is the estimator for the regression function when the data are length bi- 
ased, as was proposed in Section 2, evaluated in x = xi but without using the observation 
(x~, Yi). Furthermore, W~h,, (x) are the weights given in (2.2), but without the length bias 
compensation, that  is to say: 

where in this case: 

Sl(X;h)g (~--~) (xi-~h x ) 

sj  (x; h) = K 

The consistency of this estimator follows in the same way as was proved in the 
case of the local linear estimator for the regression function, taking into account the 
consistency for rft n that was given in Corollary 2.1. 

THEOREM 3.1. Under assumptions A1 Ah, if the bandwidth h~ verifies condition 
A2, we have that: 

G,~(x) = G(x) + O(h~ 2 + 5~) 

uniformly in [0, 1] and almost surely, where 5~ = V nh~ " 

Note that  the strong uniform consistency rate can be written in terms of hn, that  
is to say the bandwidth for the regression function, because both estimators are based 
on the same mlmber of observations 

We are now able to estimate S(x) by means of a Parzen-Rosenblatt estimation for 
f~c (x), and then to construct the confidence bands by means of the direct use of (2.7). 
Nevertheless, we instead propose using a finite sample modification that  is closer to the 
error process variance, and furthermore, it is simpler than the given construction in 
terms of computational cost. This modification takes the form: 

[~(x) = C : ( x ) ~ - ( - ~ n ~ ,  

where C~ (x) is defined as: 

1 f i  w hn(x) : 
(3.2) C: (x)2  = v / ~ E ~ _ l  w~n(x) ~=, v / E ~ t ,  W,h,,(X) 

Note the use of weights Wih and w~.  The first is used to achieve the estimation of 
S(x), given that  we are smoothing the variance estimator, and the square root on the 
denominator leads to the appearance of a f ~  factor on the numerator. The second 
weights are used simply to obtain f x ,  see (2.7). It is worth noting that  the use of 
bandwidth h~ makes this estimation closely resemble the behavior of the local lineM 
estimator of the regression function. The following result proves the strong consistency 
of the proposed estimator. 

THEOREM 3.2. Under assumptions A1-Ah, we have that: 

G(x) f~(x)  O(h~ 5~). 
Cn~(X) 2 = #~nhn fx (x )2  + + 



C O N F I D E N C E  B A N D S  W I T H  L E N G T H  B I A S E D  D A T A  483 

uniformly in [0, 1] and almost surely. 

The confidence bands construction can also be improved by means of bias correction 
for the estimation of the regression curve (see Xia (1998)). This improvement can be 
obtained using a higher degree local polynomial modified estimator for length biased 
data (see Crist6bal and Alcal~ (2000)). 

4. A brief simulation study 

In this section we describe a brief simulation study with the aim of better  appreci- 
ating the behavior of the proposed confidence bands. We will first consider these bands 
in a simple and known situation with unbiased data. Such an approach will help us to 
focus on the main facts that  arise in the construction of the confidence bands using the 
distribution of the Gaussian processes supremum. In a second step, we will consider the 
performance of such a construction for length biased data in a more realistic case where, 
besides the use of estimators given in the second section, f x (x )  and S(x) also have to 
be estimated. 

For the first study, let us consider the following process: 

n 
n~f~ne(x, hn) - 1 E K  ~xi - x  ~ 

1 \ hn / 

where the kernel function K is the so called Epanechnikov kernel 

3 (1 - u2)1[_1,11 (u), K(u)  -- 

and {(xi, ei)}n_l is a sample from the random variable (X, E),  and with X being uni- 
formly distributed over [0, 1] and independent from E, a Gaussian standard random 
variable. Apart from its simplicity, this process has several useful features related to the 
local polynomial estimation. Thus, e(x, hn) estimates E[E I X = x]fx (x), which, in this 
case, is the null function over [0, 1]. Moreover, as 

nhn K = f(x)  + O(h 2 + 5~) = \ h . )  

uniformly in [0, 1] and almost surely because of Proposition A.3, the Nadaraya-Watson 
estimator in the example can be expressed using the following asymptotic expansion: 

