Ann. Inst. Statist. Math.
Vol. 56, No. 2, 383-396 (2004)
(©2004 The Institute of Statistical Mathematics

FISHER INFORMATION IN £-RECORDS

GLENN HOFMANNI* AND N. BALAKRISHNANZ

L Departamento de Estadistica, Facultad de Ciencias Fisicas y Matemdticas, Barrio Universitario,
Casilla 160-C, Concepcion, Chile, e-mail: glennhofmann@yahoo.com
2 Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton,
Ontario, Canada L8S 4K1, e-mail: bala@mcmail.cis.mcmaster.ca

(Received July 9, 2002; revised February 3, 2003)

Abstract. We derive some general results on the Fisher information (FI) contained
in the upper (or lower) k-record values and associated k-record times generated from
an i.i.d. sample of fixed size from a continuous distribution. We apply the results to
obtain the FI in both upper and lower k-record data from an exponential distribution.
We propose two estimators of the exponential mean, based on the upper and lower
k-record data, and discuss their small sample properties. We also consider k-record
data from an inverse sampling plan, and present general formulas for the FI contained
in it.
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1. Introduction

How much information is contained in record observations? This question was ad-
dressed by Ahmadi and Arghami (2001) and Hofmann (2003) by means of a comparison
between the Fisher information (FI) in an i.i.d. sample and record data. They point out
that for many distributions and parameters, the FI in the first m record values and record
times is larger than the FI in m i.i.d. observations. The consideration of a fixed number
of records is known as inverse sampling (Samaniego and Whitaker (1986)) and has been
used for almost all known record based inference procedures (see Arnold et al. (1998),
Chapter 5, and references therein). To our knowledge, only Samaniego and Whitaker
(1986) and Hofmann and Nagaraja (2003) treat record based inference by fixing the num-
ber of observations rather than the number of records. Samaniego and Whitaker (1986)
give an estimator based on lower record values and record times from an exponential dis-
tribution. Hofmann and Nagaraja (2003) establish its asymptotic efficiency, give small
sample efficiencies and investigate the properties of the maximum likelihood estimator
based on upper record statistics from an exponential distribution. Information measures
have also been discussed for order statistics. Tukey (1965) introduced linear sensitivity
to find out which order statistics are more important for linear estimation. Nagaraja
(1994) considered this measure in detail. Balakrishnan and Chandrasekar (2002) pre-
sented a multivariate version of linear sensitivity. Fisher information in order statistics
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has only recently been discussed by Park (1996) and Iyengar et al. (1999) among others.

In record value theory, while the inverse sampling considerations have given valuable
insights, their practical implementation is greatly hindered by the sparsity of records, in
fact, the expected waiting time is infinite for every record after the first. In this paper,
we will combine the informational advantage of records with the practical necessity of
fixing the sample size, and we will remedy the problem of sparsity by considering k-
records instead. We will define this generalization of records in Section 2, and also give
other preliminaries. We will show that the expected waiting time for k-records is finite
(k > 2). In Section 3, we will present general expressions for the FI in k-record values
and k-record times from a random sample of fixed size n. These results will be applied to
the exponential distribution in Section 4. We will focus on an unbiased, lower k-record
based estimator of the exponential parameter in Section 5. We will present the variance
of this estimator, compare it with the Cramer-Rao lower bound, and with the variance
of the estimator based on the whole sample. We will also discuss the MLE based on
upper k-record data. Finally, in Section 6 we will state general expressions for the FI in
inversely sampled k-records.

2. Preliminaries

Let X;,Xs,..., X, be a sequence of independent and identically distributed ran-
dom variables with absolutely continuous cdf F(z;8) and density f(z;@), where 6 is an
unknown parameter. We are interested in the FI contained in the k-record data about
the parameter 8. A k-record is basically the k-th largest observation in a partial sample.
When new observations arrive, new k-records can occur. In infinite sequences, every new
observation that is bigger than the current k-record will eventually become a k-record it-
self. A precise definition is given below. Under certain regularity conditions, the FI about
the real parameter # contained in a random variable X with density f(x;6) is defined
by (see, for example, Rao (1973), p. 329), Ix = Eo(amng(gx;ez)g- Traditionally, the FI
has played a valuable role in statistical inference through the information (Cramer-Rao)
inequality and its association with the asymptotic properties of the maximum likelihood
estimators.

