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A b s t r a c t .  We introduce the Linear Relative Canonical Analysis (LRCA) of 
Euclidean random variables. Then similar properties than for usual linear Canonical 
Analysis are obtained. Furthermore, we develop an asymptotic study of LRCA and 
apply the obtained results to tests for lack of relative linear association, dimension- 
ality and invariance. 
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1. Introduction 

In some practical situations, one may have to make a statistical analysis on some 
variables when there is a noise variable. An approach for such situations consists in 
making the chosen analysis after removing the effect of this later variable; this is done 
by considering residuals of regression on that variable. This approach has led to known 
methods; an example can be found in discriminant analysis with a covariate which is 
known to have the same mean in the related groups (see e.g. Fujikoshi and Khatri  (1990), 
Baccini et al. (2001)). For canonical analysis, the same approach gave partial (see Rao 
(1969)) part and bipartial (see Timm and Carlson (1976)) canonical correlation analysis. 
In this later work, statistical inferences based on the canonical coefficients related to these 
analyses were proposed. Although the obvious interest of these methods, it seems that  
there does not exist an extensive study of their properties as it is the case for usual 
Linear Canonical Analysis (LCA). Particularly, the aforementioned statistical inference 
shows the interest of making an asymptotic study of these analyses. 

In this paper, we define the Linear Relative Canonical Analysis (LRCA) of Euclidean 
random variables and show that  this analysis is in fact a LCA for suitable random 
variables and can be seen as a generalization of partial canonical correlation analysis. 
Then, some properties of LRCA are obtained from those of LCA. Next, we focus on the 
asymptotic study of LRCA. Although this analysis is a particular LCA, the results of 
asymptotic studies of LCA (see Arconte (1980), Pousse (1992), Anderson (1999), Fine 
(2000)) can not be applied because we do not have an i.i.d, sample of the related random 
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variables. Indeed, these variables can not be observed since their definition involves 
covariance operators which are unknown in practice. So, we develop an asymptotic 
study for LRCA. The obtained results are used for defining tests for lack of relative 
linear association, dimensionality for LRCA, and invariance when the corresponding 
variables are transformed by linear maps (see the end of Section 2 for definition and 
properties and Section 4.3 for inference procedure). 

2. Linear relative canonical analysis 

Let (~, A, P) be a probability space; along the paper we will work with random 
variables (r.v.) defined on (f~, .4, P) and valued into Euclidean spaces (i.e. finite dimen- 
sional Hilbertian space). When F is such a space, we will denote by (., ")F its inner 
product and by II" IIF the associated norm. We will use the usual tensor product | 
such that, for any vectors u and v belonging to Euclidean spaces F and G respectively, 
u | v is the linear map: h E F ~ (h,U)FV E G; if u = v we will write u | instead of 
u | u. The properties of @ (and other tensor products) and the related matrix expres- 
sions can be found in Dauxois et al. (1994). When X is a random variable valued into 
an Euclidean space 2( and satisfying ]E(ltXll~v ) < +cx~, we will denote by L x  the linear 
map: u E 2( ~ (u ,X )x  E L2(fi, A ,P) .  For all operator T, we will denote by T* its 
adjoint. It is easily seen that  L~  is the map: Z E L2 (~ ,A ,P)  H E(ZX)  E 2(; thus i f X  

is centered, its covariance operator Vx := E(X | verifies Vx = L*xLx. 
For m E {1, 2, 3}, let us consider a centered r.v. Xm defined on (~, .4, P) and valued 

into a Euclidean space 2(m with dimension p,~; without loss of generality we assume that  
Pl _< P~. Further, we suppose that  E(liXmI]2m) < +c~ and we define 

(2.1) Em : :  R(Lxm), 

where R(T) denotes the range of the operator T, and for k E {1, 2} 

(2.2) Ek.3 := (Ek + E3) O E3, 

where O denotes the orthogonal difference defined by: E O F -- E A F • where E and 
F are Euclidean spaces such that  F C E. Notice that,  denoting by HE the orthogonal 
projection operator onto the subspace E and by E • its orthogonal space, one has 

(2.3) Ek.3 = I]E  (Ek). 

Now, we define: 

DEFINITION 2.1. The linear relative canonical analysis (LRCA) of X1 and X2 
relative to X3 is the canonical analysis (CA) of E1.3 and E2.3. 

Notice that  since El.3 and E2.3 are finite-dimensional spaces, the previous CA is 
a linear CA (LCA) of random vectors (see Dauxois and Pousse (1975), Dauxois and 
Nkiet (1997a)). When these spaces are l~P-type ones, the components of these random 
vectors are r.v. which span the aforementioned spaces. In the more general framework 
of Euclidean spaces, these random vectors (say X1.3 and X2.3) are such that  El.3 = 
R(Lxl~)  and E2.3 = R(Lx23). Now, we will search such random vectors. In order 
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to simplify notation,  we will write Lm (resp. Vm) instead of Lx m (resp. Vxm).  Let us 
consider 

V m j : = L m L j = E ( X j |  ) for ( m , j )  E { 1 , 2 , 3 }  2 with m # j  

and put 

(2.4) 
Lk .3  : =  L k  -- L3Vt3 V3k 

X k .  3 :---- X k -- Vk3V3t X 3  (k = 1,2), 

where T t denotes the Moore-Penrose inverse of the opera tor  T. We obtain  

Lemma 2.1. For k E {1, 2}, one has: 
(i) Ek.3 = R(Lk.3); 

(ii) Lk.3 = Lzk.3.  

PROOF. (i) From equation (2.3), we have u C Ek.3 if, and only if, there exists 
x E Ek such that  u = 1-IE~X = x -- IIE3X. Thus,  from the equali ty IIEz = L3Vt3L~ 
and equation (2.1), u E Ek.3 is equivalent to the existence of a vector  a E Xk such that  
u = LkC~ -- L3Vt3L~Lka, tha t  is u E R(Lk.3). 

(ii) For all a C Xk, we have: Lk.30L = <o~ ,Xk>x  k -- (vt3 Y 3 k o ~ , X 3 > x z  = (oL, X k  -- 

Vk3Vt3X3)xk = Lz~.~a; this proves the lemma. [] 

Since Ek.3 = R(Lx~.z) ,  we can state: 

PROPOSITION 2.1. The L R C A  of X1 and X2 relative to X 3 is the LCA  o] the 
random variables X1.3 = X1 - V13Vt3 X3 and X2.3 = X2 - V23V3t X3.  

Let us consider the operators:  

@2 
Vk.3 = L*k.3Lk.3 = ]E(Xk.3), 

Vk~.3 = L~.3Lm.3 = IE(Xm.3 | Xk.3) for r e # k ;  

we have: 

Vk. 3 = (L~ - Vk3Vt3 L ~ ) ( L k  - L3vt3 v3k) 

= g k - Vk3Vt3V3k ,  

and for m # k: 

(2.5) 
Y k m .  3 : (L~ - Vk3V3t L~) (Lm - L3Vt3 V3m) 

= Ykrrt -- Y k 3 Y 3 t Y 3 m  . 

We deduce from the classical theory of LCA tha t  the L R C A  of X1 and X2 relative 
to X3 is obta ined for example from the spectral  analysis of the  selfadjoint operator  

f~t ~1/2~ v t ~ r~t ~1/2 
T1.3 = ~, 1.3} 12.3 2.3 21.31, 1-31 , 
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where T 1/2 denotes the square root of a nonnegative operator T. 

Remark  2.1. When V1. 3 and V2. 3 a r e  invertible the spectral analysis of r l . 3  is 
equivalent to that of T~. 3 = V1-~V~2.3V2-2V2~.3. That is known in the literature as 
partial canonical correlation analysis (see e.g. Rao (1969), Timm and Carlson (1976)). 
Then this last analysis appears as a particular case of the general relative canonical 
analysis of subspaces (see Dauxois and Nkiet (2002), Dauxois et al. (2004)), obtained by 
considering subspaces generated by specific linear functions of the original variables. In 
order to show up this property we prefer to use the terminology linear relative canonical 
analysis instead of partial canonical analysis. Notice that the part and bipartial canonical 
correlation analysis developed by Timm and Carlson (1976) can be reobtained from our 
framework by considering the CA of E1 and E2.3, and E1.3 and E2.4 respectively, where 
E2.4 is constructed as in equation (2.2) with another Euclidean r.v. )(4. 

The properties of LRCA are deduced from those of LCA. Hence the LRCA of X1 
and X2 is characterized by a triple 

(2.6) t 

(where r denotes the rank of T1.3 and Pk is the dimension of A'k, k = 1, 2) satisfying: 
(Pl)  for each i E {1, . . .  , r}, p~ is the i-th greatest eigenvalue of T1.3 and satisfies 

0 < Pi <_ Pi-1 _< 1 (with Po = 1); 
, (i), (P2) the system ioq.3)o<i<m is an orthonormal basis of A'l such that each a(i)1.3 is 

an eigenvector of T1.3 verifying: 
�9 i f  i _< r, then ~1- (i).3 is associated with p~ 

�9 if i > r, then ,~(i) is associated with 0; ~1-3 
, (i), (p3) the system [012.3)0<i<p 1 is an orthonormal basis of X2 such that: 

�9 if i < r, then ,~(i)  , ~ - l [ E t  h l / 2 V ,  ). ~ ( l T t  hl/2oL(i) �9 
- -  '~2.3 = t ' i  ~, 2.31 z l - ~ , ' l . 3 ]  1.3, this equality is equivalent 

to c~ (i) --I t 1/2 t 1/2 (i) ,~(i) 1.3 = Pi (V1.3) V12"3(V2.3) 32. 3 and then ~2-3 is an eigenvector of T2.3 .'-- 
t 1/2 t t 1/2 (V2.3) V21.3V1.3V12.3(V2.3) associated with p/2, 

�9 if i > r, then ,~(i) is an eigenvector of T2.3 associated with 0. ~2 .3  
The pi's are termed the (relative) canonical coefficients associated to the LCRA; 

the (relative) canonical variates are the random variables defined for (k, i) E {1,2} x 
{0, . . .  ,Pk} by: 

(2.7) 

Clearly, one has 

(2.8) 

and 

t - 1 1 2 ~ ( i )  \ r(i) L , - { Y .  t "~l/2,n,(i) = (Xk.3,  ( V I . 3 )  " (~k.31Xk Jk.3 := ~.ok k.31 ~k.3 

(v .3)l/ xk.3 
pk 

V "  r(/) c~(i) 
---- ~ . ~ J k . 3  k.3 

i=1  

Err(i) r(J)~ ILl 3(Y~ t "~l/20L (i) (Y~ t ~l/20~(J)\ 
\ 3 1 . 3 J 2 . 3 ]  ~-- \ �9 ~, 1.3] 1 - 3 , n 2 " 3 k  2.31 2.3/  

(i) { y t  ~ l /2L ,  r [ y t  ~ l / 2 , ~ ( j ) \  
-~ ~~ k 1.32 1 .3~2"3 I, 2 .3/  ~2 .31x1  

, (i) [ v  t ~1/2V1 [Tzt "~l/20~(J)\  
~- ~OL1.3, t 1-3] 12"3i, v2.31 2.3/X1" 
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1/2 t 1/2. ~(J) belongs to the kernel of T2.3, that is also the kernel of (V1.3) V12.a(V2.3) , I f j  > r, ~2.3 

hence we have ~r r(i) r(j)~ _- O. If j < r then the use of (P3) and the orthonormality of ~kJ1-3,/2.31 
the (i),~ gives ~(r ~(5)~ c%3 ~ ~tsl.3s2.aJ ---- Pj~ i j ,  where (Sij denotes the Kronecker delta. Consequently, 
taking Pi = 0 for i > r, we have for any ( i , j )  �9 {0, . . .  ,Pl} x {0, . . .  ,P2} 

(2.9) Err(i) ,e(j) "~ kJ1.3J2.3] = pj6ij. 