~ W  (x) = e(x,h~) + O(h~) 

uniformly in [0, 1] and almost surely. The same kind of expansion has been shown to 
hold for the local linear estimator when the data  is length biased and, of course, it is 
also valid in the unbiased case. As a consequence, this process represents the main 
stochastic features of these estimators. Using Proposition A.5, it can be seen that the 
limit process for nvf~e(x ,  hn) agrees with that for Z~(x), and thus v/R(K)L~ are 
asymptotic confidence bands for that  process. 

Tables 1 and 2 include the number of times that  

Snh = max v /~e(x ,  h) x 
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T a b l e  1. Snh s i m u l a t i o n ,  a = 0.1. 

n\h 0.005 0 .0125 0.025 0.05 0.1 0.25 

25 0.36 0.27 0.25 0.18 0.12 0.07 

50 0.37 0.30 0.21 0.14 0.10 0.08 

100 0.40 0.25 0.17 0.11 0.08 0.06 

200 0.36 0.16 0.11 0.08 0.07 0.06 

400 0.30 0.18 0.11 0.08 0.07 0.06 

800 0.23 0.13 0.10 0.09 0.10 0.08 

1600 0.17 0.13 0.10 0.09 0.08 0.08 

T ab l e  2. Snh s i m u l a t i o n ,  a = 0.05. 

n\h 0.005 0 .0125 0.025 0.05 0.1 0.25 

25 0.29 0.20 0.14 0.07 0.03 0.02 

50 0.29 0.19 0.13 0.07 0.05 0.02 

100 0.29 0.17 0.10 0.06 0.04 0.02 

200 0.23 0.10 0.04 0.04 0.03 0.02 

400 0.19 0.09 0.04 0.03 0.03 0.02 

800 0.15 0.08 0.05 0.04 0.03 0.02 

1600 0.10 0.05 0.04 0.04 0.03 0.03 

is larger than ~ L ~ ,  i.e. the uncovered proportion of samples, for a given confidence 
level 1 - a, where the maximum is computed over a grid on [0, 1] with 1600 equidistant 
points. 500 observations for Sn,h have been simulated for different samples sizes n and 
bandwidths h in order to obtain the percentage of times that  Sn, h > V/-R--(-~L(~. 

We can note that  for a fixed n, as h increases, so the uncovered percentage of samples 
decreases to 0. This agrees with the behavior of the local polynomial estimator when this 
estimator is under-smoothed, i.e. when the bandwidth is relatively small with respect 
to the sample size n. As the bandwidth gets close to zero, the value of the estimators 
at xi becomes simply ei but, in other points, it is null if defined and, therefore, exhibits 
characteristic peaks. On the other hand, as h gets larger when the estimation is over- 
smoothed, the local polynomial estimator tends to assign the same weight to every point 
in the sample. Thus, it behaves approximately as an average of the data, producing a 
fiat and smooth estimation. Note that  this behavior is shared by the process Z~(x). 

Consequently, in order to obtain valid confidence bands, it is not possible to use any 
value of h for any sample size. Rather, this bandwidth depends on a well known fact for 
local linear estimators, namely that, with a view to achieving consistency, it is required 
that  the bandwidths decrease to zero more slowly than 1/n. Moreover, to obtain the 
minimum possible squared error, hn should be an O(n U(2p+3)) for the order p local 
polynomial estimator. That  is the reason why we should consider only a certain range 
of bandwidths(about 0.05-0.125) where the confidence level is approximately achieved 
depending on n. 

Now, and with the aim of providing an additional perspective of such a construction 
from the practical and visual point of view, we will consider a more realistic case, where 
the data is affected by length bias and where we also have to estimate some other 
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Table 3. Empirical  coverage. 
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A n Emp.  Cov. ~ A n Emp.  Cov. (~ A n Emp.  Coy. 