Let X;.,, denote the i-th order statistic from a random sample of size m. We
define the (upper) k-record times T}, ; and the (upper) k-record values R, j to be as
follows: Ty x = k, Rix = Xk and for m > 2, Ty = min{j : j > Tpo14, X; >
X1y k41T b 80d Ry o= X 17, - Let 6 +1=Tng1 60— Tinp (m > 1)
be the k-interrecord times, and let Ny, x be the number of k-record values in X3, ..., Xp.
Lower k-record statistics are defined similarly. Let I%;(n, k) be the FI contained in the
upper k-record values and k-record times from a random sample of size n, and Ig (n,k)
the FI in just the k-record values. The corresponding notations for lower records are
IE(n, k) and I5(n, k). These k-records were introduced by Dziubdziela and Kopociriski
(1976) and have found acceptance in the literature (see, for example, Grudzién and Szynal
(1985); Ragab and Amin (1997)). Arnold et al. (1998) call them Type 2 k-records. For
k =1, the usual records are recovered. Let

1 if m is a k-record time
Im,k = .
0 otherwise.

Clearly, 1, = -+ =Iy_146 =0, Iy, = 1 and Ix41 %, . . ., I;m ks are independent Bernoulli
random variables with P(I; x = 1) = £ (i > k). We can then prove the following result.
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THEOREM 2.1. Fork > 2, ET,, . is finite for all m.

ProoOF. The k-record time and the number of k-records are related in the following
way. Let m>3,n>m+k—1 (P(Tmr>m+k—2)=1), then
P(Tpmy >n) = P(Npg <m) = P(lggrp+ -+ Ingp <m—1)
= P(at least n — k — m + 2I’s are = 0)
cn-kn-1-k m-1 _ (Ftm=2)
- n n-1 k+m-—1 )
_ 2
< k+m-—2 k— for k> 2.
k n?

Hence, the expected k-record time T, x can be expressed as

o

ETni =Y PTnip>i)=m+k+ > P(Tn>1i)
i=0 i=m+k—1

k+m—2 <01
m+k+k2( 7: ) Z 5 <00, O
i=m+k—1

IA

Note that for k = 1, i.e. for records, ET,,; = oo for m > 2 (Arnold et al. (1998),
p. 26).

Dziubdziela and Kopocinski (1976) showed that the sequence {R,x,n > 1} from
a cdf F is identical in distribution to a record (k¥ = 1) sequence from the cdf Fy.; =
1 — (1 — F)*. Using the joint density of records (see, for example, Arnold et al. (1998),
p- 10), we readily have the joint density of the first m k-records Ry k, ..., Rk as

(2.1) fru rm>—ka i )(1—F(rm))’“

Note that such a distributional identity between F' and Fj., cannot be found for the
joint distribution of the k-record values and k-record times. However, a new k-record
time T;y, x, only occurs when the corresponding observation X, , is greater than the last
k-record value Rp,_; x (but not necessarily smaller than any following k-record value).
Hence, given the k-record values, the k-interrecord times are conditionally independent
and geometrically distributed with the following joint probability function:

(2.2) P(Tl,k = tl,TQ’k =1o,... ,Tm,k = tm,Nn,k =m | Rl,k =7,.. -,Rm,k = T'm)
m—1
= H F%(r))(1 = F(r;))Fo™(ry,)
i=1
forty =k <t < - <ty <myr < - < 7Ty m=1...,n—k+ 1, where

6; = tiy1 —t; — 1, and ¢,41 = n+ 1. Combining (2.1) and (2.2), we obtain the joint
likelihood of the k-record values and k-record times to be

(23)  f(riyee s Tmotty sty Nk = —kaf VF%(r;) (1 — F(ry))*?

forty =k<ta< - <tm<n,m<--<rp,m=1,....n—k+1.
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3. Flin finite sample k-record data

THEOREM 3.1. The FI contained in all upper k-record values and k-record times
from a random sample of size n is given by

(3.1) Igr(nk) = /_Z kf(z)(1 — F(z))F !
(B0 ()
() ()|

+(k-1) (Z) Frk(z) (— & log(; = F (m))) }d:r.