Moreover, when for k �9 {1,2}, Vk.3 is invertible, one has for ( i , j )  �9 {1, . . .  ,pk} 2 

E [~:(i)r(j)~ IL V, -1 /e - ( i )  L V, -1/2~(j)\  
kJk.3Jk-3/ "~ \ k.3 k.3 t~k. 3, k.3 k.3 ~k.3] 

, (i) y - 1 / 2 r ,  r ,r--l~2 ( j ) ,  
= ~Olk'3' k'3 ~k.3L'k'3Vk.3 Olk.3~2dk 

, (i) _ (J) \ = ~Sij. = ~OLk.3, Ugk.3]2d 1 (2.10) 

In order to simplify the previous expressions, conditions for the invertibility of Vk.3 
(k = 1, 2) may be searched. They can be obtained from the following properties: 

LEMMA 2.2. For k �9 {1,2}: 
(i) Ek A E3 ---- Lk(ker(Yk.3));  

(ii) E k  n E3 = {0} ~ ker(Vk) = ker(Vk.3). 

PROOF. (i) Let u be an element of Ek N E3, then HEkHEaU = u and there exists 
a vector a which can be chosen in R(L~:) (because A'k = kernk ~ R(L~) )  such that 

U = LkCt. Since HEm = L m V f m L  m ( m  �9 {1,2,3}), we t h e n  have LkVfkVk3V3fV3ka= Lkct. 

Premultiplying both sides of this equality by L~ gives HR(vk)Yk3Y3tW3kOL = YkOt; since 
R(Vk3) = R(L~L3)  C R(L~)  = R(Vk) ,  by equation (2.5) we obtain Vk.3a = 0. Hence 
u �9 Lk(ker(Vk.3)) and thus Ek A E3 C Lk(ker(Vk.3)). Reciprocally, for all a �9 ker(Vk.3), 
one has Vka = Vk3Vf3V3ka = L~HE3Lka.  Premultiplying both sides of this equality by 

L k V ;  and noticing that LkHR(yk) = LkIIR(L~) = Lk permit to obtain u = HEkHE~u, 
where u = Lka .  Thus u �9 Ek n E3 and this proves that Lk(ker(Vk.3)) C Ek r-I E3. 

(ii) If Ek N E3 = {0} then, from (i), cr �9 ker(Vk.3) implies L k a  = 0, that  is a �9 
ker(Lk) = ker(Vk). Reciprocally, if ker(Vk) = ker(Vk.3) then from (i), we have Ek Cl E3 = 
Lk(ker(Vk))  = Lk (ker (nk ) )  = {0}. [] 

From this lemma we deduce that, for k E {1, 2}, if Irk is invertible and Ek f3 E3 = 
{0} then Vk.3 is invertible. These are sufficient but not necessary conditions for the 
invertibility of Vk.3. 

Remark  2.2. When, for m E {1,2, 3}, a basis is chosen in An: 
1) the invertibility of Vm is equivalent to the linear (algebraic) independence of the 

components of X m  related to the basis of A'm which is considered. One can always reduce 
to that situation by removing some of these components. In the literature, Vm is often 
supposed to be invertible and it is admitted that this assumption does not restrict the 
generality; 

2) when the Vm's are invertible, the condition Ek A E3 = {0} (k = 1, 2) means 
that the system made up by the components of Xk  additioned to that  of )(3 is linearly 
independent. That  situation can always be obtained by removing some components in 
Xk and/or in X3; 
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Our approach consists in defining LRCA by using the CA of Euclidean spaces (see 
Dauxois and Nkiet (1997a)); one of the interests of this approach is that it permits to 
see several classical methods as particular cases of this CA. Two examples are given 
below. 

Example 2.1. LCA with linear constraints. This method (see Yanai and Takane 

(1992)) consists in searching canonical variates of X1 and X2 having the form f (0  = 

(a (0 X~}x~ with the linear constraints A~a~ ~) = 0, where Ak is a linear map from k 
A'a to another Euclidean space A'~ (k = 1,2). Suppose that, for k ~ {1,2}, Vk is 
invertible, and put Yk := AkVk-IX~ and Ev~ := R(Ly~). It is clear that Ey~ c Ek; then 
(E~ + Ey~ ) ~ Ey~ = Ek (3 Ev~. For any a ~ A'~ and any/3 ~ X~, one has 

E(<a, Xk}x~ (/3, Yk}x;) = (E(Xa | Yk)a,/3}x; = <Aaa,/3>x~ ; 

consequently, a r.v. f := Ca, Xk}xk belongs to Ek 0 Evk if, and only if, for any /3 E 
2r (Ako6/3}..v[r = 0; that is Aka = 0. Consequently, the LCA of X1 and X2 with 
the previous linear constraints is the CA of E1 (9 Ev~ and E2 (3 Ev2. Now, it will be 
reformulated as LCA for suitably transformed variates. For k E {1, 2}, from Lemma 2.1 
we have Ek 0 E y  k = R(Lzk) ,  where Ztr := Xk -- UkWtkYk with Uk := E(Yk (~ Xk) and 

Wk := E ( Y ~ ) .  Therefore, the previous CA is the LCA of the random vectors Z1 and 
Z2 which can easily be expressed as transformed variates from X1 and X2 respectively. 

| -1 . . A Tz-I~tv |  Indeed, from Uk = E (X  k )Vk A k = A k and Wk = ~kv  k I~I.A k } k ]c A k V k l A ~ ,  
we obtain Zk = (Ik - Ck)XI~, where Ik denotes the identity operator of 2(k and Ck := 
A~c(AkVklA*~)tAkV~ -1. Notice that Suzukawa (1997) showed that the previous LCA 

with linear constraints is the LCA of two variates )~1 := QIX1 and )~2 :-- Q2X2, where 
Q1 and Q2 are suitable orthogonal operators. In fact, this result is equivalent to the 
preceding one. Indeed, the LCA of Z1 and Z2 is the research of canonical variates 
(O~i,/3i)l<_i<_m (m ~ N*) and canonical coefficients (P i ) l< i<m  satisfying: 

{ Y12V2t Y210q 2~ = p~ V1 ai,  

Y21V: V12/3 i 2~ Pi 2/3~, 

<~, ,  ~.~>~, - -  1, <-~,  ~1-j>~, = 0 
(for i # j ) ,  

</3i, V2Zi)x2 --- 1, <#i, VuZj)x2 ---- 0 

where V12 -- E(Z2 | Z1) -*  = V12 and Vk = E(Z~ ~) (k C {1, 2}). Since 

Vk ---- (Ik -- Ck)Vk(Ik -- Ck)* = (Ik -- Ck)Vk = Vk(Ik -- Ck)*, 

- C  * yl~ = (11 - c 1 ) y l ~ ( I ~  2) , 

and 

= - C ~ * V ,  - 1  ~rt k ( Ik  k} k ( Ik  -- Ck ) ,  (It: -- C k ) * V k  I = V k l ( X k  -- C k ) ,  

the preceding system is equivalent to 

(11 C1 ) V12 V2 1 (/r2 C2) V21 ~i 2 - -  - -  = P i  V l ~ [ i ,  

(I2 c2)v21vi-1(z1 - cl)v12~ = p~2V2~, 
<~,  VlVdX, = I ,  

(~i, V2(i}x2 = 1, 

('r~, vi 'rAx,  = o 
(~, u 2 ~ j ) x 2  = o 

(for i # j )  
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with 3'i = (I1 -C1)*a i ,  ~i = (I2 -C2)*fli .  This later system is that is shown in Suzukawa 
(1997) to define the LCA of X1 and X:.  

Example 2.2. Relative discriminant analysis. Let Y be a discrete r.v. valued into 
{ 1 , . . . ,  q} and defining q groups. Then put X~ := ( l { g = l } , . . . ,  l{y=q}); we define the 
relative discriminant analysis (RDA) of Y and )22 relative to 323 as the canonical analysis 
of E1 and E2.3. Since E2.3 -- R(Lx2.3), this RDA is the discriminant analysis of Y and 
)(2.3. This method have been introduced in the literature (see, e.g., Fujikoshi and Khatri 
(1990), Baccini et al. (2001)) for the case where )(3 is a covariate having the same mean 
in the preceding q groups and admiting an invertible covariance operator. 

