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Abs t rac t .  We derive some general results on the Fisher information (FI) contained 
in the upper (or lower) k-record values and associated k-record times generated from 
an i.i.d, sample of fixed size from a continuous distribution. We apply the results to 
obtain the FI in both upper and lower k-record data from an exponential distribution. 
We propose two estimators of the exponential mean, based on the upper and lower 
k-record data, and discuss their small sample properties. We also consider k-record 
data from an inverse sampling plan, and present general formulas for the FI contained 
in it. 
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1. Introduct ion 

How much information is contained in record observations? This question was ad- 
dressed by Ahmadi and Arghami (2001) and Hofmann (2003) by means of a comparison 
between the Fisher information (FI) in an i.i.d, sample and record data. They point out 
that  for many distributions and parameters, the FI in the first m record values and record 
times is larger than the FI in m i.i.d, observations. The consideration of a fixed number 
of records is known as inverse sampling (Samaniego and Whitaker (1986)) and has been 
used for almost all known record based inference procedures (see Arnold et al. (1998), 
Chapter 5, and references therein). To our knowledge, only Samaniego and Whitaker 
(1986) and Hofmann and Nagaraja (2003) treat record based inference by fixing the num- 
ber of observations rather than the number of records. Samaniego and Whitaker (1986) 
give an estimator based on lower record values and record times from an exponential dis- 
tribution. Hofmann and Nagaraja (2003) establish its asymptotic efficiency, give small 
sample efliciencies and investigate the properties of the maximum likelihood estimator 
based on upper record statistics from an exponential distribution. Information measures 
have also been discussed for order statistics. Tukey (1965) introduced linear sensitivity 
to find out which order statistics are more important for linear estimation. Nagaraja 
(1994) considered this measure in detail. Balakrishnan and Chandrasekar (2002) pre- 
sented a multivariate version of linear sensitivity. Fisher information in order statistics 
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has only recently been discussed by Park (1996) and Iyengar et al. (1999) among others. 
In record value theory, while the inverse sampling considerations have given valuable 

insights, their practical implementation is greatly hindered by the sparsity of records, in 
fact, the expected waiting time is infinite for every record after the first. In this paper, 
we will combine the informational advantage of records with the practical necessity of 
fixing the sample size, and we will remedy the problem of sparsity by considering k- 
records instead. We will define this generalization of records in Section 2, and also give 
other preliminaries. We will show that the expected waiting time for k-records is finite 
(k > 2). In Section 3, we will present general expressions for the FI in k-record values 
and k-record times from a random sample of fixed size n. These results will be applied to 
the exponential distribution in Section 4. We will focus on an unbiased, lower k-record 
based estimator of the exponential parameter in Section 5. We will present the variance 
of this estimator, compare it with the Cramer-Rao lower bound, and with the variance 
of the estimator based on the whole sample. We will also discuss the MLE based on 
upper k-record data. Finally, in Section 6 we will state general expressions for the FI in 
inversely sampled k-records. 

2. Preliminaries 

Let X1, X 2 , . . . ,  Xn be a sequence of independent and identically distributed ran- 
dom variables with absolutely continuous cdf F(x;  8) and density f(x; 8), where 0 is an 
unknown parameter. We are interested in the FI contained in the k-record data  about 
the parameter 8. A k-record is basically the k-th largest observation in a partial sample. 
When new observations arrive, new k-records can occur. In infinite sequences, every new 
observation that is bigger than the current k-record will eventually become a k-record it- 
self. A precise definition is given below. Under certain regularity conditions, the FI about 
the real parameter 8 contained in a random variable X with density f(x; 8) is defined 

Olog/(x;e) )2. Traditionally, the FI by (see, for example, Rao (1973), p. 329), I x  -- E0( o0 
has played a valuable role in statistical inference through the information (Cramer-Rao) 
inequality and its association with the asymptotic properties of the maximum likelihood 
estimators. 

Let Xi:m denote the i-th order statistic from a random sample of size m. We 
define the (upper) k-record times T~,k and the (upper) k-record values R~,k to be as 
follows: Tl,k = k, Rl,k = Xl:k and for m > 2, Tm,k = min{j : j > Tm-l ,k ,Xj  > 
X T ~ - l , k - - k + l : T m - 1  k } and Rm,k ---- X T m , k _ k + l : T . ~ ,  k . Let ~m -~- 1 ---- Tm+l,k -- Tm,k (m > 1) 
be the k-interrecord times, and let Nm, k be the number of k-record values in X1,. �9 Xm. 
Lower k-record statistics are defined similarly. Let IUT(n, k) be the FI contained in the 
upper k-record values and k-record times from a random sample of size n, and IV(n, k) 
the FI in just the k-record values. The corresponding notations for lower records are 
ILT(n, k) and I L (n, k). These k-records were introduced by Dziubdziela and Kopocifiski 
(1976) and have found acceptance in the literature (see, for example, Grudzi~n and Szynal 
(1985); Raqab and Amin (1997)). Arnold et el. (1998) call them Type 2 k-records. For 
k = 1, the usual records are recovered. Let 

1 if m is a k-record time 

Im,k = 0 otherwise. 