The FI I5,(n,k) can be obtained by replacing F(z) with 1 — F(z) in (3.1).

Proor. To simplify notation, let us denote
8(m) = (61,...,6m), and

(3.2) m
A(m) = {(613-“,61%) : 25,- =n+1-k-—m,§ > 0,8 integer Vi 3 .

i=1

From (2.3) it then follows that

N k N &
921 R;, = 0?1 F(R;,
33) Tk = B3 - 7 Log /{Rur) “}w[zl R LAt k)}
8 log(1 — F(Rw, o))
+(k—1)E[— e No ik }

= E1+Ey+ Es  (say),
where the expectations are taken with respect to the joint density (2.3), i.e., with respect

to (Riky-- s Bmk, T1 ks - - -y I Nk = m). We can write By = Zn__kH E;(m), where

m=1

i 6210 r; m
Bi(m) ~ | > (—Z——;{‘ )>k

1< <Tm §(m)eA(m) i=1
m
x [LAG)F* (r) (U = Praa))*dry -y
i=1
Note that 3 5. ca(m) [T~, F%(r;) is equal to the coefficient of s"**~¥=™ in the Taylor
series expansion of [[/~; ﬁm Hence,

n+l—k—-m ;:

E,(m) = coefficient of s in

LIV r m .
/T1<~"<Tm w (_ Z : loagog( l)> 11;[1 1 —fz(E‘EZi)s(l — F(rm))*"'dry -+ drm

i=1




FISHER INFORMATION IN k-RECORDS 387

The expression under the integral is symmetric in r1,...,7m_1- Therefore,

Ei(m) = coefficient of s"T1=F~™ in ( k:nl)' /°° 1 —fgg",)n) (1 — F(rp))*?

8° log f 7“1) f(r:)
/ / E 562 H 1— F(ry)s ri-eedrm.
Since [" L&) gy = —~1log(1l — F(ry)s), we obtain

oo 1-F(z)s
ek 1 /°° _82 log f(rm) kf(rm)

(3.4)  Ei(m) = coefficient of s" " in

(m—1)! H6? 1 - F(rm)s
X (1= F(rm))* =1 (~klog(1 — F(rn)s))™ drm
+ coefficient of s" *~1 in
Itm>1y [ kf(rm) _ F(r )1
s [ s (- Fw)

™ Plogf(z) kf()

967 1= F(z)s 0rm

x (~klog(1 = F(rm)s)" [

—00
where I{;,>1} is the indicator function for m > 1. We now need to sum over m. Since
for I > n— k + 1, the coefficient of s®* in (—klog(l — F(z)s))' is zero, we can extend

the sums over m to oo, and use Y o< (= log(1 LF(T'")S)) (1 — F(rm)s)~*. Note further
that

(3.5) [coefficient of s * in (1 — F(y)s)~*+1)]

_ 1 aRI- F(y)s) D

B (n - k)' osn—k s—o0

n\ e

- ()

and
1 1

3.6 fhici f n—-k-—1 :
( ) [coe clent of s in T F(x)s i F(y)s)k"'l:l

- :io (" @

Combining (3.5) and (3.6) with (3.4), we obtain

n—k+1 o0 9 o T
a3 mm = [ T pa) ) () Pty + 4,

m=1 —o0
where

(35) a= [T b -rap [1 - @

— 00

n—k—1

X Z ( ) Fi(z) F™ %1% (y)dzdy.



388 GLENN HOFMANN AND N. BALAKRISHNAN

Exchanging integrations with respect to x and y yields

©  9?log f(x i
(39) A= / ———ggukf(x) > Fi(a)
oo o9 ~
« [ e e P ) - ) )y
. (k=Dn-i-k-1)
The inner integral is an incomplete Beta function which is equal to
n—i—k—1 n—i—1 ) o
P(X(nicky(n-i-) > T) = 3 ( j )Fj(x)(l — F(z))"~* 71
7=0
Hence,
a=["- _Ploe @)y )"~ Zk (P Y P - Py
oo 062 pasrd j
By taking [ = i + j, the expression simplifies to
*  3log f(x) & ! n—l-1
A:/_m — k(@) Z‘ ( )F(m)(l F(z)) dz.