Invariance of multivariate analyses when the related variables are transformed by 
linear maps have been considered in some particular forms in the literature. For in- 
stance, the problem of additional information, tackled in Fujikoshi (1892) and Suzukawa 
and Sato (1996) for LCA and in Fujikoshi and Khatri (1990) for covariate diseriminant 
analysis, defined as the research of conditions for which the results of a given analysis are 
the same whether one considers some variables or subcomponents of them, is clearly a 
problem of invariance of this analysis after transformations of these variables by projec- 
tors (see Remark 2.3). Then, it is of interest to generalize the approach of the previous 
works by searching for conditions such that the considered analysis is invariant when 
the variables are transformed by linear maps which may not be projectors. This is an 
important goal since in multivariate analysis it often occurs that, in order to reduce di- 
mensions, one have to work with linear transformations, and not necessarily projections, 
of original variables; so it may be convenient that these transformations do not affect 
the results of the given analysis. For the case of linear canonical analysis (LCA), this 
generalizing approach have been tackled by Dauxois and Nkiet (1997a) who determined 
conditions for having the aforementioned invariance. We will now extend this problem 
to the case of LRCA. For k C {1, 2}, consider an Euclidean space X~ with dimension qk, 
a linear map A k from 2(k to A's and the r.v. Yk = AkXk. It is easy to verify that, defining 

Wk3 := E(X3@Yk), Yk-3 : =  Yk-Wk3V2X3 and Wk.3 := E(Yk@.2), one has Wk3 = AkVk3, 
Y~.3 = AkXk.a; this implies: Lyk. 3 = Lk.3A~. The LRCA of X1 and X2 relative to X3 is 
the triple given in equation (2.6), and similarly we consider the triple 

kb)l.3Jl<_i<~q~, k~2.3)l<_i<_q2 } 

which characterizes the LRCA of 111 and Y2 relative to X3. The canonical variates 
corresponding to the preceding LRCA are 

= 

.3 

and 

g(i) -~ LYk.3(W~k.3)l/2~(ki.~, k.3 

l < i < p k  

l < i < q k .  

DEFINITION 2.2. The LRCA of X1 and X2 is invariant for the pair (A1, A2) if the 
following conditions are satisfied: 

(i) r = s and Pi = ~'i (i = 1 , . . .  ,r); 

(ii) for all (k,i) e {1,2} x {1, ,r}, f(i) ,~(~) 
�9 ""  k-3  ~ ~ k - 3 "  
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Now, we can seek a necessary and sufficient condition for which this invariance 
property holds. Notice that, since Yk.3 = AkXk.3 (k = 1, 2), the invariance introduced 
in the previous definition means the invariance of the LCA of X1.3 and X2. 3 for the pair 
(A~, A2). Then, by applying Proposition 4.2 of Dauxois and Nkiet (1997a), we obtain: 

PROPOSITION 2.2. The LRCA of X1 and X2 is invariant for the pair (A1, A2) if, 
and only if  one has: 

�9 �9 t A V12.3 = V1.3A~(A1V1.3A~)tA1V12.3 and V21.3 = V2.3A2(A2V2.3A2) 2V21.3. 

Remark 2.3. The previous notion of invariance for LRCA is related to the prob- 
lem of additional information in canonical analysis which interested some authors. For 
example, Siotani (1957) studied the effect of adding variates on the canonical coefficients 
and Fujikoshi (1982) determined conditions for which LCA remains unchanged when 
subcomponents of the involved variates are omitted. When, for k c {1, 2}, we have the 

X(1) X(2) decomposition in direct sum A'k ---- k ~ k , an analogous problem of additional infor- 
mation can be formulated for LRCA. Consider 7rkl (resp. 7rk2) the projection operator 

~,(2) (resp. X (1)) and put: :v(1) (resp. 2d (2)) along "'k on ,,k 

Xkj  = lrkjXk (j = 1, 2). 

We say that the pair (X12, X22) does not provide additional information on the LRCA 
of X1 and X2 relative to X3 if this later LRCA is invariant for the pair (rm,lr21). A 
necessary and sufficient condition for this invariance is obtained by applying Proposition 
2.2 to the pair (Th1,Tr21); now, by taking X3 -- 0 we obtain the condition of Fujikoshi 
(1982). 

3. Asymptotic study of LRCA 

The asymptotic theory for classical LCA is well known; the earlier works on this 
subject focused on the asymptotic joint distribution of the sample canonical correlation 
coefficients under normality (see Hsu (1941)) or nonnormality (see Muirhead and Water- 
naux (1980)). Later, asymptotic distributions both for these coefficients and for sample 
canonical vectors and/or  projections were derived under normality and when the popu- 
lation canonical correlation coefficients are distinct (see Anderson (1999) and references 
inside) or under nonnormality and in case the preceding coefficients have multiplicities 
(see Arconte (1980), Pousse (1992), Larr~re (1994) and Fine (2000)). In fact, asymptotic 
study for LCA or others multivariate statistical analyses reduces to determining consis- 
tency and asymptotic distributions for eigenvalues, eigenvectors and eigenprojections of 
an operator which is known to be consistent and for which an asymptotic distribution is 
known. That is not technically difficult nowadays since one can apply results of Dossou- 
Gbete and Pousse (1991) for a selfadjoint random operator, or those of Eaton and Tyler 
(1994) when one focuses on singular values of a random matrix which may be not sym- 
metric. Finally, making an asymptotic study for a statistical multivariate analysis mainly 
consists in studying the consistency and in deriving an asymptotic distribution for the 
related operator. 

In this section, we focus on asymptotics for LRCA. Although it is a particular 
LCA, the results of asymptotic study for this later analysis cannot been applied to 
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it. Indeed, these results hold when an i.i.d, sample of the related random variables is 
avalaible; but, as we will see below, we don't have any sample of (X1.3,)(2.3). These r.v. 
are unobservable ones because their definitions (see equation (2.4)) involve covariance 
operators which are unknown in practice. Then, consistency and asymptotic distribution 
for the sample operator related to LRCA are not straightforward and there is an interest 
to determine them. 

We suppose that, for all (k,m) e {1,2} x {1,2,3}, we have: 
(A1) ~:(llXm 4 IlXm) < + ~ ;  
(A2) Vm is invertible; 
(a3) Ek n Ea = {0}; 
(A4) Vk.3 = / k  

where Ik denotes the identity of Xk. 

Remark 3.1. From Lemma 2.2 we know that the assumptions (A2) and (A3) imply 
thas Vk.3 is invertible. Then Assumption (A4) does not restrict the generality; indeed 

l r - - l l2  v one can always reduce to that situation by considering Yk = vk.3 Ak instead of X~ 
1 7 - 1 / 2  (k = 1,2), and since "k.3 is invertible the transformation Xk ~ Vk-~/2Xk yields 

invariance of the LRCA. 

Let /~(i) ~(i) ~-(i)~ kZXl ,~2 ,A3 )l<i<n an i.i.d, sample of the triple Z = 
(m, k,j) e {1,2,3} • {1,2} 2, we consider: 

n 

r tZ_. .  ~ m ,  
i = 1  

n 

(3.1) V(~) = 1 E ( x ~ { )  - x(~)~| 
i = 1  

n 

(3.2) l f ( n  ) 1 E ( X } i )  - - ( n )  = - - x ,  ) |  ( x ( ; ) -  -x ( :  )) = re:)" * k j  n 
i = 1  

for k C j .  

(X1,X2, X3); for 

N o t i c e  t h a t  v(n) = --nl E i = l n  X(i)~2m --ff (n)| a n d  ll(n), kj ---- - - E i = l n l  n x(i)j ,c~X (i)k - ~xj~(n) ~lXk'-~(n) ; 

then by the strong law of large numbers V (n) and V(} ) almost surely uniformly converge 

to V,~ and Vkj respectively, as n --~ +cx~. This shows that  for large values of n, V3 (n) is 
invertible (a.s.); thus we can define 

(3.3) Vk(.~ ) : =  V ( n  ) - V ( 3 )  V3 (n ) - I V3(: ), a n d  

(3.4) v (") 12.a := V(~ ) v(~)11(~)-i - -  " 13 " 3 V3(2 ) IF (n )*  -'~ " 2 1 - 3  " 

We also have the almost sure uniform convergence of v(n) to Ik, as n --* +c~. Then, for "k .3  

large n, V(.~ ) also is invertible (a.s.) and we put: 

TI(.~) v(~) -1/~Iz(-) lz(n) -I v(n) v(n) -1/~ " 1-3 v 12.3 v 2.3 * 21-3 v 1-3 " 

We take the spectral analysis of T(.~ ) as an estimator of the LRCA of Xa and X2 relative 
to X3 and our goal is to study the asymptotic properties of this estimator and its 
eigenelements. 
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Let A' : =  (~3) l~j_~s (resp. A : =  (/~i)l_<~i~pl) be the strictly decreasing (resp. complete 
nonincreasing) sequence of the eigenvalues of T1.3, we denote by rnj the multiplicity of 

t It is clear that  Ai 2 j-1 (with Aj. = Pi with Pi = 0 if i > r and that ,  put t ing vj = 1 + ~-]4=0 mt 
m0 = 0), one has A} = &v~. Then we consider the orthogonal projection operator Pj onto 

~ ,  .vj +rnj - 1 i)3| the eigenspace of T1.3 associated to A~, that  is Pj := ,_,,=vj a~ 2. Moreover, letting 

(~(n) ~ be the complete sequence of eigenvalues of T~.~ ), we consider an orthonormal Ai )l<_i<_pl 

basis r^ (i) ~ of associated eigenvectors such that  c~ (i) is associated to A~n), and I,C~l.3,n J l_<i~pl 1.3,n 
~ -~ j  Tm~ -1  (i) | 

we put  p ( n )  : =  z__.i=u~ OZl.3,n" 

3.1 Almost  sure convergence 
As already noticed, the empirical covariance operators defined in equation (3.1) 

and equation (3.2) almost surely uniformly converge to the corresponding covariance 
operators. Thus, V(3 ) (resp. V, (n)" v(n)~ almost surely uniformly converges to Ia (resp. 2.3 ~ "12.3] 
12; V12.3). Consequently, T(~ ) converges almost surely uniformly to T1.3. A direct 
application of Proposition 3 of Dossou-Gbete and Pousse (1991) gives the following 
almost sure convergence properties of the eigenelements of T(.~ ). 

PROPOSITION 3.1. (i) For any j C {1, . . .  ,s} and any i E { v j , . . .  , vy + rnj - 1}, 
(.(,~)~ 
/'i )heN* converges almost surely to Aj. 

(ii) For any j (1 , . . .  ,s},  converges almost su, ly unifo,'mty to G" 
, (,'j) 

= 1, then converges almost su,  y to 

3.2 Convergence in distribution 

Here, we will derive the asymptotic distribution of v/-n(T(.~) -T1.3) and, consequently, 
those of the eigenelements of this operator. 

We identify X1 x X2 x X3 with the direct orthogonal sum X = A'I (~ ,1"2 @ ,1'3, 
the aforementioned orthogonality being related to the inner product  of X defined by 
( x , y ) x  3 3 3 = ~ m = l ( X m ,  Ym)X,, for all x := ~ m = l  zm E X and all y := ~-~m=l Ym e 2d. 

