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A b s t r a c t .  Estimating the bivariate survival function has been a major goal of many 
researchers. For that purpose many methods and techniques have been published. 
However, most of these techniques and methods rely heavily on bivariate failure data. 
There are situations in which failure time data are difficult to obtain and thus there is 
a growing need to assess the bivariate survival function for such cases. In this paper 
we propose two techniques for generating families of bivariate processes for describing 
several variables that can be used to indirectly assess the bivariate survival function. 
An estimation procedure is provided and a simulation study is conducted to evaluate 
the performance of our proposed estimator. 
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1. Introduction 

In recent years substant ia l  research effort has been devoted to developing method-  
ology for es t imat ing mult ivar ia te  survival function. Applications of mult ivar ia te  survival 
analysis arise in various fields. Example  in reliability include a device having two integral  
par ts  and our desire is to assess the joint survival dis tr ibut ion of the parts .  

Suppose T 1 , T 2 , . . .  and Tk are failure times. A mult ivar ia te  dis t r ibut ion can be 
specified in terms of the joint  survival function, 

(1.1) S ( t l , . . . , t k )  = P(T1 > t l , . . . , T k  > tk). 

The  main problem connected to T 1 , . . . ,  Tk is es t imat ing the joint  survival funct ion 
in the equat ion (1.1). The  t radi t ional  approach is tha t  the survival funct ion is es t imated  
from the exper imenta l  da t a  on T = ( T 1 , . . . ,  Tk), see Van der Laan  (1996), and Wsai and 
Crowley (1998) and references cited there. Unfortunately,  there  are s i tuat ions in which 
the failure da t a  is not  available. For example with high reliability devices and short  
development  times, tests  must  be conducted with severe t ime constraints  and frequent ly  
no failures occur  during such test. Thus,  for this case it is impossible to assess the joint  
survival funct ion S ( t l , . . . ,  tk) with t radi t ional  lifetests tha t  records failure times. 

To circumvent  such difficulties, T 1 , . . . ,  Tk are defined as functions of several ex- 
p lana tory  variables refered to as covariates. For example,  thinking of degradat ion  as a 
covariate, there  are s i tuat ions where degradat ion measures can be taken over t ime and 
where a relat ionship between failure t ime and amount  of degradat ion  makes it possible 
to use degradat ion  models and da ta  to make inference about  the joint  survival function. 
Usually, degradat ion  models begin with a determinist ic  description of the degradat ion  
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process tha t  is often in the form of a differential equation or system of differential equa- 
tions. Randomness can be introduced using probabili ty distr ibutions to describe vari- 
ability in initial conditions and model parameters.  To illustrate this, let DL (t) and DR (t) 
be the amount  of automobile left and right front tires tread wear at  t ime t respectively. 
Then,  the failure times for tires can be the first t ime when DL(t) and DR(T) cross the 
known thresholds. 

To express Ti, i = 1 , . . . ,  k, as functions of covariates as well as to assess the joint 
survival function, there are 3 separate problems: 

(i) Choosing appropriate models for covariates 
(ii) Expressing the joint survival function in terms of covariates 

(iii) Identifying the parameters  of the joint survival function by statist ical  means. 
For notat ional  simplicity, all the s tatements  in this paper are given in the bivariate 

case. Multivariate generalizations are straight forward and do not  require any new 
concepts. Also, for simplicity of exposition, we use reliability terminology in this article. 
We emphasize tha t  the proposed methods can be applied to other areas as well. 

Let T~ be the failure t ime of a device i, i = 1, 2, and let T1 and T2 be defined in 
terms of covariates. Since, in many practical situations, the covariates tha t  are commonly 
identified have been observed to display substantial  variation, the stochastic process is a 
reasonable way to model their behaviors. Suppose {Si(t); t > 0} be the value of covariate 
i at t ime t, i = 1,2 and suppose 

(1.2) Ti = Inf{t  : 0 _< t < c~, Si(t) > Ai}, i = 1, 2. 

In other words the device i fails if Si(t) exceeds a known threshold Ai, i = 1, 2. From 
(1.2) the joint survival function of T1 and T2 is 

(1.3) S(tl , t2) = P(T1 > tl,T2 > t2) = P ( sup Si(u) <_ Ai, i =  1 , 2 ~ .  
\O<_u<_t~ / 