Now, it follows from (3.7) that

n—k+1

(3.10) > Ei(m)

m=1

- [7(-Hea) M) > (})P@a-Fa)-ta,

— o0

Further, since

"f <’;> Fiz)(1 - F(z))~ % gnik (7) (n ) i ) k) U F )

=0 =

S ()
_ (jzk‘l)pj(x),

F(z)

we can write (3.10) as

n—k+1

Z El (m)

m=1

L2 o B (1 o

—0o0

3.11) B
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Note that
m . m
RO Sl R M 1) | el
= i:((::)) 8(793- {coefﬁcient of s"~™m~k+1 ip jﬁ—l — Fl(rj)s}
= coefficient of s""™ *+1 jn ITF%S ﬁ I%r])s

=1

By applying this relation and following the same arguments as for E, we can derive E5
from (3.3) to have the form

1) B= [ (——L BT ko)t - Pl S (i) Foa
o0 i=1

Since Ry, .k = Xn—k+1:n, the last expectation in (3.3) can be written as

(313)  Es = (k—l)/oo

3 021log(1 — F(x)) n!
062 (k=D n-k)
The result now readily follows from (3.3), (3.11), (3.12) and (3.13). O

PR (@)(1 - F(2) 7 f (@) da.

For numerical calculation of I gT(n, k), it may be easier to use the following expres-
sion, which follows from (3.10) and a similar formula for Ej:

ir(nk) = [ T k@) (_5210gf(x) F(a) 3210gF(:v))

A= F@) 562 11— F(z) 062
1- " "VFl(z l—F(:c)"_l)dx
>< ( py) (})F@a-re
[ h(}) @ - Fey e
d%lo d%log(1 — F(z
X (_—;BQL(Q—(]C_I) g(602 ( )))d:r

Remark. Hofmann and Nagaraja (2003) showed that I§,(n,1) = Y | 1I(X;.),

where I(X;;) is the FI in X;;. Unfortunately, an equivalent relation of the type

IS, (n,k) = Z:.:lkﬂ & I(Xi_ky1.i), where the a;’s are constants, does not hold for
k>2.

Let us now look at the information in only the k-record values. From (2.3), we have
the joint likelihood of the upper k-record values Rj g, ... y BN, .k 88

(B14)  flry,orm Nag=m)=k" [ £y Y. J[F*C)Q - Frm))*?

=1 8(m)EA(m)i=1
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forry <o <rm, m=1,...,n+1—k, and §(m), A(m) as given in (3.2). The FI
contained in the upper k-record values can be expressed as

(3.15)  IY(n,k)

R [ _alogf(Rlyk,...,Rm,k,Nmk =m) 2
- o6
L
[/ <N, Olog F(Rix) o
R > 30 Z&(Nn $)EA(NM k) 6; H * o (Rjk)
Z&(Nn,k)eA(Nn,k)szi F% (R )

Nk
~ Olog f(R;, Olog(l — F(Ry,,

i=1

where the expectation is taken with respect to (3.14). The expression does not seem
to allow much algebraic simplification. However, we can generalize a method given in
Hofmann and Nagaraja (2003) for record values (k = 1). It permits fast calculation of the
term under the expectation, in the cases of location, scale and certain shape parameters.
We can then obtain I¥(n, k) by simulation.

THEOREM 3.2. Let 6 be a parameter of one of the following families:
(i) location: F(z) = Fo(x — 6)
(ii) scale: F(z) = Fy(fz)
(iii) shape: F(z) = Fp(x%),
where Fy is free of 0, and the corresponding density is denoted by fo. Then,

AY1, .- YN, o Nnk)
316) IY(n,k)=nh OEK LAl
(3.16)  Ig(n,k) 1(6) BVe, V.,

Nnyk) + C()/la O 7YNn,k;Nn,k)

(k- 1)D<YNn,k))2],

where Yi,...,Yn, , are the k-record values from a sample of size n from the standard
distribution Iy,