3 = E 3 1 x(r~/) (i  1 , . . .  Then we can write Z = ~ m = l  Xm and put  Zi = = , n). In the same 
way, the space s x X2 x X3) of linear maps from X1 x X2 x X3 into itseff will be 
identified to the orthogonal sum M = (Dl<m,j<_3 s Xj) ,  where for any pair (F, G) of 
Euclidean spaces, we denote by s  G) t-he space of linear maps from F into G (when 
F = G, we will write s  Hence we can write V = 1E(Z | -- ~-~'4_<mj_<3 Vim (with 
Vjj := Vj). Let us consider: 

and 

(3 .5)  

n 3 

- -  n 

n 

i=1 l <_j,m<_3 
VJ~ ) (with VjT) :=  V (~))  

l <_j,m <_3 
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For (r, s) ~ {1,2, 3} 2, we denote by p~  the orthogonal projection operator from 
M = ( ~ ) l < m , j < 3 E ( ~ ' r n ,  ,~'j) to E(X,, X~), that  is the operator such that  for all A = 
~1_<i,j_<3 Aij ~ M,  one has p~,(A) = A ~ .  First, we will prove three useful lemmas. 

~-'V, (n) Ia ) ('~) LEMMA 3.1. For k ~ {1,2}, one has x/n( a.a - = ak.a(Hn), where Hn is 

defined in equation (3.5) and ~ (n)~ (ak.3)neN. is a sequence of random operators from M 
to s which converges almost surely uniformly to the operator ak.3 of f_.(M, E(Xk))  
defined by: 

ak.3 (A) = Pkk (A) - Pa3 (A)V3 -1V3k + Vk3 V3- lp33 (A) V 3  ~ Vak - V~aV3- lp3k (A). 

PROOF. Using equation (3.3) and Ik = Vk.3 = Vk -- Vk3ValV3k, we have: 

v : 2 -  i~ = v:  ~) - v : ; ) v ?  ) - t " 2 )  ~ 

= r (n )  _ r ( k 2 ) g 3 ( n ) - l r ( 2 ) _  g k Jr- g k 3 r 3 1 r 3 k  

= (v~ (~) - v ~ ) -  (v~(2) - v~ )v~(~ ) - i v2  ) 

+ v ~ v ~ ) - ~ ( v ~  (~) -  ~ ) v ~ - ~ %  ~) - v ~ v ~ - ~ ( %  ~) - v~) .  

Hence v~(V(.3 ) -  Ik) = .(n) .(~) ~ k . 3 ( H n ) ,  where is the random operator of s  s ~k-3 
defined by: 

a (~ ) (~  (n)-~ (~) - 
k.3 \" ~] = Pkk (A) - Pk3 + - (A)V~ % v~v} n) ~p~(A)Vs V~�89 

Then, the almost sure uniform convergence (ak.3)neN. to ak.3 is obviously deduced from 
that  of V3 (n) (rasp. Va(2 )) to Va (rasp. Vak). [] 

LEMMA 3.2. One has x/~(VI(~ ) V12.3) (n) , (n) ,  -- = a l 2 . 3 ( H n ) ,  where (a l2 .3 )ne  N. is a se-  
quence  of random operators from M to s which converges almost surely uni- 
formly to the operator a12.3 of s 1 6 3  X1)) defined by: 

a12.3(A) = pl2(A) -p13(A)V31V3~. + �89 - V13V31P32(A). 

PROOF. Using equations (2.5) and (3.4), we can write: 

1/1(n) _ ~.~ ~ = ~ ? )  - v i ~ -  v~(2)vF ) ~v~(;) + v~v3-~v~  

= ( V l ? ) -  V l~ ) -  (Vl ( : ) -  v,~)v?')-~v~(; ) 

-].- V 1 3 V ( n ) - l ( v ( n ) _  V 3 ) V 3 1 V ( ~  ) _ V l B V 3 1 ( V 3  ( n ) -  V32 ). 

r -z , , (n)  a (n) [H ~ where -(~) s  s X1)) is defined Thus we have Vn(v12. 3 - t/12.3) = 12.3~ n J, "~1~-3 E 
by: 

a ~ ! 3 ( A )  = p l 2 ( A )  - P 1 3 ( A ) V ( n ) - l V ( 2 )  + V 1 3 V ( n ) - l P 3 3 ( A ) V 3 1 V ( ~ )  - V 1 3 V 3 1 ; 3 2 ( A ) .  
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, (n), Then,  the almost sure uniform convergence [ak.3)nem to ak.3 is obviously deduced from 

tha t  of V3 (~) (resp. V(2 )) to Va (resp. V32). [] 

Similarly, we also have: 

, (n) , 
= a (~) IH  ~ where [a21.3)neN. is a se- LEMMA 3.3. One has v/-n(V(~.) 3 - V21.3) 21.3~ nj, 

quence of random operators from M to s which converges almost surely uni- 
formly  to the operator a21.3 of s  s defined by: 

a21. (A) = p21(A) - p2a(A)Vs  + V2 �89163 - V2aVa-lpal(A).  

These lemmas permit  us to obtain the asymptot ic  distr ibution of v/n(T(.~ ) - T1.3). 
In what  follows, we consider the operator: 

rr : A E s  ,-+ I (A + A*) E s 

tha t  is the orthogonal projector onto the subspace of the selfadjoint operators in s  
and ~ denotes the tensor product  of operators, associated with the Hilbert-Schmidt 
inner product:  (T, S)2 = tr(TS*).  

PROPOSITION 3.2. v/-s ) - T1.3) converges in distribution, as n --+ +co,  to a 
r.v. U having a centered normal distribution in s  with covariance operator given by: 

r : ]~[(TI'(-V12.3V21.3Xl.(923 - V12.3X2~3V21.3 ~- 2 V 1 2 . 3 ( X 1 .  3 @ X 2 . 3 ) ) ) + 2 1 .  

PROOF. We have: 

v~(T(~ ) T1.3) v/n(V(.~ )-I/2 " 'Iz(n) I'(n)-iII(n)If(n)-I/2 
�9 - -  : - -  l l )  v12 .3  v2 .3  ~21.3 ~ 1.3 

_ ~r ~i~i(n) -I ~r(n) ~r(n)-l/2 
+ [ v ~ ( g l ( n . )  3 v12.3)]v2.3 v21 .3  Vl .3  

VI v~(n)-- 1 [v~(V~(.~) * ~ly,(n) y ( n ) - l / 2  
- -  12-3 2.3 - -  2 } ]  21-3 1.3 

~- V12.31%/-n(V(~.)3- V21.3)]V1!3 )-I/2 

J- V12.3V21.3 [V/-~(V(.3)-l/2 __ I1) l . 

For any invertible selfadjoint nonegative operator  T, one has 

(3.6) T -1/2 - I = - T - 1 / 2 ( T  - I ) ( T  -1/2 q- i ) - 1  

where I denotes the identity. Then applying this equality wi th  T = VI! 3) and using the 
three previous lemmas, we obtain: 

v~(TI(.~ ) -- 71.3)---= -- Vl!n3)-la[n)3(Hn)(Vl!n3 ) 1/2+ II)_IvI(;)3V2(.3)-,V2(L)3v(.n3)-I/~ 
, ~ (n )  ( ~ r  ,~ l / - (n )  - 1  l / - ( n )  l / - ( n )  - x / 2  1," l , ' ( n )  - 1  ^('0 tH ~V, (n) V, (n)-1/2 

J-t*12.3ka*nJ'2.3 v21.3Vl. 3 --v12.3v2.3 t~2.3k n] 21.3 1.3 

141 a (n) / H  ~V, (n)-1/2 q- 12.3 21.3 I, n] 1.3 
~Z ]T TZ(n)--l--(n)[[l r ]{TT(~%) -I/2 

- -  v 1 2 . a v 2 1 . a v l . 3  t ~ l . 3 k l l n } k v l .  3 -[- 11) -1 

= qon(Hn). 
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From the almost sure uniform convergence of v(~) V~(.~ ) and V, (~) 12.3' 2.3 , a s  ~t ~ -'[-OO, tO 

V~.3, I~ and /2  respectively, we deduce that ( ~ ) , ~ N .  almost surely uniformly converges 
to the operator ~0 ~ s  s defined by: 

1 [a~.3(A)V~zsV21.3 + V~2.3V2~.3a~.3(A)] + a12.3(A)V21.3 ~ ( A )  = - 

+ VI2.3a2~.3(A) - V1~.3a2.3(A)V~.3. 

Further, we have: 

] Hn : v~ Z z? 2 - v - ~ (n)~2 
/:1 

By the central limit theorem v~Z (n) converges in distribution to a r.v. having a cen- 

tered normal distribution in X with covariance operator ]E(Z | this implies that ~(n) 
converges in probability to 0 in X, as n ~ +oo. Hence Hn has the same asymptotic dis- 

tribution than v~ [~  E i ~ l  Z{ ~2 - V ] ;  thus, by the central limit theorem, H~ converges in 
distribution, as n --+ +oo, to a r.v. H having a centered normal distribution in M, with 

covariance operator defined by E[(Z| where Z | := Z ~2 - E ( Z |  Moreover, 
we have 

where [l" II~ is the uniform convergence norm. Since IlH~lIM (resp. [l~on-~ll~) converges 
in distribution (resp. in probability), as n -~ +cx~, to IIHIIM (resp. 0), the previous 
inequality shows that ~n(H~) - ~(Hn) converges in probability, in s to 0 as n -~ 
+oo. Hence ~ ( H ~ )  has the same asymptotic distribution than p(H~),  that is the 

distribution of p (H)  because ~ is linear. This means that v~(T}.~ ) - T1.3) converges to 
the same centered normal distribution than U = { (H) ;  the related covariance operator 
is: 

r : E[(~(H)) ~'] : ~E[H~']~ * = ~E[(Z|176 * : E[(~(Z |176 

It remains to give an explicit expression of F. We have: 

al.3(Z |162 = X~ 2 - Vl - (/3 @ Xl - V13)V31V31 

V~ ~ - I  r v |  2 
J-  13v3 I,A 3 -- V3)V31V31 -- Vl3V31(Xl (~ X3 -- V31 ) 

: x ~  ~ - ( v ~ v 3 ' x ~ )  e x ,  - x~  | ( v~3v3~x3)  

+ (v~3�89 | - Vl + v~3v3-~v31 

: x ~ -  I~, 

a~2 .a (Z  |  = x 2  | X l  - v~2 - ( x 3  | x ~  - v ~ a ) v i - ~ v ~  

+ v ~ 3 v i - l ( x ~  ~ - Va)Vd~V~ -- V ~ 3 v d l ( x ~  |  - V3~) 

: X~ | X~ - (V~V~-~X~) | Xx - X~ | (V13Vi-~Xa) 

+ (V~Vi-~X~)  | ( V ~ V i - l x ~ )  - V~  + V~3Vf~V~ 

= X2 .  3 @ X l . 3  - 712.3 ; 
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similarly 

and 

Hence 

(3.7) 

@2 c 

a21.3( Z ) = X1. 3 @ X2.3 - V21.3, 

| 
a2 .3(Z |162 = X2. 3 - / 2 .  