Clearly, Ii,k . . . . .  Ik-l,k = 0, Ik,k ---- 1 and Ik+l,k,.. �9 Im,k are independent Bernoulli 
random variables with P(I~ k = 1) = _k (i > k). We can then prove the following result. 
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THEOREM 2.1. For k >_ 2, ETm,k is finite for all m. 

PROOF. The  k-record 
way. L e t r n > _ 3 ,  n _ > m + k  

P(Tm,k > n) = 

< 

< 

t ime and the number  of k-records are related in the following 
- 1 (P(Tm,k > m + k -  2) = 1), then  

P(Nn,k < m) = P( /k+l ,k  + ' ' "  + / ~ , k  < m -  1) 

P ( a t  least n - k - m + 2I ' s  are = 0) 

n - k n - l - k  m-1 
n n -  1 k + m -  1 (~) 

(k+m-2)k2 
k ~ for k>_2.  

O 0  

E > i) 
i = m + k - 1  

-< m + k + k 2 (  k + m - 2 ) k  ~ -~<cx~.l 

i=m+k--1 

Hence, the expected k-record t ime Tm,k can be expressed as 

(2<3 

ETm,k = E P(Tm,k >- i) = m + k + 
i=0  

[] 

Note  tha t  for k = 1, i.e. for records, ETm,1 = c~ for m > 2 (Arnold et al. (1998), 
p. 26). 

Dziubdziela and Kopocifiski (1976) showed tha t  the sequence {Rn,k, ?2 ~ 1} from 
a cdf F is identical in dis t r ibut ion to  a record (k = 1) sequence from the edf  Fl:k = 
1 - (1 - F )  k. Using the joint  densi ty of records (see, for example,  Arnold et al. (1998), 
p. 10), we readily have the joint  densi ty  of the first rn k-records R l , k , . . . ,  Rm,k aS 

m f(ri)  
(2.1) f (r l '""rm) = km[I 1 --~(r~) (1- F(rm))k" 

i=1 

Note  tha t  such a dis tr ibut ional  ident i ty  between F and Fl:k cannot  be found for the 
joint  dis t r ibut ion of the k-record values and k-record times. However, a new k-record 
t ime Tm,k only occurs when the corresponding observat ion XT~,k is greater  than  the  laSt 
k-record value Rm-l ,k  (but  not necessarily smaller than  any following k-record value). 
Hence, given the k-record values, the k- interrecord times are condit ional ly independent  
and geometrical ly dis t r ibuted with the following joint  probabil i ty  function: 

(2 .2 )  P ( T l , k  = t l ,  T2,k = t 2 , . . .  , Tm,k  = t in,  N n , k  = m [ R1, k ~- r l , . . . ,  R m , k  = r m )  

m - 1  

= Y I  Fh'(ri)(1 - F(ri))Fhm(r'~) 
i=1 

for t l  ---- k < t2 < . . -  < t m  < n, r l  < . . .  < rm, m = 1 , . . . , n -  k +  1, where 
5i = t i+l - ti - 1, and tm+l = n § 1. Combining (2.1) and (2.2), we obta in  the  joint  
likelihood of the k-record values and k-record t imes to be 

m 

(2.3) f ( r , , . . . , r m , t l , . . .  ,tm, Nn,k = m) = km l-I f (r i )F~(ri)(1 - F(rm)) k-1 
i=1 

for t l  = k < t2 < . . .  < t m ~ ?2, rt < " .  < rm, m ~ 1 , . . . , n - -  k + 1. 
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3. FI in finite sample k-record data 

THEOREM 3.1. 
from a random sample of size n is given by 

(3.1) I u T ( n ,  k) = k f ( x ) ( 1  - F ( x ) )  k-x  
o0 /'~-#~[(i+k~ 1) 

The FI contained in all upper k-record values and k-record times 

02 log_f(x)'~ 
002 ) 

+ ( / + k - 1 ) k  \ 0u ( log F(x) 
002 )] F~(x) 

+ n ~ - k  )}dx.  ( k -  l ) ( k ) F  (x) ( 021~ 

The FI ILT(n, k) can be obtained by replacing F(x) with 1 - F(x) in (3.1)�9 

PROOF. To simplify notation, let us denote 

6(m) = (61, . . . ,  6m), and 

(3.2) { 
A('D= (e~,--- 

m ) 
,6m) : E 6i = n + l - k -  m,  Si >_ O,5i integer Vi . 