0.10 0.05 1 0.01 1 100 

200 

400 

2 100 

200 

400 

3 100 

200 

400 

0.86 

0.88 

0.88 

0.89 

0.90 

0.91 

0.85 

0.91 

0.92 

100 0.92 

200 0.91 

400 0.96 

100 0.92 

200 0.94 

400 0.96 

100 0.93 

200 0.95 

400 0.96 
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Fig. 1. Samples  of confidence bands  wi th  a 95% level, for a sample  size n = 200 ( lef t -hand 

panel) and  n = 400 (right panel) for the  model  (4.1) wi th  A = 1. 

functional data.  Let us suppose we are interested in ElY I X = x], where X is dis tr ibuted 
uniformly in [0, 1] and Y = m(x)(1 + 0.35c), with c being a uniform random variable 
over I-v/-3, x/~]. The regression function m is given by: 

(4.1) m(x) -- 2 + 2x + A ( e x p ( - ( x  - 0.45)2/0.025) - e x p ( - ( x  - 0.55)2/0.025)). 

In Table 3 we have added the empirical coverage for the proposed confidence bands 
in 500 simulations of the previous model, but  now with the observed da ta  being affected 
by length bias. This has been done for different confidence levels 1 - a ,  and for different 
sample size values n. In order to s tudy  the behavior in the circumstances where the 
regression function has peaks, we have considered different values for A in (4.1). As we 
can appreciate, bet ter  results are achieved in the case of a larger n, while in the case 
of shorter sample sizes the coverage is a little less than  the expected nominal  value. 
Note tha t  this has to do wi th  the large bias tha t  results from the ample crests in the 
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Fig. 2. Samples of confidence bands with a 9 5 %  level, for a sample size n = 2 0 0  (left-hand 
panel) and n = 4 0 0  (right panel) for the model (4.1) with A = 2. 
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Fig. 3. Two typical length biased samples of sizes n = 200 (left-hand panel) and n -- 400 
(right-hand panel) with the true regression function (solid line) and est imated confidence bands 
with 90%, 95% and 99% levels of confidence (dotted lines). The simulated model is given by 
(4.1) with A --- 2. 

regression function, whose effect is much more noticeable when the sample size is small. 
In every simulation, we have considered bandwidths hn and h~ that minimize usual Cross 
Validation for observations and squared compensated residuMs respectively, evaluating 
the curves in (hn, 1 - hn) in order to avoid the so-called boundary effect. 

In Figs. 1 and 2 we have also drawn the regression function re(solid line), with 95% 
level confidence bands(dot-dashed lines) for 20 independent samples of (X, Y) affected 
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by length bias in the response. The construction has been carried out using (3.2), and 
we have also considered two different values for A in (4.1). 

As can be seen, the confidence bands appear to be symmetrically located around the 
regression function, covering it in most cases. We can also observe that the roughness 
the confidence bands exhibits is due to the use of a Cross Validation bandwidth selector 
which, in most cases, gives under-smoothed estimations. It should also be noted that the 
behavior at the central part is not bad, although it is precisely in this central part where 
the local linear estimator may be less precise due to of the estimation bias produced by 
the peaks and valleys the regression function we have chosen exhibits in that zone. In 
Fig. 3 we have also added a plot of two such length biased samples, with the regression 
function and the 99%, 95% and 90% level confidence bands similarly being plotted. Note 
the length bias effect, as well as how the estimator compensates for it. 
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Appendix 

A.1 Previous results about power series and expectations 
The results presented here allow us to obtain the expansions we need in order to 

perform the analysis of the convergence rates. They will be used for local constant or 
local linear estimators, i.e.: p = 0 or p = 1, although the result will be set for a general 
p. 