In this article we propose families of processes S(t) = (Sl(t),S2(t)) tha t  have a s tate  
space [0, ec) x [0, o~) and non-decreasing sample paths.  Families of univariate processes 
for modeling Sl( t )  was proposed by Dufresne et al. (2000) and our work extends tha t  
to the bivariate case. At first it would seem tha t  to propose and s tudy  properties of the 
process S(t) = (Sl(t), S2(t)) are little more than  mathemat ica l ly  interesting exercises. 
However, suppose tha t  we are given a two dimensional stochastic vector process {S(t) = 
(St (t), S2(t)); t _> 0}, where Si(t) is the total  damages to device i over the interval [0, tl, 
i = 1, 2. It is clear tha t  Si (t) must  have non-decreasing sample paths  and its s tate space 
must  be [0, oc). Now, let Ti be the failure t ime of the device i, i = 1, 2, then Ti satisfies 
the equation (1.2), i = 1,2. In other words the device i fails if the total  damage to it 
exceeds a known threshold Ai, i = 1, 2. Also, the joint survival function of T1 and T2 
reduces to 

(1.4) S(tl , t2) = P(Si(ti) < Ai, i = 1,2). 

The s tructure of the paper is as follows. In Section 2 we describe two techniques for 
constructing families of bivariate processes and s tudy  their  properties. In Section 3, we 
give several examples. In Section 4, we develop a methodology for assessing S(tl,  t2) in 
the equation (1.4). We illustrate the method  using a specific stochastic model for $1 (t) 
and S2(t). 
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2. The construction 

To mot ivate  our approach and to fix ideas and notat ions,  consider two physical 
devices. Suppose tha t  as t ime goes on, damage or stress builds up. Considerat ions 
suggest modeling device i damage by a s tochast ic  process {Si(t);  t > 0} wi th  s tar t ing  
s ta te  corresponding to initial level of damage,  i = 1,2. Th ro u g h o u t  this paper ,  wi thout  
loss of generality, we assume tha t  Si(0) = 0, i = 1, 2 almost surely. Since bo th  processes 
describe the damage it is na tura l  to assume tha t  they are non-decreasing in time. In 
this section we describe two methods  for construct ing a model  for the bivariate  process 
{(S, ( t ) ,  S2(t));t > 0}. 

2.1 Method 1 
Let Q(x, y) be a non-negative and right continuous non-increasing funct ion of x, y, 

x , y  > 0, with the propert ies  tha t  Q(x,y) ~ 0 as x,y ---* cx), f oQ(O,y )dy  < c~, 
f o  Q(Y, O)dy < ec, f o  f o  Q(x, y)dxdy < co and Q(x, y) is supermodular ,  tha t  is, 
Q(xl ,yl)  + Q(x,y) >_ Q(xl ,y)  + Q(x, yx) whenever  x l  > x, yl  >_ y. Also, let K(x) 
and L(y) be two non-negative and right continuous non-increasing functions of x and y 
respectively with the propert ies  t ha t  K(x) -~ 0 as x ~ oo and L(y) --~ 0 as y --* c~ and 
f o  K(x)dx < oo and f o  L(y)dy < oo. Suppose two devices are subjec ted  to  shocks 
occurring randomly in t ime and suppose there are three independent  sources of shocks 
present in the environment .  A shock from source 1 damages device 1. A shock from 
source 2 damages the second device. Finally, a shock from source 3 damages b o th  devices. 
For each x, let N1 (t; x) denote  the number  of shocks from source 1 wi th  a damage to 
device 1 greater  than  x tha t  occur  before t ime t. We assume tha t  {Nl( t ;x) , t  >_ 0} 
is a Poisson process with pa ramete r  K(x). For each y, we let N2(t; y) to denote  the 
number  of shocks from source 2 wi th  a damage to  device 2 greater  t h an  y t h a t  occur  
before t ime t. We assume tha t  {N2(t;y);t > 0} is a Poisson process wi th  pa ramete r  
L(y). Finally, for each x, y, let N3(t; x, y) denote  the number  of shocks from source 3 
with damages to devices 1 and 2 exceeding x and y respectively. We assume tha t  the 
process {N3(t; x, y); t > 0} is a Poisson process with pa ramete r  Q(x, y). 

From source 1, we assume tha t  the damage dis t r ibut ion is K* (Xl;X) = P (damage 
to device 1 be less than  x l  given tha t  the damage  exceeded x), where 

(2.1) K*(xl;x)  = 
K ( x ) - K ( X l )  

K ( z )  , x <_ x l  

O, X > xl. 

From source 2, we assume tha t  the damage dis t r ibut ion is 

(2.2) 

L(y)  - L(yl) 
L* (yl ; y) = L(y) ' Y <- Yl 

O, Y > Yl. 

Also, from source three  the joint  damage  dis t r ibut ion is 

(2.3) Q*(xl ,yl;x ,y)  = { 
Q(x, y) - Q(xl ,  y) - Q(x, ul) + Q(xl ,  

0, otherwise. 