2 ~ 1 | 
99(Z | ) = - ~[(Xl.  3 - I1)V12.3V21.3 n t- V12.3V21.3(X1Q.~ - 11)] 

-t- (X2.3 @ X1.3 - V12.3)V21.3 Jr- V12.3(X1,3 @ X2.3 - V21.3) 

- -  V12.3(X2.~ -- I2)V21.3 

~(_V12.3V21.3X1Q.3 | = -- V12.3X2,3V21.3 -~- 2V12.3(X1.3 @ X2.3)); 

this completes the  proof. [] 

This proposi t ion permits  us to obtain the asymptot ic  distr ibutions of the eigenele- 
ments. For j �9 {1 , . . .  , s}, considering the operators  

tI/j : T �9 C ( X l )  ~ PjTSj + SjTPj �9 
II/~: T �9 ~ ( X l )  ~ PjTPj �9 C ( X l )  , 

denoting by A the continuous map which associates to T �9 /:(X1) its complete  non- 

increasing sequence of eigenvalues, and put t ing p}n) := V "~i , pj := , we have 

PROPOSITION 3.3. For j E {1 , . . .  ,s},  one has: 

(i) the sequence v ~ ( P J  n) - Pj)  converges in distribution, as n ---* +oo,  to a r.v. 
having a centered norTnal distibution in / : (X1)  with covariance operator Aj  = kO jF~2~. 

(ii) the sequence (v/-n(A~ n) - )~)),j<i<_,j+mj-1 converges in distribution, as n --~ 
+oc, to A(~j),  where ~j is a r.v. having a centered normal distribution i n / : ( X1 )  with 

I I I *  covariance operator Aj : t~ jFffj j . 

(iii) I f  p} ~ O, then (v/-n(p} n) - P})),~<_i<_,3+mj-1 converges in distribution, as n -~ 
+oc,  to A(~}), where ~ is a r.v. having a centered normal distribution i n / : ( X1 )  with 

I t  l --1 I l *  covariance operator Aj = (4Aj) kOjFk~j . 

(iv) If. j : 1, t h e n  ) - c o n v e r g e s  i n  d i s t r i b u t i o n ,  a s  n t o  

and for j satisfying p~j 7~ O, v/'n(p} n) - p~j) converges in distribution, as n ---, +oo, to 

7 ,  (~) _ a~:~)) converges in distribution, as n --. +oo, to a (v) I f  m s = 1, then x/n[al.3, n 
r.v. having a centered normal distribution in X1 with covariance operator A j  = Oj  FO~. 
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PROOF. (i) and (ii). From Proposition 4 in Dossou-Gbete and Pousse (1991), we 

know that  v ~ ( P J  '0 Pj) (resp. (v/-n(A~ n ) -  j)).~<i_<.j+mj-1) converges in distribution, 
as n ~ +co,  to ~j(U) (resp. A(~j),  where ~j := ~}(U)) .  Since koj(U) (resp. ~j) is a 
linear function of U, then it has a centered normal distribution. Its covariance operator  
are easily shown to be Aj (resp. A}). 

(iii) If p~- r 0, then from the equality 

v~(pl . )  p~) ~ ( ~ ( n )  , ~(.) , - 1  - = , i  - x ~ ) ( ~  + p j )  

we can write (x/n(P} ") - Pj))~<i<~,j+mj-l' _ _  = BJ")(7/J ")) where ,/j-(") := (v~()~ i n  (") - 

(~) is the random operator  ~j))~j_<i_<~j+,~j-1 and Bj 

(~) .~<~<~+~-1  �9 R ~ ~ (x~(p~ n) + p ; ) - l ) ~ j < , < . j + ~ - i  �9 R ~ .  

For i �9 { r , j , . . . ,  u s + rnj - 1}, p~n) converges almost surely, as n -~ +co,  to p~, then  
t - - 1  m B~ n) converges almost surely uniformly to the operator  B i := (2p)) Ia 5, where IR~j 

denotes the identity of R m~ . Moreover, we have: 

w~ J -  IIBJ " ) -  BjlIo~IIv~")IIR=~. 

Since IIn~ ") IIR=j (resp. IIB~ ") - Billow) converges in distribution (resp. in probability), as 
n --~ +co,  to II~(~)II~,,,~ (resp. 0), the previous inequality implies the convergence in 
probability of n ( n ) [  (n)\  r)(n) l  (n)\  Bj (TlJn))  Dj ( ~ T j ) - B j 0 7 ~  n)) t o 0 a s n - - -  +co.  H e n c e D j  tr/j ) and 
have the same limit distribution; using (ii) and the continuity of Bj, we then conclude 

tha t  (x/~(p~ n ) -  P~)),j<_i<_vj+mj--1 converges in distribution, as n --* +co,  to A ( ~ )  where 
~j : :  ( p j )  j. Clearly, Q has a centered normal  distr ibution with covariance operator  

l - - 1  / t* (4~) %r%. 
(iv) and (v). If mj = 1, then ~j and ~ have ranks equal to one then A(~j)  _-- tr(~j) 

and A ( ~ )  = t r ( ~ ) .  Moreover, we know from Proposit ion 4 in Dossou-Gbete and Pousse 

�9 /-n~ (~) - a~.~ )) converges in distribution, as n --* +co,  to Oj(U), tha t  is (1991) tha t  ~/nkal.3, n 
a centered normal  r.v. with covariance operator  Ay = Oj FO~. [] 

The covariance operator  F can be expressed using the canonical variates and coef- 
ficients related to the LRCA. For (i,j) �9 {1, . . .  ,p~}2, put  

~ ( i )  5;~ OL(j) ,~(J) O/(i) 
Cij'3 ~--- ~ 1 . 3  ~ 1.3 ~- ~ 1 . 3  ~ 1.3 

and 
,~2,e(i) ~e(j) r~ ,~ r ~e(j) ,~ , ( i )  ~(j) 

Fi j .3  ~-- - v i  J 1 . 3 J l - 3  - ~ ' i F j J 1 - 3 J 2 - 3  -}- zPjJ1 .3J2 .3  

(with Pi = 0 if i > r); we then obtain 

COROLLARY 3.1. One has: F = k ~ E ( F i j . 3 F k l . 3 ) ~ i j . 3 ~ r  4 l~_i,j,k,l~p~ 

PROOF. From (P2) and (P3) (see Section 2), it is easily seen tha t  if i _< r, 

Y~ Oz (i) (i) 12.3 2.3 --~ 0 (because ~ V~ ^ (i) = 0). Then,  12.3 2.3 = Pial.3 and tha t  if i > r, V~ a (i) 21.3 12.3c~2.3 
using equation (2.8), we obtain: 

P l  P 2  

-~ X * X2.3 | X~.3 = ~ A.~ ~- '  r ~(~) r(i) a(J)2.3 | ~1.~(~) (X1.3 | 2.3) 
i=1 j=l  
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and for k E {1 ,2}:  

Pk Pk 

xZ; E E  (i) - ( ' )  �9 = ]/~.3jr/~.30/k.3 | c~k. 3- 
i=1 j = l  

Thus,  using equation (2.9), we obtain 

(3.8) 
Pl P2 r 

V12.3 ~ ( X 2 . 3  @ X1.3)  E E '~ (j) ,~(i) ~ (i) ,~(i) =- = Oijfli~2.3 @ '~1.3 = 2 . ~  DiCe2"3 @ '~1.3, 
i=1 j = l  i=1 

T 2 
V "  ^2_ (i) | 

V12.3V21.3 = / ~ / ) i  c~1.3 
i=1 

and using again equation (2.8) 

~2 
V12.3V21.3X1.3 

E 2 ~ ( j ) . ( k )  (i)| (j) o~(k ) 
= Pi J1-3 J1-3 ~ ~1.3 | 1.3 

i=l l <_j,k<_pl 
Pl 

V "  ~2 ~(j) ~(k)~ - ( j )  ~(i) 
h'i J1-3 J1-3 Ukir | ~1.3 

l <_i,k<_r j=l  

~ P ~  2~(i) r(J) (J) r~(i). 
= Pi ]1 -3 f l .3  @1.3 | ~1.3 '  

i=1 j = l  

moreover 

@2 
V12-3 X2.3 V21.3 

and 

= (V12.3X2.3)~ 2 ~ ~ f ( j ) ,  (i) (i)~ ( J ) /  = L_,r t , ig2.3 [O~2.3 | OL1.3)O~2. 3 
\ i = 1  j= l  / 

r \ |  
.(~) (~)~ . ( i ) . ( j )  (i) ,~(j) 

: fliPj]2-3J2.3011.3 | ~1-3, 
\ i = 1  / l<i , j<r 

Pl P2 

V12.3(Xl.3 | X2.3) = ~ x - ,  ~(j),(k)/c~(~) ,~(i) ~, (j) ,~(k)~ P i J I . 3 ~ / - 3 [  2.3 |  |  
i=l j = l  k = l  

E ~.r(i)r(j)~(i) ~(J) 
= p,3 J1 .3J2 .3~ l .3  | ~Xl. 3. 

l<_i,j~_r 

Thus 

F = E  ] = E  

the second equality being justified by the fact that  if i > r or j > r then F~j = O. 
, (i) ~(y)~ 1 e Notic ing that  7r [c~1. 3 | ~1.3J = 5 ij.3, one sees that  the required result is obtained. [3 
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3.3 Asympto t i c  study of  the e lements  associated with the null  eigenvalue 
As it was noticed for the usual LCA (see Larrbre (1994)), the previous results can 

not be exploited for statistical inference involving only the eigenelements associated with 
the null eigenvalue of T1.3. Indeed, easy calculations show tha t  the eigenvalue limiting 
distributions obtained in Proposi t ion 3.3 are Dirac distributions. Then  it is necessary to 
use another  approach for having the asymptot ic  distributions related to these associated 
eigenelements. Notice tha t  we implicitly suppose r < Pl (else there does not exist a null 
eigenvalue). 