. n—k-m o(Yi)ho(Y; 1
A(Y1,...,Yy, m) = coefficient of s"* (Z ! (_ }3‘0(}(’)3)> (1:[1 _I—_FM) ’

i 1
B(Y1, ..., Ym,m) = coefficient of s"*1F"™ in @Jl 1-Fy(Y)s )

For the location, scale, and shape parameter cases, C, D, hy, ha are given, respectively,
by

() Ch s Ymsm) = 12 =53 DY) = £y, m(0) = 1, ha(¥:) = -1
(ll) C(Y17 e 7Ym7 m) YfO(Y)

= m + Zgl Yf({?}(’?)i), D(Y) = TISERY) hl(e) = 0%,
hao(Y,) = Y,
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(ifi) C(Y1,. . Ym,m) = m+ L2, (1+ 5800)logy;, D(y) = —XLolrhee¥,

hi1(0) = gz, ha(Yi) = YilogV;.
The information I(n,k) in the lower records is obtained upon replacing Fo(z) by 1 —
Fo(z), A by —A and D by —

Proor. The proof works by reduction of the expression under the expectation
in (3.15), for the three cases. See Hofmann and Nagaraja ((2003), Theorem 2.2) for
details. 01

4. Information in exponential k-record data

Let us consider the k-records from an exponential random sample X, ..., X,, with
cdf F{z) = 1 —exp(—0z). We will evaluate the FI in upper and lower k-record values and
k-record times, as well as just in k-record values. Some straightforward simplification
reduces (3.1) to the following formulas:

4 n
Zl for k=
i-——lz
"1 1
2y —+2n(n I)Z ~ for k=
- —i — (n+1)
(4.1) 0°Igr(n, k) = < n
k 1+2n(n 1) -2
=i k-2
k-3 _ (ka)
-1)" C f >3
L x;( )(n—k+i+2)3 or k23,
"k X 2]
27U _ i {n>k}
n—k ,. i—2
i+k—1 (12 2k
+ _1J A ]
Z;( k >j:0( )<j )(k+1+1)3

where, as before, I,y is the indicator function for n > k. Asymptotically, forn — oo, k
fixed, this implies 6If;.(n, k) = klogn+ o(logn), 62I5,.(n, k) = %(log )%+ o((log n)?).

To calculate the information I'g(n, k) in only the k-record values, Theorem 3.2 is used
in conjunction with simulation. We used S-Plus to generate standard exponential random
samples, and to extract the k-record values, and MAPLE to evaluate the expressions
under the expectation in (3.16). We performed 500,000 simulations, which is sufficient
for 3-leading-digit accuracy. The results are presented in Tables 1 and 2. Recall that
the FI in a single exponential observation is #2Ix, = 1.

We first note that upper k-records contain more FI than lower ones. Let us look
at Table 1 for upper k-records. We can see that for small n (n < 5) the information
decreases with increasing k. This is expected, since the mean number of k-records (E)
also declines. For somewhat larger n (n = 10,20), where we considered k = 1,..., s
we observe that the information peaks for some k, although the expected number of k-
records keeps increasing. For practical purposes, the most interesting case occurs when
n is large and much greater than k, represented in our table by n = 100,200. Here,
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Table 1. FI in upper k-record data from an exponential distribution with mean 1/8. The
column labels R, RT and E stand for 921}[{ (n, k), OQIgT (n, k) and ENy, 1, respectively.

k=1 k=2 k=3 k=5 k=10
n R RT E R RT E R RT E R RT E R RT E
2]l 1.90| 1.90]1.50] 1 1 1
3| 2.731 2.74(2.83| 1.97| 1.97(1.67| 1 1 1
41 3.48| 3.52]2.08] 291 2.92]2.17( 1.99| 1.99| 1.75
51 4.18| 4.25(2.28| 3.80| 3.8312.57( 2.96| 297 235 1 1 1
10y} 7.10| 7.43{2.93} 7.82] 8.00[3.86| 7.48| 7.57( 4.29( 5.92 5.92| 4.23 1 1 1
200/ 11.4 12,4 |3.60|14.2 (150 |5.20}15.1 [15.6 6.29 | 14.8 15.0 7.57| 10.9| 109( 7.69
5011 19.5 [ 22.8 |4.50127.3 [30.4 |7.00]|31.3 {342 9.00 | 35.5 37.6 1121 37.1] 37.9]16.7
100}/ 27.6 [34.4 [5.19]40.7 [48.3 {8.37|49.5 |56.7 |11.1 |59.9 66.3 | 15.5 71.4( 75.3|23.6
200(137.2 |49.9 |588|58.0 |73.2 |9.76|72.5 [88.5 113.1 |93.9 [108 19.0 j121 134 }30.5