Q(x,y)  

Xl ~ x, Yl >_ Y 
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Define 

N1 (t;x) Ns (t;x,y) 

(2.4) Sl(t;x,y)= Z Zi+ E Xi, 
i=O i=O 

and 
N2(t;y) N3(t;x,y) 

(2.5) &(t;x,v) = Z + E 
i=0  i=0  

Here Zi and Xi are the damages to device 1 from sources 1 and 3 that  exceed x 
respectively. Also, Wi and Yi are damages to device 2 from sources 2 and 3 that  ex- 
ceed y respectively. It is assumed that  Zi and Wi and (Xi,Yi) are independent. Also 
Z1,..., Zn,... are independent with the common distribution K*(xl;  x), W1, W2, . . . ,  
Wn, . . .  are independent with the common distribution L*(yl;y) and (X1,Y1), . . . ,  
(Xn, Yn),. . .  are independent with the common joint distribution function 
Q*(Xl,yl;x,y). The processes {Sl(t);t >_ 0} and {S2(t);t >_ 0} are defined as the 
limit of {Sl(t;x,y);t >_ 0} and {S2(t;x,y),t > 0} as x and y tend to zero. 

x-'Nu (t;O'O) X "  It should be noted that  if Q(O, O) < c~, then z_~i--o ~ is a compound Poisson 

process with Poisson parameter Q(O, 0). If Q(O, O) is infinite, then v'N3(t;~176 is no A.~i:0 ~ 
longer a compound Poisson process. Because the expected number of shocks received 
from source 3 per unit time is infinite. Indeed, in this case, with probability one, the 

v'Na(t;~ Xi is finite, as number of shocks in any time interval is infinite. Nevertheless, z_~i=0 
the majority of the damages are very small in some sense. Similar interpretations can 
be used for K(0) and L(0). 

2.2 Method 2 
Here, like the method 1 we assume that  two devices are subjected to three inde- 

pendent sources of shocks. Shocks from source 1 damages device 1 only, shocks from 
source 2 damages device 2 only, shocks from source 3 damages both devices. We assume 
that  shocks from the third source makes the damage to both devices and damages to the 
second device is a function of damages to the first device. 

Following some of the notations from the previous method, in this case we define 

(2.6) 

and 

(2.7) 

& ( t , x ) =  
N1 (t;x) N4 (t;x) 

i=1 i = l  

&(t;  x, y) = 
N2 (t;y) N4 (t;x) 

i=1 i=1 

Here N4(t; x) is the number of shocks from source 3 with damages to both devices 
such a way that  the damage to device 1 exceeding x. We assume that {N4(t;x);t > 0} 
is a Poisson process with parameter H(x) .The function H(x) has similar properties as 
K(x) and L(x). Also, U has the distribution, 

H ( u )  - H ( U l )  

(2.8) H * ( . , ;  = ' "-< " '  
O, ~ > Ul ,  
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and g is a known non-negative function. 
Marshall and Shaked (1979) have proposed a model tha t  devices are subjected to 

shocks occuring randomly in t ime as events in a Poisson process. Upon occurrence of 
i-th shock, the devices suffer non-negative random damages. Damages from successive 
shocks are assumed to be independent  and accumulate additively. See also Li (2000). 
Our proposed models assume three different sources of shocks and allow "infinitely many  
small shocks" occurring in any finite t ime interval, such as the case of fatigue. 

Assuming tha t  xK(x )  --~ 0 as x --~ O, yL(y) -* 0 as y ~ 0, ~ OQ(x,y) ox ---* 0 a s  y ---* 0 

OQ(x,y) ~ 0 as x ~ 0 or x ~ oc, under the first method,  from the or y ~ oc and x Oy 
equations (2.4) and (2.5) one can show tha t  

(2.9) E(S l ( t ;x , y ) )  = E(Nl( t ;x ) )  [1 - I(*(x,;x)]dXl 

+ E(N3(t;x ,y))  (1 -- Q*(xl ,oc;x,y))dXl 

5 5 = tK(x )x  + t K(x l )dx ,  + tQ(x, y)x + t Q(Xl, y)dXl 

/? = tx (K(x)  + Q(x, y)) + t ( K( x l )  + Q(Xl, y))dxl 

and as x and y tend to zero 

(2.10) E(S,( t ) )  = t .~~176 

E(S2(t)) = t f (2.11) 
J0 

(K(x) + Q(x, O))dx. 

( L(y) + Q(0, y) )dy. 