i=1  

From (2.3) it then follows that  

021og_ f ( R~,k ) ] 
002 J 

[~_[ 021~ 
+ E - ~  -o~ J 

1)E[L 021~ - ~-~F(RN"~'k))]' ] 
+ ( k -  

= El  + E2 + E3 (say), 

where the expectations are taken with respect to the joint density (2.3), i.e., with respect 
�9 X - ~ n - k + l  to (Rl ,k, . .  , Rm,k, T l ,k , . . . ,  Tin,k, Nn,k = m). We can write E1 = z.~m=l E1 (m), where 

l < ' " < r r a  6 ( m ) E A ( m )  i=1  

m 

• n f(rdF~'(ri)( 1 - F(rm)) k - l e t '  drm. 
i=1  

Note that  ~-]4(m)eA(.~) l-[i~l Fe' (ri) is equal to the coefficient of s ~+l-k-r~ in the Taylor 
m series expansion of H i = I  1 1 - F ( r i ) s "  Hence, 

E1 (m) = coefficient of s ~+ l -k -m in 

~l<...<rmkm(-i=~ 021~ f i  f(ri) F(rm))k_ldrl.. " drm. (1 
i=1 1 - F(ri)s 
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The expression under  the  integral is symmetr ic  in r l , . . . ,  rm-1.  Therefore, 

k T M  /_~ f(rm) (1 - F(rm)) k-1 
El (m)  = coefficient of 8 n+l-k-m in (m----1)! o~ 1 -- F(rm)S 

j - m  j~m m O21ogf(ri) m-1 f(ri) 
x . . . .  E 002 H 1 ---~(ri)8 drl ""drnt" 

cx~ oo i = 1  i = 1  

f(x) dx  = 1 l o g ( l -  F(rm)s), we obtain Since f ~  1-F(z)s --~ 

1 / ~  02 log f(rm) kf(rm) 
(3.4) E,(rn) = coefficient of s n-k in (m - 1)! j_oc 002 1 - F(rm)S 

x (1 - F(rm))k- l(-klog(1 - F(rm)s))m-ldrm 
+ coefficient of s n-k-1 in 

I{m>l} : :  kf(rm) (1 - F(rm)) k-1 
(-m----~)! oo l -  F(r.~)s 

o  logf( ) k f ( x )  , .  
x (-k log(1 F(rm)s) ) "~- 2 I 

002 1 - -F--~( x ) s axarm , 

where I{,~>1} is the indicator function for m > 1. We now need to sum over m. Since 
for I _> n - k + 1, the coefficient of s n-k in ( - k  log(1 - F(x)s)) 1 is zero, we can extend 

oo ( - - k l o g ( 1 - - F ( r m ) s ) ) '  = (1 - F(rm)S) -k. Note further  the sums over m to c~, and use ~-~i=0 i! 
tha t  

(3.5) 

and 

(3.6) 

[coefficient of s n-k  in ( 1  - F(y)8) -(k+l)] 

---- (n -1 k) - I "  On-k(1 ---08-T~-kF(Y)S)-(k+l) s = 0  

[ 1 1 ] 
coefficient of s n-k-1 in 1 - F(x)s (1 - F(y)s) k+l 

n-k--1 
= E ( n - - i - - i )  Fi(x)Fn-l-k- i (y)"  

i=0 k 

Combining (3.5) and (3.6) with (3.4), we obtain 

n-k+1 oz 
(3.7) E E l ( m ) =  : 

where 

(3.8) f f  0 2 log y(x) A = kf(y)(1 -- F(y))  k-1 002 kf(x)  
o o  o o  

n--k--1 

i = 1  
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Exchanging integrations with respect to x and y yields 

I ~  021ogf (x)  . . . .  n-k-1 
(3.9) A :  ~ ~](x) Z Fi(x) 

oo i=O 

~ oo (n - i - 1)! F n _ k _ i _ l ( y ) (  1 _ F(y))k_if(y)dydx" 
x (k - l ) ! ( n -  i - k -  1) !  