PROPOSITION A.1. Let X be a random variable on [0, 1] whose distribution func- 
tion is F and with density function f .  Let g also be a real valued function on [0, 1], with 
K verifying assumption A1. Let us suppose that f and g have bounded derivatives up to 
order p for every x in (0, 1). Then: 

(A.1) 

and 

( i .2)  

( ( _ X _ ~ ) J  1 ( ~ _ ) ) P ~ o h ~ ,  gf(O(x) E g(X)  -~K = , i+j  g + O(h p) 

E g ( X )  = 

i = 0  

gf(i)(x) + O(h p- l )  

where g f (x )  is g(x) f (x) .  

PROOF OF PROPOSITION A.1. Change the variable X by x +uh,  and integrate on 
u the p order Taylor expansion of g f ( x  + uh) in h = 0. [] 

As EW[ .] agrees with ~-~E[Y.], these results hold for biased data when using 

• instead of K ( ~ )  Such results help us to obtain the expectation and y~ " ~  h / 
w s j, and ej that  will appear later in this Appendix. variance for the quantities s} ~ ej , 
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A.2 Strong convergence results 
The results presented here enable us to obtain strong consistency for the estimators 

proposed in Sections 2 and 3, and also allow us to achieve the strong consistency rates. 
Let us assume from now on that  I1"11 denotes the supremum norm. 

PROPOSITION A.2. Let hn be a sequence of positive real numbers, such that hn = 
O(n-V), r I > 0 and let Yj(x), j = 1, . . .  ,n be independent real valued processes on [0, 1] 
verifying the following conditions: 

(i) There exists a constant A > O, such that ]Yj(x)I < A/hn a.e. and Var[Yj(x)] < 
A/hn.  

(ii) IYj(x) - Yj(Y)I < Bjlx  - Yl and 1 ~jn=l Bj is 0(-~. ) almost surely. 
Then:  

(A.3) 3C > 0 s.t. P (Yj(x) - <_ C5,~ a.e. = 1 
j=l  

where 5n lo~  and a.e. means that there is an no s.t. the property holds for every 
= V ~  

n ~  n o .  

PROOF OF PROPOSITION A.2. Without  loss of generality, let us assume tha t  
E[Yj(x)] is null. 

Let I I  n'tL(n) be disjoint subintervals of [0, 11 with the same length, such that  [0, 1] = t k Jk=O 

uL(_I ) I~, where the number of intervals L(n) is an O ( ~ ) ~  quantity, and let xk be 

the middle point of I~. Then: 

n n 

l<k<L(n) 

n 

l <k<L(n) xCt~ 

Note that  the second term can be bounded by 
n 

max Length(I~) 1 E Bj, 
l<k<L(n) 

j = l  

and, as the length of I~ is O(L(n) -1) for every k, this term is O(hn) given (ii). It only 
remains for us to prove that  there is a C > O, such that: 

P max - :rk) < C5,~ a.e. = 1. 
l<k<g(n) n j=l 

n This is equivalent to P{maxl<k<L(n)I-~ 2j=1Yj(~:k)l >Cen  i .o .}  = O, where i.o. means 
that  the property holds for infinitely many integers, and it will be proved to be true by 
way of the Borel-Cantelli lemma if the following condition holds: 

(A.4) E p  / 1 ~  } _ [ ,<_km<_aLX(n) n YJ(2gk) > c ~ n  < CO. 
n > 0  j = l  
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To check tha t  this condition is indeed verified, note tha t  we can bound  these prob- 
abilities for every k by means of Markov inequality as follows: 

[ ( ~ n  )] [ (  )~nn  )] 
E exp ~-~j=l Yj(kk) + E exp --n-- ~-]q=l Yj(xk) 

-- cC A,~ 5 n 

where An is de~ned as ~/~hnlogn/A and so l~n~(~k)/~l < i a.e. by assumption (i). 
Therefore, and as a consequence of the following inequality for the exponential function 
exp(x) _< 1 + x + x 2 for ]x I < 1, we have that:  

E exp \ n ~(&k) < 1 + ,~ E[Yj2(kk)] < exp Var[Yj(&k)] . 