(2.12) Cov(Sl(tO,S2(t2 ) = m i n ( t l , t 2 ) / 0  ~ 1 7 6  ~176 

and the joint Laplace t ransform of S1 (tl) and $2 (t2), 

(2.13) Mr(u1, u2) = E(exp( -UlS l ( t l )  - u2S2(t2))) 

Lett ing bo th  x and y --* O, we obtain the covariance between two processes, 

Q(x, y)dxdy, 

if t l  = t2 = t. If t l  < t2, then  

(/o /o (2.14) Mix,t2 (Ul, u2) = exp tl (~uly _ 1)k(y)dy + t2 (~u2y _ 1)l(y)dy 

J?/o + t l  (~ulx-u2y _ 1)q(x, y)dxdy 

-~- (t2 - - t l )  jfO~176 u2y -- 1)dQ(O,y)) . 
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If tl  > t2, then 

( / j  /o ~ (2.15) ~Q,t2(Ul,U2) = exp tl  (~uly _ 1)k(y)dy + t2 (~u2y _ 1)l(y)dy 

+ t2 fo~ jo~(~ulx-u2Y - l )q (x ,y )dxdy  

/o ~ ) + (tl - t2) (~u~Y - 1)dQ(y,O) . 

Here k(x), l(y) and q(x, y) are the derivatives of K(x) ,  L(y) and Q(x, y) with respect to 
x, y respectively. Under the second method,  from the equations (2.6) and (2.7) we get 
tha t  

/o ~ /o ~ (2.16) E(SI( t ) )  = t (K(x)  + H(x ) )dx  = t x (k (x )  + h(x))dx,  

Jo ~ (2.17) E(S2(t))  : t x(l(x) + g(x)h(x))dx,  

(2.18) Cov(S1 (tl) ,  S2(t2)) = min( t l ,  t2) xg(x)h(x)dx ,  

where h(x) is the derivative of H(x)  with respect to x. Also, the joint Laplace transfor- 
mat ion of Sl ( t l )  and $2(t2), 

(2.19) Mt(Ul,U2) = exp t (e -u~x - 1)k(x)dx + (e -u2x - 1)l(x)dx 

i f  t 1 = / ; 2  -~ t. For tl  < t2, 

(2.20) Mtl,t2(Ul,~t2) = exp tl (e ~ x  - 1)k(x)dx + t2 (e ~'~ - 1)l(x)dx 

/J + tl  ( ~ l x - u 2 g ( x )  _ 1 ) h ( z ) d x  

+ (t2 - t l)  f o ~ ( ~  ~2g(~) - 1 ) h ( x ) d x } .  

For tl > t2, 

{ / j  /o ~ (2.21) Mtl,t2 (ul, u2) = exp tl (e "ttlx - 1)k(x)dx + t2 (e ~2~ - 1)l(x)dx 

+ t2 (~2g(~)-u~ _ 1)h(x)dx 

§ ( re  - t2/fo~(~ ~1~ - l/h(x)e~}. 
Since our emphasis in this paper is to assess the bivariate survival function we only 

provide several qualitative properties of our models. More properties of the models are 
under investigation and will be reported elsewhere. 
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THEOREM 2.1. Under the method 1, if Q(x,y) > Q(x,O)Q(O,y) for all x and y. - -  (Q(0,0))(Q(0,O)) ' 
Then, 

(2.22) P(T1 > tl,T2 > t2) _> P(T1 > tl)P(T2 > t2) for all tl,t2 > O. 

PROOF. Assume 0 _< tl < t2, then 

P(T1 > tl,T2 > t2) = P(SI(tl) ~ A1, $2(t2) < A2) 
(:X3 ~ ( 3 0  ( X )  

E E E E P(Nl(t , ;O)=kl)P(N2(t2;O)=k2) 
k2=0 k2=O k3=0 k4=0 

P(N3(tl;O, 0) = k3)P(g3(t2 - tl); 0, 0)  ---- k4) 

P ( Z l  -~- " " -]- Zkl  -I-X1 Jr - ' "  @ Xk3 < A 1 , W  1 - t - " "" -~ -  Wk2 Jr- Y1 - I -""  + Yk3 + Yk3+~ 

+ ' "  + Yk~+k~ < a2) >_ P(T1 > tl)P(T2 > t2). 

This completes the proof. [] 

Under the second method, one can easily show that if g is non-decreasing function, 
then P(T1 > tl, T2 > t2) >_ P(T1 > t2)P(T2 > t2) for all t l ,  t2 _> 0. The condition (2.22) 
is known as the positive quadrant dependence (PQD). Li and Xu (2001) discussed a 
similar problem in which the damages are binary random variables. 

THEOREM 2.2. Under both methods P(T1 > tl + Ul,T2 > t2 + u2) _< P(T1 > 
tl, T2 > t2)P(T1 > Ul, T2 > u2) whenever (t2, t2) and (Ul, u2) are similarly ordered, i.e., 
( u i -  uy)( t i -  tj) > O, i , j - -  1,2. 