The inner integral is an incomplete Beta  function which is equal to 

n--i-k--1 ) 
P(X(n-i-k):(n-i-i) > x) = E (n - i. - 1 FJ(x)( 1 _ F(x))n_i_j_i. 

j=o J 

Hence, 

n-k -1  n - i - k - 1  I 

I_" A -- - ~  Ir E E " Fi+J(x)(1 - F(x))n-i-J-ldx. 
i=o j=o 3 

By taking l = i + j ,  the expression simplifies to 

n-k -1  

I_" . . . .  (7) A = -~i  IcJtx) Fl 

Now, it follows from (3.7) tha t  

n--k+l 
(3.10) E El(m) 

m = l  

: ~ o0 2 ] i - 7 ( x ) ~ : o  
Further,  since 

n - k n - l - k  

= E ~ j - i  i ( -1 ) i  FJ(x) 
j=o i=0 

we can write (3.10) as 

n-k-F1 
(3.11) E,---- E El(m) 

m = l  

n-k  
---- E (J+k-lk-1)FJ(x) ' 

j=O 

=/( 
oo 

a~logf(x)~ n-~( ) 
002 j kf(x)(1 - F ( x ) )  k - 1  E i + k 1 k - i  Fi(x)dx" 

i=0  
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Note tha t  

m F(r~) 0 m 

5(,~)~/,(m) j=l  ~(m)~A(m) j= l  

F(ri) 0 of s '~-'~-k+l f i  1 - f(ri) Ori coefficient in . ~  1 - F(rj)s 
j=l  

F(ri) yIm 1 
coefficient of 8n-m-k+l in 1 - F(ri)s sll.= 1 - F(rj)s" 

By applying this relation and following the same argumeats  as for E l ,  we can derive E2 
from (3.3) to have the form 

/ ~ o  ( CO21ogF(x)-~ n-k ( ) 
(3.12) E2 = -~-0~ -] kf(x)(1 - F(x)) k-1 E k +ki - 1 fi(x)dx. 

oo i=l 
Since RN~,~,k = Xn-k+l:~,  the last expectat ion in (3.3) can be wri t ten as 

(3.13) E3 ---- ( k -  1) I ~ 
J - -  o<5 

02 log(X - F(x)) n! 
002 (k - 1)!(n - k)! F'~-k(x)(1 F(x) )k-X f(x)dx. 

The result now readily follows from (3.3), (3.11), (3.12) and (3.13). [] 

For numerical calculation of IUT(n, k), it may be easier to use the following expres- 
sion, which follows from (3.10) and a similar formula for E2: 

~ kf(x) ( 021ogf(x) F(x) 021ogF(x )~  
IUT(n, k) = ~ (1 : - F ( x ) )  002 1 - F(x) 002 ] 

/? (;) + k f (x ) (1  - F(x))k-lFn-k(x) 
OO 

• ( O logI(Xloo. (k- F(x//) 
Remark. Hofmann and Nagara ja  (2003) showed tha t  IUT(n, 1) = Ein=_l ~I(Xi:i), 

where I(Xi:i) is the FI  in Xi:i. Unfortunately,  an equivalent relation of the type 
k) w n-k+1 = z-~i=l aiI(Xi-k+l:i), where the ai's are constants,  does not hold for 

k > 2 .  

Let us now look at the information in only the k-record values. From (2.3), we have 
the joint likelihood of the upper k-record values Rl ,k , .  �9 �9 RN~.k,k as 

m m 
(3.14) f(rl , .  ..,r,~,N~,k = m) = k'* y I  f(ri) E YI  FS~(ri)(1- F(rm))k-1 

i=1 5(m)EA(m) i=1 
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for r 1 ( " ' "  ( r m ,  m = 1 , . . . ,  n 4- 1 -- k, and ~(m), A(m)  as given in (3.2). The FI 
contained in the upper  k-record values can be  expressed as 

(3.15) IU(n,k) 

= E  

= E  
O0 ~-~"6(Nn'k)EA(N'~'k) 6i 1 l j = l  (Rj,k) 

vIN,~ k F5 ~ ~-~6(N,,,k)eA(gn,k) l l j = i  (Rj,k) 

N )2) 
+ ~ Ologf(Ri,k)O0 + ( k -  1) Olog(1 --_OF(Rm,k)) 

i=1 

where the expecta t ion is taken with respect  to (3.14). The  expression does not seem 
to allow much algebraic simplification. However,  we can generalize a method  given in 
Hofmann and Nagara ja  (2003) for record values (k = 1). It permits  fast calculation of the 
t e rm under the expectat ion,  in the cases of location, scale and certain shape parameters .  
We can then obtain  IU(n, k) by simulation. 

THEOREM 3.2. Let 0 be a parameter of one of the following families: 
(i) location: F(x) ---- Fo(x - O) 

(ii) scale: F(x) = Fo(Ox) 
(iii) shape: F(x) = Fo(x~ 

where Fo is free of O, and the corresponding density is denoted by fo. Then, 

(3.16) IU(n,k) = h l ( O ) E [ ( ~  "'''YNn'k'gn'k) L\  k 1, : ~  +C(Ya' '" 'YN"'k 'Nn'k)  

+ (k - 1 ) D ( Y N .  
/ 

2], 
where Y1,. . . ,  YN,,~ are the k-record values from a sample of size n from the standard 
distribution F0, 