Hence, and because of the independence of Yj(xk): 

E exp EYj(~k) < exp ( A2 Var[Yj(~k)l . 
j=l \ j=l 

The same holds for the second summand  in (A.5). 
As a consequence of assumptions (i), and the fact tha t  AnS~ is A -1 log n, we have 

the following bound for every k: 

P EYj(kk) > C(~ n ~ 2e.(C/A)log n , 
j=l 

and therefore: 

in } 
max - E Y j ( : ~ k )  > C6n P (l<k<L(n) n 

- -  - -  j = l  

<- E P - E Yj(~:k) > Cen 
k=l n j=l 

2L(n) < 
- n(C/A)_I" 

Hence, (A.4) holds for a large enough C. [] 

Let us now apply this general result to the local linear est imator for length biased 
da ta  given in equation (2.1). 

PROPOSITION A.3. Assuming A conditions, we have that: 

sW(x; ha) = 1 (]~ifx(x) -}- #i+lf 'x(x)hn) -}- O(h 2 -}- ~n) 
PY 

uniformly in [0, 1] and almost surely. 
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PROOF OF PROPOSITION A.3. This follows from Proposi t ions  A.1 and A.2. Note  
n 1 1 K{Xi -X~(X~-x~J  tha t  s~f(x; hn) = in ~ i = 1  Y/(x), where Y/(x) = y~h-~, ~-Fj-. J~ h. J , and then: 

1 1 g, ( x i - e ( x - x ' ) ) I x - x ' l  l y e ( x ) -  Y (x')l < 

1 is bounded  where g(u) = uJK(u), whose absolute value is integrable. Hence, as every y-7 

a.e. because of the boundedness  assumption on Y, condit ion (ii) in Proposi t ion  A.2 is 
guaranteed,  while condit ion (i) is verified given the boundedness  and the finite suppor t  

1 [] of K and the previous observat ion about  7 "  

We will now achieve the error  process representat ion up to h 2 terms and the s t rong 
consistency for mh~. This  result  will enable us to obtain the bias t e rm and a suitable 
expression to develop the confidence bands  via the supremum dis t r ibut ion of a Gaussian 
process. T h e  key points here are tha t  Yi = m(xi)+ ei and the use of the power expansion 
of m(xi) on x: 

then: 

PROPOSITION A.4. If conditions A1, A2, A4, and A5 are satisfied and: 

e ~ ( x ; h n ) - 1  ~ ( Y i - m ( x i ) ) K ( X i - X ~  ( x i - x ~ '  
nha i=l Yi \ - -~ ,  ,] \ hn ] 

eT(x; = O(5 ) 

uniformly in [0, 1] and almost surely. 

PROOF OF PROPOSITION A.4.  Le t  Y/(x) -- ~ 1 i ( ( x l - x ~ ( x , - x ~ J  y~ ~ ' "  t ~ J --Kj-. J , wi th  null expec-  

• is t a t ion  as a consequence of E ~ [  -] being equal to ~JTE[Y.]. Also note  tha t ,  as fax as y~ 

bounded  a.s., then  so is ~*. As a consequence, conditions (i) and (ii) in Proposi t ion  A.2 
Yi 

follow by arguing the same line as in the Proposi t ion A.3. [] 

PROOF OF THEOREM 2.1. As we have seen in Section 2: 

E i = l  w w  a ih~(x)y i s~(x;hn)t~(x;ha) s~(z;hn)t~(x;hn) 
 hn(x) = E =I ww = a ih~ (x) s~(x; hn)s~(x;  h~) - s~(x; ha)s~(x; ha)" 