PROOF. Use similar arguments to proof of Theorem 7.1 of Marshall and Shaked 
(1979) for the case Xi >_ x, Yi >_ y and then take the limit as x -~ 0, y -~ 0. [] 

3. Examples 

In this section we give several examples of bivariate processes constructed using 
methods 1 and 2. We start with several bivariate processes constructed under the second 
method. 

Example 3.1. Assume that 

and 

k(x) = a---lexp(-bx), x > 0 
x 

l(x) = a2 exp(-bx) ,  x > 0 
x 

h(x) a3 = - - e x p ( - b x ) ,  x > 0 
x 

g ( x )  = x ,  z > o, 
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where a~ and b, i = 1, 2, 3 are posit ive constants.  It is clear, using equations ( 2 . 1 5 ) - ( 2 . 2 0 ) ,  
tha t  

(3.1) 

(3.2) 

E(Sl(t)) = (a l  + a3 ) 

E(S2(t))= ( a 2 b a 3 ) t ,  

Cov(S1 (tl) ,  $2(t2)) = rain(t1, t2)a3b 2. 

Also, 

(3.3) il~l ,~2 ('~1, ~2) = 

ul + b /  \u2 + b/  t \u l  
( b ) a l t l ( b ' ~  a~2 

X (?.tl_]_b ~a3t' r  "~ 
u2 + b/  \u2 + b)  

+b) 

ul + u 2  + b  

b ) a3t 

+ u 2 + b  

aa(t2-tl) 

aa(tl-tz)  

tl = t2 = t 

, t l  < t2 

, t l  > t2. 

Formula (3.3) shows that  (Sl(t),S2(t)) is the bivariate G a m m a  distribution, see 
Johnson and Kotz ((1972), p. 219), the equat ion (3.2). Hence, we refer to this as the 
bivariate G a m m a  process. 

Example 3.2. Define, 

and 

k(x) = alx ~'-1 e x p ( - b x ) ,  x > 0 

l(x) = a2x ~2-1 e x p ( - b x ) ,  x > 0 

h(x) -= aax an-1 e x p ( - b x ) ,  x > 0 

g ( x )  = x .  

If ai  > 0, i = 1,2,3,  K(0 )  = b~--~F(al) < c~, L(0) = b~--~2F(a2) < c~, H(0)  = 
a3 b-~a F(a3)  < o~. It can be shown, using equations (2.15)-(2.20), tha t  

and 

E ( S l ( t ) ) = t ( a , ( F ( ( ~ l + l )  a3F(o~3 + 1) ) 
b ~1 + b ~z + 1 ' 

(a2r(a2 + 1) a3r(aa + 
E(S2( t ) )=t  \ -~2 ~--1 + b ~a+ l ] '  

Cov(SI (Q) ,  $2(t2)) = min(t l ,  t 2 ) r ( a3  + 2) 
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{ a l t P ( a l )  
exp (Ul q- b) c~1 

exp 

exp 

a2tP(a2) aatF(aa) 
+ + 

(u2 + b) ~ (u, + u2 + b) ~ 
a l t F ( a l )  a2tF(a2) a3tF(a3) ~ ,  

b~ ~ b~ 2 b~ ~ j tl  = t 2 = t  

{ altlF(al) + + a2t2P(a2) a3tlP((~3) 
(~ + b)~l ( ~  + b)~  (u2 + ~1 + b)~  

+ a3(t2 -- t l ) r ( a 3 )  a l t l P ( a l )  

(u2 + b) ~3 b a~ 
a2t2r(a2) a3t2r(a3)~ tl < 

t2 
b~2 b~a J ' 

a l t l F ( a l )  , a2t2F(a2) , a3t2 

+ a3(tl - t2)F(a3) a l t l F ( a l )  

a2t2I~((:~2) a3 t lF(~3)  
t l  > t2. 

b ~  b~a J ' 

--1 1 Then from Suppose - 1  <_ ai  < 0, i = 1, 2, 3, a~ - r (~)  and b = 1,/~i = - a i  = 3" 
the equation (3.4) one can show tha t  

Mtl,t2 (Ul, U2 ) = 

- t  t t 
exp (1 + u l ) - ' / 2  (1 -}- ~t2)-l/2 - (?tl q- u2 q- 1) -1/2 

t I = t 2 ---~ t 
- t l  t2 t l  

exp (1 + u l ) - l / 2  ( 1 +  u2)- l /2  - (ul + u2 + 1) -1/2 
t2 - t l  ) 

(u2 + 1) -1/2 + tl + 2t2 ~ , tl  < t2 

t l  t2 t2 
exp (1 + u l ) - l / 2  - (1 + u2) - l /2  - (1 + Ul + u2) -1/2 

t l  -- t2 ) 
(Ul-q_-i~L-1/2 q- t2 + 2t1~ , t l  > t2 

+ 3 t } ,  

which is the joint density of the Bivariate inverse Gaussian, see Seshadri ((1993), p. 128). 
Hence, we refer to this as Bivariate inverse Gaussian process. 

