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Abstract. We introduce the Linear Relative Canonical Analysis (LRCA) of
Euclidean random variables. Then similar properties than for usual linear Canonical
Analysis are obtained. Furthermore, we develop an asymptotic study of LRCA and
apply the obtained results to tests for lack of relative linear association, dimension-
ality and invariance.
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1. Introduction

In some practical situations, one may have to make a statistical analysis on some
variables when there is a noise variable. An approach for such situations consists in
making the chosen analysis after removing the effect of this later variable; this is done
by considering residuals of regression on that variable. This approach has led to known
methods; an example can be found in discriminant analysis with a covariate which is
known to have the same mean in the related groups (see e.g. Fujikoshi and Khatri (1990),
Baccini et al. (2001)). For canonical analysis, the same approach gave partial (see Rao
(1969)) part and bipartial (see Timm and Carlson (1976)) canonical correlation analysis.
In this later work, statistical inferences based on the canonical coefficients related to these
analyses were proposed. Although the obvious interest of these methods, it seems that
there does not exist an extensive study of their properties as it is the case for usual
Linear Canonical Analysis (LCA). Particularly, the aforementioned statistical inference
shows the interest of making an asymptotic study of these analyses.

In this paper, we define the Linear Relative Canonical Analysis (LRCA) of Euclidean
random variables and show that this analysis is in fact a LCA for suitable random
variables and can be seen as a generalization of partial canonical correlation analysis.
Then, some properties of LRCA are obtained from those of LCA. Next, we focus on the
asymptotic study of LRCA. Although this analysis is a particular LCA, the results of
asymptotic studies of LCA (see Arconte (1980), Pousse (1992), Anderson (1999), Fine
(2000)) can not be applied because we do not have an i.i.d. sample of the related random
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variables. Indeed, these variables can not be observed since their definition involves
covariance operators which are unknown in practice. So, we develop an asymptotic
study for LRCA. The obtained results are used for defining tests for lack of relative
linear association, dimensionality for LRCA, and invariance when the corresponding
variables are transformed by linear maps (see the end of Section 2 for definition and
properties and Section 4.3 for inference procedure).

2. Linear relative canonical analysis

Let (Q, A, P) be a probability space; along the paper we will work with random
variables (r.v.) defined on (€2, 4, P) and valued into Euclidean spaces (i.e. finite dimen-
sional Hilbertian space). When F is such a space, we will denote by (-,-)r its inner
product and by || - | the associated norm. We will use the usual tensor product ®
such that, for any vectors u and v belonging to Euclidean spaces F' and G respectively,
u ® v is the linear map: h € F — (h,u)pv € G; if u = v we will write u®’ instead of
u ® u. The properties of ® (and other tensor products) and the related matrix expres-
sions can be found in Dauxois et al. (1994). When X is a random variable valued into
an Euclidean space X" and satisfying E(]|X||%) < 400, we will denote by Lx the linear
map: v € X — {u,X)x € L*(Q, A, P). For all operator T, we will denote by T* its
adjoint. It is easily seen that L% is the map: Z € L%(Q, A, P) — E(ZX) € X; thus if X
is centered, its covariance operator Vx = E(X ®2) verifies Vx = L} Lx.

For m € {1, 2,3}, let us consider a centered r.v. X,,, defined on (9, A4, P) and valued
into a Euclidean space X,,, with dimension p,,; without loss of generality we assume that
p1 < pa. Further, we suppose that E(|| X||3, ) < +0o and we define

(21) Em = R(Lxm),
where R(T') denotes the range of the operator T, and for k € {1,2}
(22) Eyg:= (Ek + Eg) o Fs,

where & denotes the orthogonal difference defined by: £ & F = EN F* where E and
F are Euclidean spaces such that F' C E. Notice that, denoting by g the orthogonal
projection operator onto the subspace E and by E* its orthogonal space, one has

Now, we define:

DeFINITION 2.1. The linear relative canonical analysis (LRCA) of X; and X,
relative to X3 is the canonical analysis (CA) of Ey.3 and E3.3.