A(Yl, . . . ,Ym,m)=coeffieient of sn-k-m in ( f i  f-~ 1 - F o ( Y / ) s  / i=1 

1) 
B(Y1,. . . ,  Ym,m) = coefficient of s n+~-k-m in 1 - Fo(Y~)s " 

i=1 

1) 
1 - F o ( V d s  ' 

For the location, scale, and shape parameter cases, C, D, hi, h2 are given, respectively, 
by 

m "f~(Y') D(Y) - .Co(Y) h1(0) -= 1, h2(Y~) -~ - 1  (i) C(Y1,. . . ,  Ym, m) = ~-2~i:1 - /o(Y,) '  1-Fo(Y), 
m (ii) C(Y1, ,Ym,m) z m 4- ~-~i=1 YJ~ D(Y) Yfo(Y) h i (0 )  = 1 fo(Yi) ' 1-Fo(Y) ' 
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, . . .  ~ 1 Yd~(v,),, ,~ D ( Y )  Yfo(Z)logY (iii) C(Y1 , Ym,m)  -- m + E i = I (  + ~ ) log zi, = -- 1-Fo(Y)  ' 

h (O) = logY . 
The information IL(n,  k) in the lower records is obtained upon replacing Fo(x) by 1 - 
Fo(X), A by - A  and D by - D .  

PROOF. The proof works by reduction of the expression under the expectation 
in (3.15), for the three cases. See Hofinann aug Nagaraja ((2003), Theorem 2.2) for 
details. [] 

4. Information in exponential k-record data 

Let us consider the k-records from an exponential random sample X I , . - . ,  X n  with 
cdf F(x) = 1 - e x p ( - 0 x ) .  We will evaluate the FI in upper and lower k-record values and 
k-record times, as well as just in k-record values. Some straightforward simplification 
reduces (3.1) to the following formulas: 

(4.1) 02ILT(n, k) = 

i=1 

n 1 

i = 2  i 

n 1 

i 

O(3 
1 

+ 2 n ( n - 1 ) E ( n + i )  3 
i=0 

+ 2 n ( n -  1 ) ( k -  ~)  

for k = 1 

for k = 2 

k-3~_~ (kT3) for k > 3, 
~--~(-1)~ ( n -  k + i + 2) 3 

• 

i=0 

(4.2) = 7 + (k + 1 + j V  

n - k  i -2  

k j (k + 1 + j )3 '  
i=2 j = 0  

where, as before, I{n>k) is the indicator function for n > k. Asymptotically, for n -~ oc, k 
fixed, this implies 02Ii  T (n, k) = k log n + o(log n), OUlURT (n, k) = ~ (log ~)a + o((log n)3). 

To calculate the information In(n,  k) in only the k-record values, Theorem 3.2 is used 
in conjunction with simulation. We used S-Plus to generate standard exponential random 
samples, and to extract the k-record values, and MAPLE to evaluate the expressions 
under the expectation in (3.16). We performed 500,000 simulations, which is sufficient 
for 3-leading-digit accuracy. The results are presented in Tables 1 and 2. Recall that  
the FI in a single exponential observation is OUlx~ = 1. 

We first note that upper k-records contain more FI than lower ones. Let us look 
at Table 1 for upper k-records. We can see that for small n (n < 5) the information 
decreases with increasing k. This is expected, since the mean number of k-records (E) 
also declines. For somewhat larger n (n = 10, 20), where we considered k = 1, n 

~ 1 7 6 1 7 6  
we observe that the information peaks for some k, although the expected number of k- 
records keeps increasing. For practical purposes, the most interesting case occurs when 
n is large and much greater than k, represented in our table by n = 100,200. Here, 
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T a b l e  1. F I  i n  u p p e r  k - r e c o r d  d a t a  f r o m  a n  e x p o n e n t i a l  d i s t r i b u t i o n  w i t h  m e a n  1 / 8 .  T h e  

c o l u m n  l a b e l s  R,  R T  a n d  E s t a n d  for  02 IU(n ,  k) ,  02 IUT(n ,  k)  a n d  E N n , k ,  r e s p e c t i v e l y .  