Table 2. FI in lower k-record data from an exponential distribution with mean 1/6. The
column labels R, RT and E stand for 6215 (n, k), 62151 (n, k) and ENy, i, respectively.

k=1 k=2 k=3 k=5 = 10
n R |RT | E R RT E R RT E R RT E R RT E
1.50)1.50|1.50{1.81] 181]|1
1.76 | 1.83 1 2.83 | 2.59| 2.59|1.67]250( 2.50| 1
1.9412.08:2.081306) 3.13121713.52) 353§ 1.75
2.06 [ 2.28 [ 2.28 [ 3.40 | 3.54 | 257|417} 4.22| 235 3.66| 366} 1
2.37{293(293]427| 485|3.86|5.75| 6.26| 429 7.83| 8.07( 423| 5.86| 586 1
20| 2.61 { 3.60 | 3.60 | 490} 6.19|5.20|6.91| 829 6.29]10.3 [11.5 7.57115.7 |16.3 7.69
50 | 2.77 | 4.50 | 4.50 | 5.42 | 8.00|7.00 | 7.94 | 11.0 9.00 | 12.5 |16.1 |12.1 [22.1 |257 |16.7
100 || 2.85(5.19 | 5.19 [ 5.69 | 9.37{8.37[836)13.1 |11.1 [13.7 {19.5 |155 |254 |32.6 |23.6
200 |} 2.88|5.88|5.88)5.80|10.8 |9.76 (872151 |13.1 |14.2 |23.0 |19.0 (275 |39.5 |30.5

S U AW

—

the FI increases with k. Consider, for example, n = 200, k& = 5. The total FI in
200 i.i.d. observations is §?nlx, = 200. With an expected number of 19 5-records and
record times, we can capture more than half of that information. For all n, the relative
difference between 621y and 621z decreases with increasing k. Similar conclusions can
be drawn for lower k-records as well (Table 2). In this case, the relative gain in FI for
increasing k is even more pronounced.

5. Parameter estimation for the exponential distribution

In the last section, we discussed the FI contained in k-record data. Let us now see
how we can exploit that information for parameter estimation based on k-record values
and k-record times. We will look at the lower and upper record cases separately.

Lower k-records can be of interest in a number of industrial situations where it
is desired to identify the minimum value or lower empirical percentiles of a batch of
manufactured items (Samaniego and Whitaker (1986)). By comparing a new item only
with the previous lower k-record value, this can be achieved with a minimum of pairwise
comparisons. It is especially relevant when actual measurements are expensive, time
consuming or destructive. For example, in destructive stress testing, by applying stress
levels only up to the last lower k-record value, fewer items will be destroyed. Moreover,
the broken items are the weakest (least valuable) of the lot. Samaniego and Whitaker
(1986) give an unbiased estimator for the mean p = % based on lower record values
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(k = 1) and record times as
Yo {6+ 1Ry

Nui ’
N. NE [ 222
( m1 F ) [Nn,l + 1}

(5.1) fisw =

with variance
1
E|l—
Npi1+1

1 .
1-F )"
[Nn,1+1J

Hofmann and Nagaraja (2003) showed that figw is asymptotically efficient. For general
k, the joint likelihood of the lower k-record values and k-record times from an exponential
distribution can be obtained from (2.3) as

Var(iisw) = p?