Notice that since F1.3 and Es.3 are finite-dimensional spaces, the previous CA is
a linear CA (LCA) of random vectors (see Dauxois and Pousse (1975), Dauxois and
Nkiet (1997a)). When these spaces are RP-type ones, the components of these random
vectors are r.v. which span the aforementioned spaces. In the more general framework
of Euclidean spaces, these random vectors (say X;.3 and Xs.3) are such that E3 =
R(Lx,,) and E23 = R(Lx,,)- Now, we will search such random vectors. In order
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to simplify notation, we will write L,, (resp. V,,) instead of Ly, (resp. Vx,.). Let us
consider

Vimj =L L =E(X; ® X;n)  for (m,j) € {1,2,3}* with m#j
and put

Lis = Ly — L3V Vi

(2.4)
Xps = Xp— VisViXs  (k=1,2),

where TT denotes the Moore-Penrose inverse of the operator T. We obtain

Lemma 2.1. Fork € {1,2}, one has:
(l) Ek.g = R(Lk.g);
(ii) Lis = Lx, .

PrOOF. (i) From equation (2.3), we have u € Ej.3 if, and only if, there exists
T € Ej such that u = Ilgyz = & — Ilg,z. Thus, from the equality Ilp, = L3V31L§
and equation (2.1), u € Fy.3 is equivalent to the existence of a vector a € X such that
u=Lia— L3V3‘LL§Lka, that is u € R(Lg.3).

(i) For all & € X, we have: Lysa = (a, Xp)a, — (Vi Vake, Xa)a, = (o, X —
ng‘/JXg) x, = Lx, ;o; this proves the lemma. O

Since Ey.3 = R(Lx, ,), we can state:

ProOPOSITION 2.1. The LRCA of X; and X, relative to X3 is the LCA of the
random variables X1.3 = X1 — Vi3V4 X3 and X.3 = Xo — VasVy X3.

Let us consider the operators:

Vis = Liales = E(XE3),
Vim.a = L;;_3Lm.3 = ]E(Xm.g X Xk-S) for m#k;

we have:
Vi = (Lf — ViaV4 L) (Li — LaV3 Vax)
= Vi — Via V4 Vi,
and for m # k:
Vima = (L — ViaVd L3) Lm — LaVy Vi)
(2.5) = Vim — ViaV4 Vam.

We deduce from the classical theory of LCA that the LRCA of X; and X5 relative
to X3 is obtained for example from the spectral analysis of the selfadjoint operator

T3 = (Vi)Y 2Via 3 Vi Vo s (Vi 5) /2,
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where T'/2? denotes the square root of a nonnegative operator T

Remark 2.1. When Vi3 and V.3 are invertible the spectral analysis of Ti.3 is
equivalent to that of T 4 = ‘ﬂf31%2.31/2f31‘/21.3. That is known in the literature as
partial canonical correlation analysis (see e.g. Rao (1969), Timm and Carlson (1976)).
Then this last analysis appears as a particular case of the general relative canonical
analysis of subspaces (see Dauxois and Nkiet (2002), Dauxois et al. (2004)), obtained by
considering subspaces generated by specific linear functions of the original variables. In
order to show up this property we prefer to use the terminology linear relative canonical
analysis instead of partial canonical analysis. Notice that the part and bipartial canonical
correlation analysis developed by Timm and Carlson (1976) can be reobtained from our
framework by considering the CA of F; and Fs.3, and E;.3 and Ey.4 respectively, where
E, 4 is constructed as in equation (2.2) with another Euclidean r.v. Xj4.

The properties of LRCA are deduced from those of LCA. Hence the LRCA of X;
and X3 is characterized by a triple

(2.6) {(p)osizrs (@$Y)o<izpr, (@5 D)o<i<ps }

(where 7 denotes the rank of 7). and py is the dimension of A}, k = 1,2) satisfying:

(P1) for each i € {1,...,r}, p? is the i-th greatest eigenvalue of T}.3 and satisfies
0<p; <pi_ 1<1(w1thp0—1)

(P2) the system (Oz1 3)0<1<p1 is an orthonormal basis of X} such that each a% is
an eigenvector of T7.3 verifying:

e if i <7, then o’} is associated with p2

e if i > r, then a§%

(P3) the system (()z;3)0<l<p1 is an orthonormal basis of X3 such that:

e if i < r, then agg,) = p N (V)2 Ve 5 (V] )1/2a%, this equality is equivalent
to aly = pr (Vi) V/2Vias(Ve5)1 /208 and then of) is an eigenvector of Tha :=
(V;,3)1/ Var.3Vy s Via.s(Vy 3)1/2 associated with p2,

e if ¢ > 7, then a2z:3 is an eigenvector of T5.3 associated with 0.