k = l  

n R R T  E 
2 1.90 1.90 1.50 

3 2.73 2.74 2.83 

4 3.481 3.52 2.08 

5 4.18 4.25 2.28 

10 7.10 7.43 2.93 

20 11.4 12.4 3.60 

50 19.5 22.8 4.50 
100 27.6 34.4 5.19 

200 37,2 49.9 5.88 

k = 2  k = 3  
R R T  E R R T  E R 

1 1 1 
1.97 1.97 1.67 1 1 1 

2.91 2.92 2.17 1.99 1.99 1.75 

3.80 3.83 2.57 2.96 2.97 2.35 1 

7.82 8.00 3.86 7.48 7.57 4.29 5.92 

14.2 15.0 5.20 15.1 15.6 6.29 14.8 

27.3 30.4 7.00 31.3 34.2 9.00 35.5 
40.7 48.3 8.37 49.5 56.7 11.1 59.9 

58.0 73.2 9.76 72.5 88.5 13.1 93.9 

k = 5  k = 1 0  

R T  E R R T  E 

1 1 

5.92 4.23 1 1 1 

15.0 7.57 10.9 10.9 7.69 

37.6 12.1 37.1 37,9 16.7 

66.3 15.5 71.4 75.3 23.6 

108 19.0 121 134 30.5 

T a b l e  2. F I  in  l o w e r  k - r e c o r d  d a t a  f r o m  a n  e x p o n e n t i a l  d i s t r i b u t i o n  w i t h  m e a n  1 / 0 .  T h e  

c o l u m n  l a b e l s  R,  R T  a n d  E s t a n d  for  ~ 2 I L ( n ,  k) ,  ~ 2 I ~ T ( n  , k)  a n d  E N n , k ,  r e s p e c t i v e l y .  

k = l  

n R R T  
2 1.50 1.50 

3 1.76 1.83 
4 1.94 2.08 

5 2.06 2.28 

10 2.37 2.93 
20 2.61 3.60 

50 2.77 4.50 

100 2.85 5.19 
2OO 2.88 5.88 

k = 2  k = 3  k = 5  k = l O  
E R R T  E R R T  E R R T  E R R T  E 

1.50 1.81 1.81 1 

2.83 2.59 2.59 1 . 6 7 : 2 . 5 0  2.50 1 

2.08 3.06 3.13 2 . 1 7  3.52 3.53 1.75 
2.28 3.40 3.54 2.57 4.17 4.22 2.35 3.66 3.66 1 

2.93 4.27 4.85 3.86 5.75 6.26 4.29 7.83 8.07 4.23 5.86 5.86 1 
3.60 4.90 6.19 5.20 6.91 8.29 6.29 10.3 11.5 7 . 5 7  15.7 16.3 7.69 

4.50 5.42 8.00 7.00 7.94 11.0 9.00 12.5 16.1 12.1 22.1 25.7 16.7 
5.19 5.69 9.37 8.37 8.36 13.1 11.1 13.7 19.5 15.5 25.4 32.6 23.6 

5.88 5.80 10.8 9.76 8.72 15.1 13.1 14.2 23.0 19.0 27.5 39.5 30.5 

the FI increases with k. Consider, for example, n = 200, k = 5. The total FI in 
200 i.i.d, observations is 02nix1  -- 200. With an expected number of 19 5-records and 
record times, we can capture more than half of that  information. For all n, the relative 
difference between 02IR and {~2IRT decreases with increasing k. Similar conclusions can 
be drawn for lower k-records as well (Table 2). In this case, the relative gain in FI for 
increasing k is even more pronounced. 

5. Parameter estimation for the exponential distribution 

In the last section, we discussed the FI contained in k-record data. Let us now see 
how we can exploit that  information for parameter estimation based on k-record values 
and k-record times. We will look at the lower and upper record cases separately. 

Lower k-records can be of interest in a number of industrial situations where it 
is desired to identify the minimum value or lower empirical percentiles of a batch of 
manufactured items (Samaniego and Whitaker (1986)). By comparing a new item only 
with the previous lower k-record value, this can be achieved with a minimum of pairwise 
comparisons. It is especially relevant when actual measurements are expensive, time 
consuming or destructive. For example, in destructive stress testing, by applying stress 
levels only up to the last lower k-record value, fewer items will be destroyed. Moreover, 
the broken items are the weakest (least valuable) of the lot. Samaniego and Whitaker 
(1986) give an unbiased estimator for the mean # = ~ based on lower record values 
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(k = 1) and record times as 

(5.1) Psw = 

with variance 

Ein - -1  (~ i  -{- 1 ) R i , 1  

(Nn,  + 1)z [Nn,,  ]' 
INn,1 q- 1 

var( sw) = .2  

Hofmann and Nagaraja  (2003) showed tha t  ~ s w  is asymptot ical ly  efficient. For general 
k, the joint likelihood of the lower k-record values and k-record t imes from an exponential  
distr ibution can be obtained from (2.3) as 

f ( r l , . . . , r m , t l , . . . , t m ,  N~,k = m )  = kmO'~ exp -0 ( h i + l ) r i  ( 1 - e x p ( - O r m ) )  k - l ,  
i = 1  

for tl  = k < t2 < . . .  ~ tm ~ n, r l  > . . .  > rm, m -- 1 , . . . , n -  k + 1, where 
6i = t i+l  - ti - 1 and tm+l = n + 1. Condit ionally on Nn,k = m, the bivariate statistic ?n 
(~-~=1(5i + 1)R~,k, R,~,k) is minimal sufficient. One could therefore hope to find a r e a -  