Now, using the  asymptot ic  power expansion for m: 

m(xi) = m(x) + ha \ h~ J \ - - -~  ] 2 ' 

and the fact t ha t  Yi = rn(xi) + ei, we have that :  

l~th, ~ (X) = Ein=l Wihn (x)y i  = re (x )  § 0 
E nl (x) 

h2 m"(x) s~ (x; h~)s~ (x; h~) - s~(x; ha)s~(x; ha) 
q- ~ ~ s~(x;h~)s~(x;h~) s~(z;h~)s~(x;hn) 

s~(x; hn)e~(x; ha) - s~(x; hn)e~(x; ha) + 
s~(x; ha)s~(x; ha) - s~(x; h~)s~(x; ha)" 
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As a consequence of Propositions A.3 and A.4, we obtain the following uniform and 
almost sure power series expansions: 

~tys~(x; hn) : f x ( x )  + O(h~ + 5n) 

~tys~(x; hn) : hnfx(X)  + O(h2n + fin) 

#yS~(X; hn) : #2fx(x)  + O(h2n + ~n), 

and also that s~(x; ha) = O(hn + 5~) and e~(x; h~) = O(Sn) uniformly and almost 
surely on [0, 1]. Therefore, we have that: 

(A.6) ~hh.(X) = re(x) + #2h~m~2~(x) (1 + O(h 2 + 5,~)) 

#ye~ (X; hn) 
+ fx(x)  + ~ + hn~.). 

This concludes the Proof of Theorem 2.1. [] 

The following results are developed in order to carry out the estimation of G(x) 
and C~(x) 2 defined in Section 2. We will show that under the assumptions proposed in 
Section 1, the G(x), defined in (3.1), is a strongly consistent estimator for G(x). We will 
follow the same steps as in the case of r h h .  

PROOF OF THEOREM 3.1. First, note that  the weights W~h are built in the same 
manner as w TM but without the reciproque of the response of the observations. Hence ih, 
the same argument applied in the Proof of Propositions A.3 leads, in this case, to 

(A.7) s~(x; h") (~j f~(x)  w, ,, ,,2 ,, ---- + Pj+l f~ (x)hn) + O(hn + ~Sn) 

uniformly in [0, 1] and almost surely for a given bandwidth h~ fulfilling A2, and 6~ = 

V ~h"" 
It follows from Theorem 2.1 that: 

y - ~(~)(x) = (v - .~(~)) + O(h~n +~ + ~ )  

uniformly in [0, 1] and almost surely. Hence: 

2 

= 

~=1 V, / 

i=1 

+2~ (w-m(x~)] ~,h,.,(x) 
i=l Y~ ii ~ 1  w~h- (z) O(h~+a + 5.) 

+ O(h~n (p+~ + 2 h ~ + %  + ~)  

uniformly in [0, 1] and almost surely. Using Propositions A.3 and A.4 in the second and 
third terms of the previous equality, we obtain 

i=l Yi .] Ein=l Wih=(X) 

5 ~5"~ O(h2n (p+I) + + o ( (h~  +1 + ~ ~ + + 2h~+~5. ~ )  

Ein=l Wih: (X) 

- m(xi)~2 ~ih-(~) 
~ ) E~\I ~h~(x) 
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uniformly in [0, 1] and almost surely. The first summand in the second term of this 
previous equality is simply the local linear smoother of the squared compensated resid- 
uals. Thus, if we d e n o t e  ( Q / y i )  2 by e~, then e~ is a bounded random variable such 
that E~[e~ ] xi] is G(x~), and arguing as in Theorem 2.1 with weigths W~h~ instead of 
w w and data (xi, e~) i = 1, n, in place of the original observations, we achieve the 

i h ~  , , " " " , 

result. [] 

Finally, we establish the strong consistency of C~(x) ~. 

PROOF OF THEOREM 3.2. Note that, following the Proof of Theorem 2.1, we 
obtain that n (~y.y ) 

wW 1 2 = +o(h +6nh.) 
i = l  

uniformly in [0, 1] and almost surely. 
A similar argument in the case of Wih shows that, under response length biased 

data, we have that: 

Wih~ (X) = (nh~)2(p2f~(x) 2 + O(h 2 + e~h~)) 
i=1 

uniformly in [0, 1] and almost surely. Now, it simply remains for us to note that 

and the result follows from Theorem 3.1. [] 

A.3 The distribution of the error process 
We now address the problem of the computation of the supreme distribution of 

the error process. Such a distribution will be obtained via theorem A1 in Bickel and 
Rosenblatt ((1973), p. 1084), which will provide us with the distribution of the supremum 
of certain Gaussian processes. 