m
Fry, o rmytt, oot Ny g = m) = k™0™ exp <~9 Z(‘Si + l)ri) (1—exp(—0ry,))* 1,
=1

fortg =k <ty < - <tym <n,7r > >71y m=1..,n—k+1, where
b =tiy1 —t; — 1 and t;41 = n + 1. Conditionally on Np . = m, the bivariate statistic
(> ,(8; + DR, i, Rm i) is minimal sufficient. One could therefore hope to find a rea-
sonable estimator of the form a(Np ) 2072, (8; + 1) R; & + b(Np ) Rn,, . k- Unfortunately,
the derivation of theoretical properties of such estimators turns out to be very messy.
Through Monte Carlo simulation, we found the following simple unbiased estimator
which possesses good small sample behavior:

oo (8 + 1)Rix
Nn,k + k )

=
pLEfy’

where i =

Note that p~!'Efy, is free of u. For k = 1, iz, is identical to figw. Table 3 gives the
efficiency of i, when compared to the Cramer-Rao lower bound, i.e., efficiency(ji) =

C—\%}();)Lu)nd = var(nL)irgT gy for various choices of n and k. For k = 1, the efficiencies

are around 90%. With increasing k they rise significantly, getting close to 99% for
k = 10 in the case of moderate and large n. Table 4 gives the variance of ;. We
observe a large decrease in the variance for increasing k, nicely reflecting the effect
of increasing information content in the k-records. For comparison, we also state the
variance Var(fi,) = Hni of the estimator fi, = L 3" | X; based on the whole sample. Of
course, the k-record based estimator should only be used if it is costly or unpractical to
obtain exact measurements of the whole sample. Both tables were obtained from 5 - 108
simulations to provide the given accuracy.

For upper k-record values and k-record times from an exponential distribution, the
likelihood (2.3) simplifies to

f(rh"’7rm7t17"'7tm:Nn,k :m)
m

= k™0™ exp (_927"1') H(l _ exp(—eri))‘sie‘orm(k“l).
i=1

t=1
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Table 3. Efficiencies {compared to Cramer-Rao lower bound) of the unbiased lower k-record
based estimator i, of the exponential mean.

n
k 5 10 20 50 100 500 | 1000
1 .890 | .877 | .874 | .877 | .882 | .896 | .901
2 950 | .938 | .933 [ .933 | 937 | .945 | .947
3 966 | .960 | .956 | .955 [ .957 | .962 | .964
5 968 | 974 | 973 | 974 | .976 | .977
10 970 | 986 | .987 | .988 | .989

Table 4. Variances u~2 Var(jzz) of the unbiased lower k-record based estimator of the expo-
nential mean u.

n

5 10 20 50 100 500 1000
492 | .389 | .318 .253 .219 .164 .148

297 | 220 | 173 134 114 .0841 | .0756

.245 | .166 | .126 .0952 | .0800 | .0581 | .0520

.128 | .0890 | .0639 | .0526 | .0372 | .0330

0 .0631 | .0395 | .0311 | .0208 | .0182

1
| w2 Var(jin) || 200 [ 100 [ 050 | .020 | 010 [ .002 [ .001 |

[ ORI R I

We will obtain the MLE fy = éi and investigate its small sample properties. The
U
likelihood equation is given by

m m
m oir;
2 = (6i+1)r; —rp— 75—y ————— =0
(52) 9 g( it Dri+ (k= Lrm — - ; (O]
It is easy to see that g(f) is strictly increasing for 8 > 0, with limg_ o g(d) = —oo,

limg_oo g(8) = >y 7 + (k — 1)rm, > 0. Hence, (5.2) has a unique solution. We
numerically calculated the estimator from simulated samples from a standard exponential
distribution (§ = 1). Table 5 gives the simulated values of the mean and variance of
by = i for various choices of n and k, as obtained from 1,000,000 samples each. It

also provides the ratio of (I¥,(n,k))~! and the variance. The MLE appears to be very
efficient for moderate sample sizes. In these cases, neither bias nor efficiency are affected
much by k. Hence, the variances decrease with k, as long as n is much greater than k.
For k’s approaching the order of n, the opposite effect occurs.