sonable est imator of the form a(N~,k) Y~i=l ( ~ + 1)Ri k + b(Nn k)RN~ ~ k. Unfortunately,  
the derivation of theoretical properties of such estimators turns out  to be very messy. 
Through Monte Carlo simulation, we found the following simple unbiased est imator 
which possesses good small sample behavior: 

f th Z-~i=i ~ i + 1)Ri,k 
P L  - -  t t_l  Eft  h , where fth -- Nn,k -b k 

Note tha t  # - l E f t h  is free of #. For k = 1, ft  L is identical to f z sw.  Table 3 gives the 
efficiency of ftn, when compared to the Cramer-Rao lower bound,  i.e., efficiency(ftL) = 
C-R bound 1 

Var(~L) -- Var(f~L)i~r(n,k) , for various choices of n and k. For k = 1, the efficiencies 

are around 90%. Wi th  increasing k they  rise significantly, get t ing close to 99% for 
k = 10 in the case of moderate  and large n. Table 4 gives the variance of fLL. We 
observe a large decrease in the variance for increasing k, nicely reflecting the effect 
of increasing information content in the k-records. For comparison, we also s tate  the 

z 1 n variance Var(f~n) -= e~n of the est imator ftn n ~ i = 1  X i  based on the whole sample. Of 
course, the k-record based est imator  should only be used if it is costly or unpractical  to 
obtain exact measurements  of the whole sample. Both tables were obtained from 5- 106 
simulations to provide the given accuracy. 

For upper k-record values and k-record times from an exponential  distribution, the 
likelihood (2.3) simplifies to 

f ( r l , . . . , r m , ~ l , . . . , t m ,  Nn,k = m)  

= kmO m exp - 0  ri 1 - exp(-Ori))e~e -Or'~(k-1). 
i = 1  "~ 
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Table 3. 
based estimator ~t L of the exponential mean. 
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Efficiencies (compared to Cramer-Rao lower bound) of the unbiased lower k-record 

n 

k 5 10 20 50 100 500 1000 

1 .890 . 8 7 7  . 8 7 4  . 8 7 7  . 8 8 2  .896 .901 

2 .950 . 9 3 8  . 9 3 3  . 9 3 3  . 9 3 7  .945 .947 

3 .966 . 9 6 0  . 9 5 6  .955  . 9 5 7  .962 .964 

5 .968 . 9 7 4  .973  . 9 7 4  .976 .977 

10 .970 . 9 8 6  . 9 8 7  .988 .989 

Table 4. Variances #-2 Var(t~L) of the unbiased lower k-record based estimator of the expo- 
nential mean #. 

n 

k 5 10 20 50 100 500 1000 

1 .492 . 3 8 9  .318 .253 .219 .164 .148 

2 .297 . 2 2 0  .173 .134 .114 .0841  .0756 

3 .245 . 1 6 6  . 1 2 6  . 0952  .0800 .0581 .0520 

5 .128 .0890 .0639 .0526 .0372 .0330 

10 .0631 .0395 .0311 .0208 .0182 

#-2 Var (ftn) .200 . 1 0 0  .050 .020 .010 .002 .001 

1 and investigate its small sample properties.  The  We will obta in  the MLE flu = ~-  

likelihood equation is given by 

( 5 . 2 )  

m m 

g(O) : E(6i  + 1)ri + ( k -  1)rm m ~ 6ir~ 
i=1 ~ = 1 - e x p ( - 0 r i )  = 0. 

It is easy to see tha t  g(O) is str ict ly increasing for 0 > 0, with lim0-.0+ g(0) = - c ~ ,  
lime__~ g(O) = E i ~ l  ri + (k - 1)r,~ > 0. Hence, (5.2) has a unique solution. We 
numerically calculated the estimator from simulated samples from a standard exponential 
distribution (8 = 1). Table 5 gives the simulated values of the mean and variance of 

i for various choices of n and k, as obtained from 1,000,000 samples each. It hu = 

also provides the rat io of (IUT(n, k)) -1 and the variance. The MLE appears  to be very 
efficient for modera te  sample sizes. In these cases, neither bias nor efficiency are affected 
much by k. Hence, the variances decrease with k, as long as n is much greater  than  k. 
For k 's  approaching the order of n, the opposite effect occurs. 