Now we give an example of a bivariate process using the first method.  

Example 3.3. Let 

k(x) = a l e - %  x > 0, l(x) = a2e-bx, x > 0, 
x x 

Q(x, y) = A exp ( -Sx  - 5y - 5xy),  5, )~ > 0, x , y  > 0. 

The function Q ( x , y )  is proportional to the Bivariate Gumbe distribution, see 
Gumble (1960). One can easily verify tha t  K(0)  = L(0) = cc and Q(0, 0) = A < c~. In- 
tuitively speaking we assume tha t  the expected number of shocks received from sources 1 
and 2 per unit  t ime is infinite. However, the expected number from source 3 is A which is 
finite. Now, one can easily show, using equations (2.9)-(2.14), tha t  E(SI ( t ) )  = t ( ~  + ~), 
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E(S2(t)) = t (~ -+  ~-) and Cov(Sl(tl),S2(t2)) = min(tl,t2)A~exp(5) x ~P(5), where 
�9 (u) = J ~  e-Z~dz. Also, 

(b~ 
a l t C b ~  a2t 

~--~ )( \ ~ - ~  2 . + ~2) ~ 
x ~exp - -  5 (A u'52te(~+~l)(~+~)l~q2 ( (5 + u')(5 

I 
ulAt u2At "~'~ 

~x~l ( ~ 2  )a )t , tl : t2 : t 

,,~-7--7-~) t,E-7-b) 
• ex A ~'~2~' ~(~+u,)(~+,,:)i~,i, (J + u,)(~ + ~,~) p { ,  ( , ) 

utAtt uaXt2 ] 
5--~1~ ' tl < t2 

\ Ul + b,] \ ~t2 -t- b ) u2) )  
x exp { A-~e(5+Ul)(5+u2)/sk~ ( (-5 + ul)(5 

ulAtl u2At2 / 

5 + Ul 5 + u2 ~ ' tl >t2 

which is combination of two independent gamma processes and the Bivariate compount 
Poisson process with rate A and the joint density function ((5 + 5y)(5+ 5x) - 1) e x p ( - S x -  
5y - 5xy). 

4. Estimating the Bivariate survival function 

In this section we develop general formulation and describe the methodology. We 
also illustrate the technique using specific stochastic model. Suppose the expression for 
the survival function S(t l , t2)  is known except for several unknown parameters. If we 
have observations from Sl(t) and S2(t) on a discrete time grid, say 0 < tl < t2 < -..  < tn, 
then one can write down the likelihood function and estimate the unknown parameters 
as well as S(t l ,  t2). Specifically, one can show that  the joint transition density of Sl(t) 
and S2(t) is 

p(sl, s2, xl, x2; h,  t2, Yl, Y2) 
02 

- -  - -  P ( S I ( t l )  ~- Yl, $2 ( t2 )  -~ Y2 I ~ l ( S l )  = X l , S 2 ( s 2 )  = x2)  Oyl Oy2 
02 

- - -  P ( S l ( t l  - s l )  < y l  - X l ,  s 2 ( t 2  - ~2) <_ y2 - x 2 ) .  
Oyl Oy2 

Thus, the log-likelihood is 
n 

(4.1) E logp(ti-1, ti-1, S1 (ti-1), $2 (ti-1); ti, ti, $1 (ti), $2 (ti)). 
i=1 
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Here to avoid complexity, we assume that  $1 (t) and S2(t) are observed at the same time 
points. 

Unfortunately,  in our case, it is impossible to observe the processes S1 (t) and S~ (t) 
after T1 and T2 respectively. More precisely, we only have observations from the killed 
processes 

(4.2) S;( t )  = { Ai,Si(t)' t > <_ Ti , i 1, 2, 

on a discrete t ime grid. Now, to write the likelihood function based on observations from 
St  (t) and S~(t) we need to know the joint t ransi t ion densi ty of S ; ( t )  and S~(t). The 
following lemma gives the joint transit ion density. 