6. Information in inversely sampled k-record data

Most record based inference procedures given in the literature are based on inversely
sampled records. They may be of greater value when generalized to take advantage of
the more frequent k-records. Knowing the FI that k-record values and k-record times
could provide about the parameter, would then be useful. Therefore, we will briefly
state the corresponding expressions. We define inverse sampling for k-records as taking
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Table 5. Properties of the maximum likelihood estimator iy based on upper k-record data
from an exponential distribution. True mean g = 1. The column labels E, Var and r stand for

U -1
Efy, Var(fiy) and the ratio U—RM)—, respectively.

Var(iy)
k=1 k=2 k=3 k=5 k=10
n FE Var | r E Var r E Var r E Var r E Var T
5(11.25 |.59 |{.40(1.33 |.92 .28 1 1.50 2.2 .15
10§/ 1.11 20 (.67]1.13 |.20 63]1.14 .23 .58 11.20 .37 .46

2011 1.052 | .098 | .82 1.056 | .082 | .81 (1.059 080 (.801.087 [.08 |.78 |{1.100 |{.14 .68
50 (| 1.017 | .048 | .91 [ 1.020 | .036 |.92}1.021 032 {.92(1.022 (.029 |.92 |1.025 |.029 | .91
100 |[ 1.006 | .031 | .93 [1.009 |.022 |.96|1.0098 | .018 |.96(1.010 {.016 |.96 |1.011 |.014 | .96
500 996 | .014 | .93 .999{.0086 ; .97 | 1.0003 | .0068].98]1.001 {.0053).990{1.0018 | .0040 [ .993
1000 994 | .010 .92 .998|.0062 | .97 .9993 .0048] .98 1.0001 | .0036 | .991 | 1.0007 | .0026 | .996

observations until a fixed number m of k-records is reached. Let JY(m, k) be the FI
in the first m (upper) k-record values and JY,(m,k) be the FI in the first m (upper)
k-record values and k-record times.

Note that the quantities IZ(n, k) (Sections 2-4) and JY,.(m, k) are quite different.
Both denote the FI in k-record values and k-record times. However, I5,(n, k) is the Fl in
the random number of k-record values (and k-record times) that occur in a fixed number
(n) of 1.i.d. observations. On the other hand, JY,.(m, k) is the FI in a fixed number (m) of
k-record values (and k-record times). Here, the length of the i.i.d. sequence necessary to
observe them is random. There is no direct mathematical connection between I9(n, k)
and JYr(m, k).

It follows directly from (2.1) that

(6.1) JY(m, k) = i:ki/_oo (_8 lggeg(fc) n 9 108(;9—2 F(x))>

y (—log(l — F(z))):* (1 - F(zx))*" ! f(z)dz

(i —1)!
00 210 2 _

LR /_oo (_8 la%2f(a:) (k- 1)8 log((;é’2 F(:v)))

x (“ IOg((lTn_—Fl(;)))m—l (1 _ F(a:))k_lf(:r)dx.
From (2.3), we can see that

m 2 o ) m—1 2 ]
(62)  Jhp(mk) =Y E [—8———1 %ggR“’“)] +YE [—6,-~——3 Ioga;(R”’“)]

i=1 =1

2 loz(1 —
+(k—1)E [_8 log(1 805(Rm,k))J .

However, (§; + 1) has a geometric distribution with parameter 1 — F(R; ;) when condi-

tioned on R; . This implies that E[8; | B4 = torssy. Therefore,

92 log F(R; 1) 9 log F(Rix)  F(Rix)



396 GLENN HOFMANN AND N. BALAKRISHNAN

Further, recall that R; behaves like the i-th record from Fy.x(z) = 1 — (1 — F(z))*
(Dziubdziela and Kopocirisiki (1976)) which implies that the density of R; x is given by

(~klog(1 — F(z)))i~!
(i —1)!

Combining (6.2) with (6.3) and (6.4), we obtain

= [ 210 2] T
o o= E [1(Pige Pin 1)

(6.4) filz) = kf(z)(1 — F(z))* .

. (log(1 — F(e)))'! (1 F(z)* f(z)de

=D

m [ [ 8%log f(x) 8?log(1 — F(x))
R G
« (‘_ log((];n__‘Ff;)))m_ (1 _ F(z))k_lf(x)dx

The corresponding formulas for lower records are obtained from (6.1) and (6.5) by re-
placing F(z) with 1 — F(z).
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