6. Information in inversely sampled k-record data 

Most record based inference procedures given in the l i terature are based on inversely 
sampled records. They  may  be of greater value when generalized to take advantage of 
the more frequent k-records. Knowing the FI  tha t  k-record values and k-record times 
could provide about  the parameter ,  would then be useful. Therefore, we will briefly 
state the corresponding expressions. We define inverse sampling for k-records as taking 
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T a b l e  5. P r o p e r t i e s  o f  t h e  m a x i m u m  l i k e l i h o o d  e s t i m a t o r  f t  U b a s e d  o n  u p p e r  k - r e c o r d  d a t a  

f r o m  a n  e x p o n e n t i a l  d i s t r i b u t i o n .  T r u e  m e a n  p = 1. T h e  c o l u m n  l a b e l s  E ,  V a r  a n d  r s t a n d  f o r  

E f t u ,  V a r ( f t u )  a n d  t h e  rat io  (lURT(n'k))-i r e s p e c t i v e l y .  
Var( /2u)  , 

3 9 5  

k = 1 k = 2 k = 3 

n E V a r  r E V a r  r E V a r  r 

5 1 .25 .59 .40 1 .33 .92 .28 1 .50  2.2 .15 

10 1.11 .20 .67 1 .13 .20 .63 1 .14  .23 .58 

20  1 .052  .098 .82 1 .056  .082  .81 1 .059  .080  .80 

50 1 .017  .048 .91 1 .020  .036 .92 1 .021 .032 .92 

100 1 .006  .031 .93 1 .009  .022  .96 1 .0098  .018 .96 

500  .996 .014  .93 .999 .0086  .97 1 .0003  .0068 .98 

1000 .994  .010  .92 .998 .0062  .97 . 9993  .0048  .98 

k = 5 k = 10 

E V a t  r E V a r  r 

1.20 .37 .46 

1 .067  .086 .78 1 . 1 0 0  .14 .68 

1 .022 .029 .92 1 .025  .029 .91 

1 .910 .016 .96 1 .011 .014  .96 

1 .001 .0053  .990  1 . 0 0 1 8  . 0 0 4 0  .993  

1 .0001 .0036  .991 1 . 0 0 0 7  .0026  .996  

observations until a fixed number m of k-records is reached. Let JU(m, k) be the FI 
in the first m (upper) k-record values and JUT(m , k) be the FI in the first m (upper) 
k-record values and k-record times. 

Note that  the quantities IUT(n, k) (Sections 2-4) and J~T(m, k) are quite different. 
Both denote the FI in k-record values and k-record times. However, IUT(n, k) is the FI in 
the random number of k-record values (and k-record times) that occur in a fixed number 
(n) of i.i.d, observations. On the other hand, JUT(m , k) is the FI in a fixed number (rn) of 
k-record values (and k-record times). Here, the length of the i.i.d, sequence necessary to 
observe them is random. There is no direct mathematical connection between IVT(n, k) 
and J T(m, k). 

It follows directly from (2.1) that 

(6.1) J~(rn, k) = ki [ '  02 log002f(x) + 02 log(lo#- F(x)) 
i = 1  oo  

( -  log(1 - F(x))) i-1 (1 - F(x))k-lf(x)dx 
• ( i -  1)! 

f_~ ( 02 021og(1- F(x)) ) +km log f(x) (k - 1) 
002  0z- 

• ( -  log(1 - F(x))) m-1 (1 - F(x))k-lf(x)dx. 
1)! 

From (2.3), we can see that 

(6.2) [ ] JUT(re'k) -- Ei=l E 021~ J + m-lE E -6i 02l~ 
i = 1  

However, (5i + 1) has a geometric distribution with parameter 1 - F(R~,k) when condi- 

F ( R ~ , ~ )  . Therefore, tioned on Ri,k. This implies that E[6i I Ri,k] -- 1-F(R~,~) 

(6.3) 



396 GLENN HOFMANN AND N. BALAKRISHNAN 

Further ,  recall t ha t  Ri,k behaves like the i - th  record from Fl:k(x) = 1 - (1 - F(x)) k 
(Dziubdziela and Kopocifisiki (1976)) which implies tha t  the  densi ty of R~,k is given by 

(6.4) f i (x)  = ( - k l o g ( 1  - ( i  - 1 ) !  kf (x ) (1  - F(x))  k-1.  

Combining  (6.2) with  (6.3) and  (6.4), we obta in  

(6.5) 
m--~ / 7  ( 0 2 1 o g f ( x ) 0 2 1 o g F ( x ) F ( x )  ~ 

= k �9 = ~ 002 002 1 - F(x) ] 

x ( -  log(1 - F(x))) i-1 (1 - F(x))k-lf(x)dx 
( i -  1)! 

/ _ ~ (  1) 02 ) + k m  02 log f(x) (k - log(1 - F (x ) )  
~r 002 002 

X ( -  log(1 -- F ( x ) ) )  m-1  (1 - F(x))k-lf(x)dx. 
(m - 1)! 

The  corresponding formulas for lower records are ob ta ined  from (6.1) and (6.5) by re- 
placing F(x) with 1 - F(x). 
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