THEOREM A.1. Let Z~(x) be the process given in (2.6): 

lim P { v / - 2 1 ~  [ Zn(x) (~---~)) - B  

where X~ = log(-l~ and where B(.) is given by: 
2 ] 

< X ~ }  = 1 - a  

log ~ ~, R(K) ] " 

PROOF OF THEOREM A.1. By changing z for z ~ -- z �9 in the process Zn, the inte- 
gration domain will be [0, ~]. If we also change x for x' = ~, the maximization interval 
becomes [0, !] These changes lead to the following process: h "  

f 
u , , ( x ' )  = / K ( z '  - x ' ) d W . ( . ' ) ,  

J[o , 1 ~ h i  
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being W~(-) = 1 ~ W ( . )  and W is a standard univariate Wiener process. The result in 

Bickel and Rosenblatt (1973) can now be applied to the process ~ U , ~ ( x ) ,  and the 
thesis follows because U~ (x) and Z n (x) have the same distribution: i.e. their expectation 
and covariance functions agree. [] 

We will now follow a modification of the ideas used in Johnston (1982), and Hgrdle 
(1989) in order to obtain the desired approximation results for a bounded variation 
function and under general assumptions about data  distribution. This procedure leads 
to a chain of processes that  ends in a final Gaussian process whose maximum distribution 
can be computed using the following result: 

PROPOSITION A.5. Let hn be a sequence of positive real numbers, such that hn is 
O(n -~) where r] > O, and let p(x, y) be a bounded variation real function from [0, 1] x R 
on R. Assume that: 

(i) {x~, y~}in=l is an independent and identically distributed sample from the random 
variable (X, Y), whose distribution and density functions are F and f xY ,  respectively. 
We also denote its empirical distribution by Fn. 

(ii) Let G(x) -- E~)2(X, Y) I X = x] and let K(x) be twice continuous differentiable 
functions on (0, 1) and (-a,  a), respectively. 

(iii) There are positive constants C1, 
E[Ip(X, Y)ll < C2. 
Also let: 

n 

: ! I -xh 
hi= 1 k hn /1 

and S(x) be G(x)fx(x) .  If 

then 

and C2, such that C1 < fx (x )  and 

= / p ( z ,  1 z - x 
Y)~nK ( - - ~  ) dFn(z,Y), 

Y:(x) Y (x) = 
4 

V nh~ 

lim P{IIYnll _< 0} = lim P{IIZ*II <_ 0 + o(1)}, 
n ----~ O O  n - - - +  o o  

where Z* is the process defined in (2.6). 

PROOF OF PROPOSITION A.5. 

nhn EIY (x)I = ) 

we can write: 

Given that 

1 /  (z-X) dZn(z,y) Y~ ---- Yn(x) - E[Yn(x)] -- ~ p(z ,y)K 

where Zn(" ) is the empirical process: v/-n(Fn(.) - F(.)) .  Let us now define the following 
processes, which play important roles in the proof: 

i f  ' Y l ( x ) -  p(z,y)K 
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y2n(X) - 1 / p ( z , y ) t ( ( ~ n X )  d W n ( g ( z , y ) )  ' 

y n 3 ( X )  _ 1 Z - -  X 

where the integration domain is [0, 1] • R for the first two and [0, 1] for the third. Also 
note that: 

- g(z, y) -- (Fx(z), FYix(Y]Z)), is the so-called aosenblat t  transformation. 
- Bn(H(z, y)) is an appropriate succession of Brownian Bridges, defined in a suit- 

able probability space, that  approximates uniformly and almost surely to Zn(z,y); see 
Tusnady (1997), or Hardle (1989). 