LEMMA 4.1. For si < ti, i = 1,2 and x~ < Ai, i = 1 ,2 .  The joint  transition 
density of S t (t) and S~(t) is 

q(sl,  s2, x l ,  x2; tx, t2, YI, Y2) 
02 

o y l o y 2 p ( s ; ( t x )  < yx, s i ( t 2 )  < y21 S ; ( sx )  = x , , S 2 ( 2 )  = x2) 
r 

p(s l , s2 ,  x l , x 2 ; t l , t 2 , y l , y 2 ) ,  Yl < A1, Y2 < A2 
02 

OylOt2P(S l ( t l )  <_ Yl,  S2(t2) < t 2  [ S i ( s i )  "-~ x i , i  : 1,2), 

Yl < A1, Y2 = A2 
=- (02 

P ( S I ( t l )  < / k l ,  $2(t2) < Y2 [Si(s i )  = x i , i - -  1,2), 
Oy2 i)t l - - 

Yl = A1,  Y2 < /k2 
02 

~ P ( T 1  <_ t l ,  T2 <_ t2) Yl ~- i l ,  Y2 = A2. 
UblOL2 

PROOF. First  assume that  yi < Ai, i = 1, 2. Then, 

q(Sl,  S2, Xl, X2; t l ,  t2, Yl, Y2) 
02 

-- - -  P ( S ; ( t l )  < yl ,S~( t2)  < y2,T1 > t l ,T2 > t2 [ S{(si)  = xi, i = 1,2) 
Oyl 0y2 - - 

02 
- - - P ( S ; ( t x )  < yx, s (t2) < y2, 

Oyl Oy2 - - 

Sl ( t l )  < A1,S2(t2)  < A2 [ S*(si)  ----xi,i ---- 1,2) 

= p(sl ,  s2, x l ,  x2; h ,  t2, yl ,  y2). 

Now, assume tha t  Y2 z A2, Yl < A1, then 

q(sl ,  s2, x i ,  x2; t l ,  t2, al ,  Y2) 
02 

- O y l o t 2 P ( S l ( t l )  ~_ y l , T 2  ~ t2 [ S i ( s i )  ---- x i , i  : 1,2)  

02 
-- O y l O t 2 P ( S l ( t l )  <_ y l , S 2 ( t 2 )  < A2 [ S i ( s i )  = xi ,  i = 1,2). 

Similar arguments  can be used for other  two cases. 



446 NADER EBRAHIMI 

To est imate the unknown parameters  from discrete observations of S~ (t) and S~ (t) 
at t ime points 0 < tl < --- < tn, the log likelihood function is 

(4.3) l~ = f i l o g q ( t i - l , t i - , , S ~ ( t ~ - l ) , S ~ ( t i - 1 ) ; t i , t i , S ~ ( t ~ ) , S ~ ( t i ) ) .  
i=l 

One can handle the est imat ion of unknown parameters in the usual way by differentiating 
the log-likelihood In. 

Now, we apply our methodology to the model described in Example 3.1. Here 
we have {(Sl(t) ,  S2(t)); t > 0} which is the bivariate gamma process wi th  parameters 
hi ,  a2, a3 and b. We assume tha t  a l ,  a2, a3 are known. Otherwise, suppose we can observe 
the process N l ( t ) ,  N2(t) and N3(t) for a t ime interval of (arbitrarily short) length say h, 
h > 0, the values al ,  a2 and a3 can be obtained as a limit, 

A~(x)  - g ~ ( h ; x )  
h l o g x  ' i = 1,2,3, 

then limx~o A i ( z )  = ai, i --- 1, 2, 3. Here N3(h; x) = N3(h; x, x). 
In this case, 

p(s,  8, Xl,  X2; t, t, Yl, Y2) 
0 

- __OYlSY~P(Sl(t - s) <_ Yl - x l ,  S2(t  - s) <_ Y2 - x2) 
[ \ 
( ) exp ( -b (y l  - X l ) -  b(y2 - x2)) = 

/ 
X /min(yl--Xl,y2--x2) 

X;a(t--s)--l(y I _ X 1 -- xo)al(t--s) -1 
JO 

x (Y2 - x2 - xo) a2(t-*)-I  exp(bxo)dxo.  

Using Lemma 4.1, for Yi < Ai, i = 1,2, q(s ,s ,  x l , x 2 ; t , t ,  y l , y2 )  = p ( s , s ,  x l , x 2 ,  t , t ,  
Yl ,Y2).  Now, one can easily show tha t  for Yl = A1 and Y2 < A2, q(s , s ,  x l , x 2 ; t , t ,  

02 [ ~ 2 - x 2 / ? ' - - x l  h(Ul,u2)duldU2] It,=t2=t, for Y2 : A2, Yl < A1, A1, Y2) -- Oy2Otl 
0 2 f : l  --Xl q(s , s ,  x l , x 2 ; t , t , y , , A 2 ) -  o m o t 2 [ f 2  2-~2 h (u l ,u2 )du ldu2]  tt~=t2=t and finally for 

Yl --- A1, Y2 = A2, 

(~2 ~0 A 1--Zl ~0 A2--X2 
q(s, s, Xl, X2; t, t, A1, A2) -- cgtlOt2 [h(Ul, u2)duldu2] [tl=t2=t �9 

exp(-bul -bu2) 
Here for t l  < t2, h ( u l , u 2 )  = r(a~(t~-,))r(aa(t~-s))r(a2(t2-s)+aa(t2-t~)) f o  l~(u~'u2) x 