Let Po be the orthogonal projector onto the eigenspace associated with the null 
eigenvalue of T1.3, we have 

P l  

i = r + l  

pl 
and put  pion):= E i = r + l  OL~.)3,n| f r o m  the Assertion (ii) of Proposi t ion 3.1 we have the 

almost sure uniform convergence of p(n)  to P0, as n ---, +co.  Then P(n)T(n)P(n) almost " 0  "~1.3 " 0 
surely uniformly converges to PoT1.3Po = O, as n --~ +co. Now, we can derive the limit 

r ~D(n)q~(n)D(n)  P2 (i) |  
distribution . . . . .  o ~ 1-3 " 0 . Pu t t ing  Pg := Y'~i=~+l c~2-3 we have 

~P(n)~r(~) o(n)  converges in distribution,  as n --~ +co,  P R O P O S I T I O N  3.4. The r.v . . . .  o ~ x.a ~ o 
to 02ff2" where ~ is a r.v. having a centered normal  distribution in s with 
covariance operator: 

r ~2  r o  = o ]. 

D(n)  T ( n )  l:)(n) /-'~ D(n)  17 (n)-  1 i2 l /_(n)  
PROOF. We have '~'o •  : ~nffl~, wi th  qJn = v ' ~ o  Vl.3 v12.3 " 

V(.~3 )-~/~. Using equation (3.8) and the or thonormal i ty  of the .~(i),~ ~1.3 ~ we obtain PoV12.3 = 
0. Thus 

- -  x O l V l .  3 v 1 2 . 3 v 2 . 3  

+ _ 

(~) ~f ~ l~r(n)  - l i 2  
+ - 

+ - h)]; 

then  using the relation in equation (3.6) with T = v(n) (k = 1, 2) and the Lemmas 3.1 " k . 3  
and 3.2, we have 

kO n = v ~  ( p (n ) _ Po ) Vl(. ~ ) l12 V(  ~. )3 v2!n3 ) -1i 2 + r](n)(Hn) 

where ~(n) is the random operator  

= p, y J n ) - l / ~ a ( n ) t T ~ l y ( n )  -1/2 r ~-l~z(n) ~z(n) -~/2 Poa(~) [T~E(~)-l l2 
?](n)(T) - 0 1.3 1.3 I, }1 1.3 -~-Xl] v 1 2 . 3 v 2 . 3  -~ 12 -3 \  ] 2-3 

D Tz Tr(n)- i /2  ( n ) ( T ) ( U ( 3 )  1/2 ~- I 1 ) -  1 
- z 0 v12 .3  v2 .3  i t2.  3 
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which converges almost surely uniformly to the operator 7/defined as 

1p, 1 
T E M ~-* --~ oa1.3(T)V12.3 - -~PoV12.3a2.3(T) + Poa12.3(T) E s X1). 

One knows that  (see Dossou-Gbete and Pousse (1991)) v~(Po (n ) -  Po) = r ) - 
T1.3)), where q~(n) converges almost surely uniformly to 

r : T C s H PorSo + SoTPo E s 

~-2"~(i)| x/-n(T(.~ ) T1.3)  p~(H~) where ~n converges almost and So := - E i = I  t'i '~1.3 . As - = 
surely uniformly to ~ (see the proof of Proposition 3.2), ~ converges in distribution to 
r/(H) where 

(3.9) r /(T) = r  + r/(T) = Pog)(T)So + Soqp(T)Po + r/(T); 

since r/' is linear, r / (H)  has a centered normal distribution in /:(X1). Its covariance 
operator is 

Fo = r/E[H@2lr/" = r/IE[(Z | = IE[(r/(Z|162 

(recall that Z | = Z | -E(Z|  Using equation (3.8) and the orthonormality of the 

~(i) ,~ (k = 1, 2) implies Vm.3SoV12.3 = P~ - / 2 .  From equations (3.7) and (3.9), and k - 3  b 

recalling that  PoV12.3 = 0, we obtain r](Z |176 = Po(X2.3 | X1.3)P~; this completes the 
proof. [] 

4. Some applications 

4.1 Testing for the lack of linear relative association 
LRCA may be seen as a tool which permits to see if there is or not a linear relative 

association between X1 and X2 relative to )(3. We say that there is a lack of linear 
relative association, if 

(4.1) V12 = V13V3-1V32, 

that  is V12.3 = 0. One knows that  (see, e.g., Timm and Carlson (1976)) when 
(X1,X2,X3) has a normal distribution this property is equivalent to the conditional 
independence of X1 and X2, given )(3. 

Following an approach which has been used for classical LCA ( t ra iner  and 
Nicewander (1979), Lin (1987), CIdroux and Lazraq (1988), Dauxois and Nkiet (1997b), 
Nkiet (2000)), a class of linear relative association measures have been introduced by 
Dauxois and Nkiet (2002). These measures have the form m/xa (X1, X2) := ~(A), where 

is a continuous symmetric function from IRm to R+ satisfying ~(x) = 0 r x = 0. 
These measures can be used for testing for lack of linear relative association since equa- 
tion (4.1) is equivalent to rn/xa (X1,)(2) = 0 (see Dauxois and Nkiet (2002)). Then we 
consider the test of H0 : re~x3 (XI, X2) = 0 against H1 : rn/x3 (X~, X2) > O. 

We take as test statistic, the r.v. ~(A (n)) because, by (i) of Proposition 3.1 and 
the continuity of ~, it is a strongly consistent estimator of m/xa(X1,)(2). In order to 
derive the asymptotic distribution of ~(A (n)) under H0, we suppose that the following 
assumptions hold: 
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(A5) (I) is twice differentiable on an open set 59 containing A and $(n)(w) (w ~ f~), 
and it exists M > 0 such that  for any x ~ 59, one has IID2q,(x)ll _< M; 

0 ~  (A6) put t ing  K e  := ~77,1 (0), one has Kr  # 0. 

Since under H0 one has s = 1, ~ = 0, P~ = /2 P~ = Po = P(~) = I~, a direct 
application of Theorem 1 of Dauxois and Nkiet (2000) and Proposi t ion 3.4 gives 

PROPOSITION 4.1. Under Ho, n/(q)l(I)()t (n)) converges in distribution, as n 
+c~,  to R := t r ( ~ * ) ,  where fly has a centered normal distribution in s X1) with 

covariance operator equal to Po = E[(X2.3 | X1.3)6~]. 

Then, for a given asymptot ic  level c~ ~]0, 1[, the null hypothesis  is rejected when 
nK~,~O(A (~)) > F~)I((~), where FQ is the dis tr ibut ion function of  Q. Note  that  Q is a 
regular quadrat ic  form of normal vector; then since FQ is continuous (see Mathai  and 
Provost  (1992)), it is a bijective function. When  (X1, X2, X3) has an elliptic distr ibution,  
Q is of a more simpler form: 

COROLLARY 4.1. If  ( X 1 ,  X 2 ,  X 3 )  has an elliptic distribution with kurtosis tr then 
t~ 2 under Ho the distribution of R is (1 + )Xp~p~. 

PROOF. Since(c~{{)a)l<i<m (resp.~c~ (j) '  < 2.3~1<j_m ~ is an or thonormal  basis of X1 (resp. 
X~), we can write  

Pl P2 

~2 .3  | 1-312 2-3 | ~ 1 . 3  
i=1  j = l  

thus, putting Wij := (@, ~2-3  "~'(j) | o~(i)1.312" \ " 

t r ( q ~ * )  = ~ 
l <i,k<pl l <j,l<_p2 
pl p2 

(4.2) = ~ ~-~ W~?.'~a ' 
i =1  j = l  

Q9 ~ 1 - 3 )  ((~1-3 

the later equali ty being obta ined from the propert ies ~c~2. 3 ~gcq.3)ioL1. 3 Q90~2.3) = lj 1-3 ~y 

(~(i) and tr((~.k3 ) | ,~(i)~ , (k) ^ (,)x Ski. Each W O has a centered normal distri- 1.3 �9 '-~1-31 ~- ~O/1-3,Ctl.3]X1 = 
but ion because  it is a linear function of ~ .  Moreover, for any (i, k , j , l )  E {1 , . . .  ,p l}  2 • 
{1 , . . .  ,p2}2 we have 

] ~ ( W i j W k l  ) ~[/ff~ O~ (j) Ot ( i) \  /kO .~(l) oL(k)\ =- i \  , 2.3 | 1 .312\  ,'-~2.3 | 1-312) 

~- ~O~2-3 (~ 0 t l . 3 ) ,  Ol2-3 | ~ 1 . 3 1 2 )  

= < r 0 ( - L  ) | | 

Fur thermore  

F ~ (j)  ~ (i) x 0(%.3 ~ %.3) = s | X1.3, c~ 0) (0 2.3 | ~1.3)2(X2.3 | X1.3)), 
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hence 

~(J) Ce ( i ) \  / X  ,.,,(l) a ( k ) \  E(W~jWk~) = E((X~.~ | X1.~,,%~ | 1.~/~ ~.~ | XI.~,,.~.~ | 1 . ~ .  

From the equalities (x | y ,z  | t)2 = t r((x | y)(t | z)) = tr((x,z)(t  | y)) and 
tr( t  | y) = (t, y), it follows 

~'~kJ1-3 J1.3 J2-3 J 2-3] 

where r is defined in equation (2.7) (recall tha t  V1.3 = 11 and V2.3 = /2). Since Jk.3  

(r(i) f~.k), r(J) r(l)~ is a linear function of ( X  1 X 2 ,  X 3 )  it also has an elliptic distr ibution J1 .3 ,  32.3,  J2.3] ' ' 
with kurtosis t~. Hence 

(i) (k) (j) (l) 1~[ r r g(k) r 
]E (Wi jWk l  ) = (1 + a)[E(/1.3/1. 3 )E(f~.3f~.3) + ~-,~,J1.3J2.3)~kJ1.3 J2.3] 

~- ~kJ1.3J2.3]~L'kJ1.3 J2"3 2]" 

Under H0, all the canonical coefficients are null since V12.3 = 0; then using equations (2.9) 
and (2.10) we obtain E(WijWkl) = ( l+a) (b ikbj l ) .  This shows tha t  E ( W  2)  = (1+~)  and 
if (i,j) ~ (k, l), E(WijWkt) = 0; then the r.v. ( l+a) - lWi j  are independent  and have the 
s tandard  normal  distribution. Using equation (4.2) we conclude tha t  R -- (1 + a)X2mp2. [] 

Remark 4.1. This approach for test ing lack of linear relative association yields a 
general framework containing tests which are based on what  is known in the l i terature 
as part ial  canonical correlation coefficients. For example, the test  proposed by T imm 
and Carlson (1976) under the assumption tha t  (X1, X2, X3) has a normal  distr ibution 
appears in our context as a particular case by taking (I)(x) -- - )-f~ ln(1 - x~). Notice i=1 
tha t  when Pl = 1 (resp. Pl = P2 -- 1) our test is based on a function of the classical 
part ial  multiple correlation coefficient (resp. part ial  correlation coefficient). 