- Wn(z,y) is a bivariate Brownian Motion, such that Bn(z,y) = Wn(z ,y)-  
yZWn(1,1), where W n ( . , . ) =  -~nW(n',n'), with W denoting a standard bidimensional 
Wiener process. The same notation has been used for the univariate Wiener process 
W(z) that appears in y3.  

Now UY ~ - YJ ]] can be bound by a quantity of O ( - ~ l I Z n  - Bnll) by means of the 
y K  z-,  integration by parts formula, together with the fact that p(z, ) (--~-) has bounded 

variation, and that it vanishes at the boundary. Therefore, and because of the way we 
have chosen the process B~(-), we have that: 

(A.8) ]1Y~ = O  kV nhu ] a.s. 
/ 

Given the relationship between Bn(') and W,~(-): 

(A.9) YJ(x)- Yn (x)- W (I'I) f (z-x) p(z,y)K ~ fxy(z,y)dzdy 

because fxy(z,  y) is the jacobian of H.  As a consequence of IWn(1, 1)] = O ( ~ )  a.s. 
and p having finite expectation, we have that: 

(A.10) IIYJ - Y~II = O(v/-~n log n) a.s. 

Yn 2 and Yn 3 are related given that they are Gaussian processes that share mean value 
and the following covariance function: 

Cov[Y~ (x + t), Yn~ (x)] 

1 ( z - ( x + t ) ~  z - x  v h S(x+t)s(x)/p2(z'y)K, h. )/xY(z'y) zdy 
which is exactly the covariance of y3(x). Consequently: 

(A.11) Y2(x) ~ y3(x). 

It remains to show that  y3(x) is not far away, in the supremum norm, from Z*(x). 
However, as a consequence of: 
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( /S (x  + uhn) 
-- t v  

1) K(u)dW(x + uhn), 

using integrat ion by parts ,  together  with the finite suppor t  of K ,  condit ion (ii) and tha t  
IW(x + uhn)[ = O ( ~ )  a.s., we obtain: 

(A.12)  IIY~ - Z~ll = o ( ~ )  a.s. 

In summary,  what  we have obta ined is that ,  in a sui table probabi l i ty  space, the 
pa ths  of YJ (x), Yn 2 (x), and y3(x) are uniformly and almost  surely close, with the same 
holding for y3(x) and Z~(x). Thus: 

P{llY~ ~ A} = P{IIY~II ~ A + O('fln)} 
= P{lly311 ~ A + O('71n) ) : P{IIZ~II ~ A + O(~'~,~ + "Y2,~)} 

1 o ~  + ,  h/h--L- ~ where "~ln ~-- V ~ ~/ltn log n and ~2n ---- V/~n log n. Therefore ,  the result  is proved. [] 

The  applicat ion of this result  to length biased d a t a  leads to the P ro o f  of Theorem 2.2. 

PROOF OF THEOREM 2.2. As a consequence of equat ion  (2.5), and  in order to use 
the previous proposit ion,  the process we have to analyze is: 

nhn i=1 Yi \~--n /I '  

where the funct ion p(x,y) is now ( ~ ) .  

As required in Proposi t ion A.5, hn is a positive quant i ty  of order  O(n- ' )  with r 1 > 0 
because of assumptions A2. Funct ion p is also a bounded  var ia t ion funct ion such tha t  
EW[p2(X,Y) i X  = x] is twice continuous differentiable given of A4, and EW[ip(X,Y)]] 
is bounded  as a consequence of 1 / Y  and re(x)  being bounded  (assumptions Ab). g is 
twice continuous differentiable because of A1. Finally, note  tha t  the dis tr ibut ion of the 
r andom variable, whose sample appears  in assumptions (i) in Propos i t ion  A.5 is, in this 
case, F ~, with f ~  being the marginal  densi ty for X ,  bounded  from below because of 
assumptions Ab. 

Hence, all the  assumptions in Proposi t ion A.5 are satisfied and the proof  is com- 
plete. [] 
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