Xo3(t~-~)(ul - Xo)~l( t~-~)- l (u2 - xo) ~2(t2-~)+~(t~-t~) exp(bxo)dxo.  
The log-likelihood function is, 

In(b) = ~ log q( t i -1 ,  t i -1 ,  Sl  ( t i -1) ,  $2(ti-1); ti, ti, S l  (ti), S2(t i);b) .  
i=1 

The maximum likelihood of b can be obtained by solving the non-linear equation 

(4.4) al~(b) 
Ob - O. 
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Since the equat ion (4.4) cannot  be solved analytically for b some numerical method  
must  be used. Solution of the equation (4.4) with an iterative procedure such as Newton 
Raphson method may be employed here to obtain b. The initializing value of b in such 
a scheme may be obtained by pretending the observations S[ (tj), i = 1,2, j = 1, . . . ,  n 
are from the original bivariate process Sl(t)  and S2(t). Now, from the equation (2.3), 

one can use 

E(SI(t))= ( a l + a 3 )  b t 

E(S2(t)) = (a2 + a3) 

= n ( a l  + a3)ti  + ( a2  + a3)ti  
i = 1  = 

as the initializing value for b. 
It should be noted that ,  in general, when the likelihood function is not  well behaved 

or when even first derivatives of the log-likelihood with respect to unknown parame- 
ters are inconvenient to compute,  a direct search procedure for finding the maximum 
likelihood estimators may  be the best approach. 

As an illustration, we use the da ta  generated from the bivariate G a m m a  process 
with al = a2 = a3 = 1 and different values for b from Example 3.1. The bivariate da t a  
were t runcated  at known values A1 = A2 = A. The numerical results arising from 20 
sets of simulated da t a  are given. The Appendix contains the full descriptions of this 
simulation. Here, let A = 20 and n = 50 for all cases. Also, let the da t a  be equally 
spaced: tj - t j - 1  = "y, j = 1 , . . . ,  50, Si(to) = 0 ,  i = 1, 2 and to = 0. 

The results are shown in Table 1. From Table 1, one can observe tha t  our est imators 
agree well with actual  values. However, sometimes there is a larger difference between the 
actual value of the parameter  and its maximum likelihood estimator.  This discrepancy 
between the est imate and the actual value can be a consequence of 7 being large. Table 1 
shows tha t  as 7 gets smaller the difference between the actual value of the parameter  
and its maximum likelihood est imator  gets larger. This make sense, because larger ? 
implies the processes S[(t), i = 1, 2, and being monitored longer. 

Given the est imator I), the bivariate survival function can be est imated by using the 
equation (2.4). One can assess the bivariate survival function for which the failure da ta  
is not available by monitoring the bivariate process (S~ (t), S~ (t)). [] 

Tab le  1. P o i n t  e s t i m a t e  of b and  t h e  s t a n d a r d  e r ro r  e s t ima te .  

b = l  b = 2  b= & 
2 

V = 1 b--- 1.05 b = 2.1 b = .52 

(0.03) (0.09) (0.09) 

=�89 ~=1.12 ~=2.15 g=.57 
(0.21) (0.26) (0.16) 

i b = 1.18 l) = 2.29 b = .60 

(0.23) (0.28) (0.17) 
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Appendix 

This describes, the way 20 observations were generated from the bivariate G a m m a  
process with al = a2 = a3 = 1, A = 20, 7 = 1, b = 1. A similar procedure was used to 
generate observations for various values of a l ,  a2, a3, A and 7. The IMSL G a m m a  ran- 
dora number generator was used to generate observations from the G a m m a  distribution. 
At a specified time point say t = 1, three observations were generated. The first obser- 
vation Yl, was generated from the random variable II1, Y1 ~ G a m m a ( l ,  1). The second 
observation Y2, was generated from the random variable Y2, II2 "~ G a m m a ( l ,  1). Finally 
the third observation Y3 was generated from the random variable II3, ]I3 ~ G a m m a ( l ,  1). 
Here Y1, ]/2 and Y3 are assumed to be independent.  Using the equation (3.3) and the 
result from Johnson and Zotz  ((1972), p. 219) it is clear tha t  (II1 + Y2, I/1 + Y3) is an 
observation from ($1 (1), $2(1)). 

This procedure results in 50 observations from the bivariate G a m m a  process: 
(SI ( j ) ,S2( j ) ) ,  j = 1 , . . . , 5 0 .  To obtain 50 observations from (S~(j),S~(j)), define, 
for j = 1 , . . . , 5 0 ,  

Si(j) if Si(j) < 20 
S*(j) 

20 if Si(j) >_ 20 ' 
i - -  1,2. 
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