4.2 Testing for dimensionality in LRCA 
As in Fujikoshi and Veitch (1979) for usual LCA, we can introduce tests for deter- 

mining the dimensionali ty of LRCA, tha t  is the integer d E {1 , . . .  ,Pl} equal to Pl if all 
the relative canonical coefficients are non null or such tha t  

A1 > A2 __> " ' "  ~> Ad > A d + l  . . . . .  Apl = 0 

elsewhere. For doing tha t ,  we introduce for any k E {1 , . . .  ,px - 1} a test for H0 (k) 

against H~ k), with 

and 

Notice Ak+l,... ,Apl 
pl (i) e2 

E i = k + l  0~1.3 " 

2t(0 k) : /~k > ,~k+l  . . . . .  /~pl = 0 

HI(k) : Ak --- 0. 

are the eigenvalues of ~ 1~1. 3 ---- QkT1.3Qk, 

Then we take as test statist ic the r.v. (I)(#(n)), where 

where Qk :-- 

(~(n) A~)) Arr)(n)T(~)r)(n)~ 
~(k n) :---- k " k + l ,  " "" , ---- " ' \ ~ r  "~1-3 ~r ] 
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with Q(n) := ~i=k+l a~ , and �9 is a symmetr ic  function from N m - k  to R satisfying 

m ( i )  ~ 2  (a5) ,  (a6)  and (I)(x) = 0 <:# x = 0. Let us consider Q~ := Y~-i=k+l c~2-3 �9 Under 

H (k), we obviously have Q~ = P~), Qk = Po and Q(k n) = p(n), hence by applying again 
Proposit ion 3.4 and Theorem 1 of Dauxois and Nkiet (2000) we obtain: 

PROPOSITION 4.2. Under H(o k), nKgl~2(# (~)) converges in distribution, as n 
r * + ~ ,  to Rk := t (~k~k) ,  where q2k has a centered normal distribution in s "12'1) with 

~2 
covariance operator Pk = E[(Qk(X2.3 | XI.a)Q~) | ]. 

Then,  for a given asymptot ic  level c~ El0, 1[, the null hypothesis is rejected when 
n K g l ~ ( A  (n)) > FQI(c~), where FQ is the distr ibution function of Q. For determining 
the dimensionality, we use the previous test for k = Pl - 1, k = Pl - 2 and so on until  

H0 (k) is not rejected or k = 1 (in this case the dimensionali ty is 1). 
When (X1, X2, X3) has an elliptic dis tr ibut ion we have: 

COROLLARY 4.2. Under H(o k), if  (X1,X2,X3)  has an elliptic distribution with kur- 
t~ 2 tosis ~, then the distribution of Rk is (1 + )X(m_k)(p2_k ). 

PROOF. By similar arguments  as in the proof of Corollary 4.1, we have 

Pl P2 

(4.3) t r ( ~ k ~ )  = E E W~(k)2 
i=1  j = l  

where Wi~ ) := (~k, t~2.3^ ( j)  W'c~^Ul.3/2"(i)\ Each W ~  ) has a centered normal distr ibution because 
it is a linear function of ~k.  Moreover, for any ( i ,h , j , l )  E {1 , . . .  ,pl} 2 x {1 , . . .  ,p2} 2 
w e  h a v e  

(4.4) 

\ " i j  ' ' h i  / : (Fk(Ot(j)  ,~(i) ~ ,,,(l) ~ ( h ) }  2 
k 2.3 | ~1.31~ ~2-3  | ~1 .3  

X ~f~' c~ (j) ~ a  (i) ~ = E((Qk(X2.a w 1.3]wk, 2.3 ~ 1-3/2 
^(h)~ 

• x ,  |  .131 J. 

, D ~ ( i )  Under H (k), the rank of Tl.a equals k, and Qk = Po, Qk = Po; then,  since ro~1.3 = 0 

(resp. t-0a2, a n '  (j) = 0) when i _< k (resp. j <_ k), we deduce from 

(4.5) 

(Qk(X2.a X ' -~(J) a (i)\ | 1.3)Qk, | tx2.3 1 .3/2  

, (0 c~0) ~po ~ = tr((X2.3 |  a | 2.a, , 

= tr((X2.3 | X1.3)((P0a~i. )) | (P~c~J)))) 

equation (4.4) tha t  if i _< k or j < k then  E(W~7 )=)''- = 0, tha t  is W~(j k) = 0. Further,  and 

if i > k and j > k then D - (i) ,~(i) and n ,  (j) "*(J)" hence, equation (4.5) implies r0~*l.3 = ~ 1 . 3  /~0~ = w2.a ,  

E ( W i  j W h  l) ~_ ~ [  g(i) #(h) ~e(J) #(l) \ J 1 - 3 J  1.3 22 .322 .3}  
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where f(0 is defined in equation (2.7) (recall that V1.3 = 11 and V2.3 =/2). Using similar k.3 
arguments than in the proof of Corollary 4.1, we obtain 

(i) (h) (j) (l) ..u E (  r(i) ,e(j)~E{ r r 

Elf(i) ~(l) ~Efr(h) r ~1 
-~- kJ1.3J2.3] kJ1.3J2-3]]" 

Since k = r, equation (2.9) implies that  for j > k, we have ~wl~( r ] ---- 0. Then using 
equation (2.10) we obtain E(WijWh~) =- (1 + ~)(bih~jt), that is E(W 2) =- (1 + t~) and 
E(WijWkl) = 0 if ( i , j )  y~ (h,/). We conclude that if i > k and j > k then the r.v. 
(1 + ~ ) - l w i j  are independent and have the standard normal distribution, and if i < k 
or j < k then they are null. The equation (4.3) can be rewritten as 

Pl P2 

tr(kOkff2~)---- ~ ~ Wi~ )2 
i = k + l j = k + l  

tr 2 and this shows that Rk = (1 + )X(v~-k)(p~-k)" [] 

4.3 Testing for invariance of LRCA 
Invariance for LRCA when the related variables are transformed by linear maps 

have been defined in Section 2 and conditions for having this invariance property have 
been obtained. Nevetheless, since these conditions involve covariance operators which 
are unknown in practice, it is of interest to contruct a test which permits to see whether 
or not LRCA is invariant for a given pair of linear maps. Notice that such an approach 
has already been used in the literature. Indeed, in Fujikoshi (1982) and in Fujikoshi and 
Khatri (1990) likelihood ratio tests for additional information in LCA and for redundancy 
in covariate discriminant analysis under normal assumption were introduced. These tests 
just are particular tests for invariance when the related variables are transformed by 
projectors. More recently, a generalizing approach has been adopted by Nkiet (2003) who 
introduced a test for the invariance of LCA when the related variables are transformed by 
linear maps which may not be projectors, without other assumption on the distribution 
of these variables besides the existence of four order moments. 

Here we extend for LRCA an approach used in Nkiet (2003) for LCA. Note that 
the results of this later work can not be applied for LRCA because we do not have an 
i.i.d, sample of X1.3 and X2.3;  these r.v. are unobservable since their definitions involve 
covariance operators which are unknown in practice. Let A1 and A2 be linear maps 
defined on A'I and A'2 respectively. Our purpose is to introduce a test for the invariance 
of the LRCA of X1 and X2 relative to X3. Consider 

* * t  V~ 2 el (A1)  -- [IV12.3 - V1.3Al(AIV1.3A1) A1  231[ , 
* * t  V 2 C 2 ( A 2 )  = IlY2 .3 - V2.3A2(A2V2.3A2) A2.3 21.31[ , 

C(A1, A2) : CI(A1) + C2(A2), 

where I1" I[ denotes the norm associated with the Hilbert-Schmidt inner product. From 
Proposition 2.2 it is seen that the aforementioned test is the test of the hypothesis 

H0 : C(A1, A2) -- 0 against HI : C(A~, A2) > 0. 
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Defining for (k , j )  E {1,2} 2 with k r  

Sk.3 := Vk.3A~(AkVk.3A~)tAkVkj.3 

S~'~)3 V,(n)A*~A ~r(n)A*~t A IS(~) := k.3 k[ kVk.3 k) k kj.3 

and 
C~n)(mk) II'ky.3 

we take as test statistic the estimator C (n) (A1, A2) := C~ n) (A1) + C~ n) (A2) of C(A1, A2). 
For defining the corresponding (asymptotic) critical region, we must derive the limit 
distribution of C('~)(A1, A2) under H0. Letting 0'1.3 and 0'2.3 be the operators from M 
to s and s & )  respectively, defined by 

(4.6) 0`k.3(T) = ak.3(r)A*k(AkVk.3A~)fAkVkj.3 

- Vk.3A~(AkVk.3A~)tAkak.3(T)A*k(AkVk.3A~)tAkVkj.3 

+ Vk.3A*k(AkVk.3A*k)takj.3(T) - akj.3(T), 

where (k, j )  C {1,2} 2 with k r j ,  we have 

PROPOSITION 4.3. Under Ho, the r.v. nC(n)(A1,A2) converges in distribution, as 
n - ~  + o c ,  to  Q = l[0`t.3(g)[I 2 + 110`2.3(H)112. 

PROOF. First, for (k, j )  E {1,2} 2 with k r j ,  we have: 

, (n )  * t V , ( n )  
( 4 . 7 )  V ~ ( s < n ) k  k.3 - -  S k ' 3 )  = V/~(Vk(-3  ) - -  Vka)Ak(AkVk.3 Ak) Ak kj.a 

+ v~Vk.3A~[(AkV(~)A~) t -  (AkVk.3A*k)t]AkV(2) 

+ v~Vk.3A*k(AkVk.3A~c)tAk(V(~..~ - Vkj.3). 

It is known that for any operators T and S one has 

T t _ S t = - T t ( T  _ S)S  t + Tt2(T _ S)l-[ker(S) -- IIker(T) (T - S)S  t~ 

tz(~)~* (see Theorem 3.10 in Nashed (1976)); then applying this property with T = ~k*k.3 -~k 

and S = AkVk.aA* k and using equation (4.7), we obtain x/~(S~.~ - Sk.3) = ~k.a(Hn) , ( n )  

where fl(n) is the random variable valued into s  s A'k)) defined by k-3 

/3(n)[T~ ~ ( ~ ) t T ~ * / ~  ~r(n)A.~t~ tz(n) k . 3 \  ] = ~ k . 3 k  ]'C~kk~kVk.3 k} ~kVk j .3  

�9 (~) * t (n) - Vk.3Ak(AkVs 3 Ak) Akak.3(T)A~(AkVk.3A~)tA~V(~)3 

+ Vk.aA*k(Ak V(~ ) A~) t2 Aka(~.)(T)A*kIIk~r(Ak Vk.aAi)Ak V(~ ) 

-- Vk.aA*kHker(Ak Vk(;;) A~) Aka(n.~ (T)A~( Ak Vk.3A~) t= Ak V(~.. ) 

+ Vk.3A~(AkVk.aA~)tAkakj.3(T). 

From the almost sure uniform convergence of the empirical covariance operators involved 
in this expression and the equalities 

Vk.3A~IIker(dk Vk.aA~) = L~.3Lk.3A~Ilker(nk.3A~ ) = 0, 

IIk~(Ak V~.~ADA~ Vkj.3 = (Vj~.3A~Hk~r(A~ V~ ~A*~) )* = ( L~.aLk.3A~Hk~(L~.aAD)* = O, 
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it follows that ~(n) converges almost surely uniformly to the operator/3k.3 defined by ~k.3 

/3k.3(T ) = ak.3(T)A~(AkVk.3A~)tAkVkj.3 
- Vk.3A~(AkVk.3A~)tAkak.3(T)A*k(AkVk.3A*k)tAkVkj.3 

+ Vk.3A~(AkVk.3A~)tAkakj.3(T), 

that  isZ/3k.3 = ~/k.3 + akj.3. Using this later expression and the fact that, under Ho, the 
equality Vkj.3 = Sk.3 is valid, we have: 

nC(kn)(Ak) . . . . . .  nI[g~(jn.~ gkj. 3 k~k.3{r gkj.3)]]2 ila(nj!3(Hn) /~k.3(n) (Hn)]1 2. 

Thus: 

nC(n)(A1, A2) = N(Ln(Hn)), 

where L,~ is the random operator 

u E M ~-~ ((fl~n 3) -a~2!3)(u), (~(.~3) - a ~ ! 3 ) ( u ) )  r s X1) • s X2) 

and N is the continuous map 

(V,W) �9 I : (X2,  X l )  X ~ ( X l , X 2 )  ~ llvll + llw[l �9 R. 

It is easy to verify that Ln almost surely uniformly converges to the operator 

L : u  �9 s • 2(2) ~ (~1.3(u), ~2.3(u)) �9 s • s Z2). 

Further, we have 

IILn(Hn) - L(Hn)IIs215 ~_ [ILn - LII~]IH~]IM; 

since IIHnlIM (resp. IILn - L ] I ~  ) converges in distribution (resp. in probability), as 
n ~ + ~ ,  to IIHIIM (resp. 0), this inequality implies the convergence in probability 
of  Ln(Hn) - L(Hn) t o  0 as  rt ~ +(:x~. Hence Ln(H~) and L(H~) have the same limit 
distribution; then Ln(Hn) likewise converges in distribution to L(H). From the conti- 
nuity of N, it comes that nc(n)(A1,A2) converges in distribution to Q = N(L(H))  = 
11 13(H)112 + 11 2 3(g)l l  [] 

Then, for a given (asymptotic) level a �9 1[ the null hypothesis is rejected if 
nC (~) (A1, A2) > ]F~ a (a), where FQ denotes the distribution function of Q. Notice that 

since C(n)(A~, A2) is a strongly consistent estimator of C(A1, A2) this test is consistent. 
In practice, one has to replace in equation (4.6) each covariance operator by its estimator 
introduced in this paper. 

Remark 4.2. Additional information hypothesis in canonical analysis was dis- 
cussed by Fujikoshi (1982) who introduced a likelihood ratio test for this problem. Later, 
this test was considered by Kariya et al. (1987) in order to test an hypothesis related to 
selection of variables in the classical MANOVA model, and it was also used by Suzukawa 
(1997) for evaluating the effect on canonical correlation of imposing linear constraints. 
This test is mainly based on a normality assumption for the variates. More recently, 
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Nkiet (2003) proposed another test for additional information derived from a test for 
invariance of LCA which does not require to do any assumption on the distribution of 
the related random variables. A similar approach can be used here for LRCA; indeed, 

X(1) y(2) 
if for k C {1, 2} we have the decomposition in direct sum Xk = k | "*k , a test for 
additional information in LRCA having the preceding property is obtained by using the 
test of invariance developed above with Ak := ~kl, where ~kl is the projection operator 
onto ~(1) along X (2) "~k k " 

Acknowledgements 

The authors are grateful to the referees for their useful remarks and comments which 
improve the original version of the paper. 

REFERENCES 

Anderson, T. W. (1999). Asymptotic theory for canonical correlation analysis, Journal of Multivariate 
Analysis, 70, 1-29. 

Arconte, A. (1980). I~tude asymptotique de l'analyse en composantes principales et de l'analyse canon- 
ique, Thbse de 3 ~ cycle, Universit@ de Pau et des Pays de l'Adour. 

Baccini, A., Caussinus, H. and Ruiz-Cazen, A. (2001). Apprentissage progressif en analyse discrimi- 
nante, Revue de Statistique Appliqude, XLIX(4), 87-99. 

C16roux, R. and Lazraq, A. (1988). l~tude comparative de diff@rentes mesures de liaison entre deux 
variables al@atoires vectorielles, Statistique ct Analyse des Donndes, 13, 39-58. 

Cramer, E. M. and Nicewander, W. A. (1979). Some symmetric invariant measures of multivariate 
association, Psychometrika, 41,347-352. 

Dauxois, J. and Nkiet, G. M. (1997a). Canonical analysis of two Euclidean subspaces and its applica- 
tions, Linear Algebra and Its Applications, 264, 355-388. 

Dauxois, J. and Nkiet, G. M. (1997b). Testing for the lack of a linear relationship, Statistics, 30, 1-23. 
Dauxois, J. and Nkiet, G. M. (2000). Lois asymptotiques de fonctions des valeurs propres d'une suite 

d'op6rateurs al@atoires autoadjoints, Comptes Rendus de l'Acaddmie des Sciences de Paris, Sdrie 
I, 330, 601-604. 

Dauxois, J. and Nkiet, G. M. (2002). Measures of association for Hilbertian subspaces and some appli- 
cations, Journal of Multivariate Analysis, 82(2), 263-298. 

Dauxois, J. and Pousse, A. (1975). Une extension de l'analyse canonique. Quelques applications, 
Annales de t'Institut Henri Poincard, XI, 355 378. 

Dauxois, J ,  Romain, Y. and Viguier, S. (1994). Tensor products and Statistics, Linear Algebra and Its 
Applications, 210, 59-88. 

Dauxois, J., Nkiet, G. M. and Romain, Y. (2004). Canonical analysis relative to a closed subspace, lOth 
Special Issue in Statistics, Linear Algebra and Its Applications (to appear). 

Dossou-Gbete, S. and Pousse, A. (1991). Asymptotic study of eigenelements of a sequence of random 
selfadjoint operators, Statistics, 22, 479-491. 

Eaton, M. L. and Tyler, D. (1994). The asymptotic distribution of singular values with applications to 
canonical correlations and correspondence analysis, Journal of  Multivariate Analysis, 50, 238-264. 

Fine, J. (2000). ]~tude asymptotique de l'analyse canonique, Publications de l'Institut de Statistique de 
I'Universitd de Paris, 44(2-3), 21-72. 

Fujikoshi, Y. (1982). A test for additional information in canonical correlation analysis, Annals of the 
Institute of Statistical Mathematics, 34, 523-530. 

Fujikoshi, Y. and Khatri, C. G. (1990). A study of redundancy of some variables in covariate discriminant 
analysis, Annals of the Institute of Statistical Mathematics, 42, 769-782. 

Fujikoshi, Y. and Veitch, L. G. (1979). Estimation of dimensionality in canonical correlation analysis, 
Biometrika, 66(2), 345-352. 

Hsu, P. L. (1941). On the limiting distribution of the canonical correlation, Biometrika, 32, 38-45. 



304 JACQUES DAUXOIS ET AL. 

Kariya, T., Fujikoshi, Y. and Krishnaiah, P. R. (1987). On tests for selection of variables and indepen- 
dence under multivariate regression models, Journal of Multivariate Analysis, 21,207-237. 

Larr~re, G. (1994). Contributions ~ l'~tude asymptotique en analyse multivari6e, Th~se de doctorat, 
Universit5 de Pau et des Pays de l'Adour. 

Lin, P. E. (1987). Measures of association between vectors, Communication in Statistics-Theory Meth- 
ods, 16(2), 321-338. 

Mathai, A. M. and Provost, S. B. (1992). Quadratic Forms in Random Variables. Theory and Methods, 
Dekker, New York. 

Muirhead, R. J. and Waternaux, C. M. (1980). Asymptotic distributions in canonical analysis and other 
multivariate procedures for nonnormM populations, Biometrika, 67(1), 31-43. 

Nashed, M. Z. (1976). Perturbation and approximations for generalized inverses and linear operator 
equations, Generalized Inverses and Applications (ed. M. Z. Nashed), 325-396, Academic Press, 
New York. 

Nkiet, G. M. (2000). Comparaison de tests de non correlation, Annales des Sciences Mathdmatiques du 
Quebec, 24(2), 155-178. 

Nkiet, G. M. (2003). Inference for the invariance of canonical analysis under linear transformations, 
Journal of Multivariate Analysis, 84(1), 1-18. 

Pousse, A. (1992). l~tudes asymptotiques, ModUles pour l'analyse des donndes multidimensionnelles 
(eds. J. J. Drosbeke, B. Fichet and P. Tassi), Economica, Paris. 

Rao, B. Raja (1969). Partial canonical correlations, Trabajos de Estadlstica y de Investigacidn Opera- 
tiva, 20, 211-219. 

Siotani, M. (1957). Effect of the additional variates on the canonical correlation coefficients, Proceedings 
of the Institute of Statistical Mathematics, 5, 52-57. 

Suzukawa, A. (1997). Statistical inference in a canonical correlation analysis with linear constraints, 
Journal of the Japan Statistical Society, 27(1), 93-107. 

Suzukawa, A. and Sato, Y. (1996). The non-null distribution of the likelihood ratio criterion for ad- 
ditional information hypothesis in canonical correlation analysis, Journal of the Japan Statistical 
Society, 26(1), 91 100. 

Timm, N. H. and Carlson, J. E. (1976). Part and bipartial canonical correlation analysis, Psychometrika, 
41(2), 159-176. 

Yanai, H. and Takane, Y. (1992), Canonical correlation analysis with linear constraints, Linear Algebra 
and Its Applications, 176, 75-89. 