The p;’s are termed the (relative) canonical coefficients associated to the LCRA;
the (relative) canonical variates are the random variables defined for (k,7) € {1,2} x

{07 (R apk} by

(2.7) f,ﬁ’é 1= Lk.3(VJ.3)1/2a§;)3 (Xk.3, (sz.g)l/za;(;);;)xk-

is associated with 0;

Clearly, one has

(2.8) Vi) Xpa Z Bl

and
E(f3589)) = (Lra(Vil5)2a(), Laa (Ve 5) /%))
= (@}, (W13) /2L 4 Laa(Vil5) %0}y x,
= (&}, (V1) V2 Vg 3(V45) 20$)) .
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Ifj > r, ozg% belongs to the kernel of T5.3, that is also the kernel of (Vlf3)1/2V12.3(V2,’,3)1/2;
hence we have E( f (73)) = 0. If j < r then the use of (P3) and the orthonormality of

the 0‘(1 ?S’s gives IE( 13 2(322) = p;0;;, where 4;; denotes the Kronecker delta. Consequently,
taking p; = 0 for ¢ > r, we have for any (i,5) € {0,... ,p1} X {0,... ,p2}

(2.9) (f(z) (]) = p;jbij.

Moreover, when for k € {1,2}, Vj.3 is invertible, one has for (¢,7) € {1,...,px}?

E(FO 19 = (LraVia 2ol L3Vl 2al))
= (a S)?n -—1/2Lk 3Ly 3V_1/2a§cjé)
(2.10) = (o), alh) x, = 6.

In order to simplify the previous expressions, conditions for the invertibility of Vi.3
(k = 1,2) may be searched. They can be obtained from the following properties:

LEMMA 22. Fork € {1,2}:
(i) E.NE3= Lk(kel‘(Vk.g));
(ii) E.NE3 = {0} & ker(Vk) = keI‘(Vk.g).

PROOF. (i) Let u be an element of Ex N E3, then Ig, [Ig,u = u and there exists
a vector a which can be chosen in R(L}) (because Xy = ker Ly & R(L})) such that
u = Lga. Since g, = L, VL L%, (m € {1,2,3}), we then have LkV)'Vk;;V3 Vira = Lio.
Premultiplying both sides of this equality by L; gives HR(Vk)Vk;;VJV;;ka = Vio; since
R(Vis) = R(L;yL3) C R(L;) = R(Vy), by equation (2.5) we obtain Vi.30 = 0. Hence
u € Ly(ker(V.3)) and thus By N B3 C Li(ker(Vi.3)). Reciprocally, for all a € ker(V.3),
one has Via = Vk?,V3 Vara = LiIlg, Lyo. Premultiplying both sides of this equality by
LkVT and noticing that LiIlgy,) = LkHR(L*) = Ly permit to obtain v = IIg, g, u,
where u = Lya. Thus u € Ex N E5 and this proves that Lg(ker(Vi.3)) C Ex N Es.

(ii) If Ex N E3 = {0} then, from (i), @ € ker(Vj.3) implies Lya = 0, that is o €
ker(Ly) = ker(V). Reciprocally, if ker(Vy) = ker(Vj.3) then from (i), we have ExNE3 =
Lk(ker(Vk)) = Lk(ker(Lk)) = {0} O

From this lemma we deduce that, for £ € {1,2}, if Vi is invertible and Ej N E3 =
{0} then V.3 is invertible. These are sufficient but not necessary conditions for the
invertibility of Vi.3.

Remark 2.2. When, for m € {1,2,3}, a basis is chosen in X,,:

1) the invertibility of V;, is equivalent to the linear (algebraic) independence of the
components of X,, related to the basis of A;,, which is considered. One can always reduce
to that situation by removing some of these components. In the literature, V,, is often
supposed to be invertible and it is admitted that this assumption does not restrict the
generality;

2) when the V,,,’s are invertible, the condition Ex N E3 = {0} (kK = 1,2) means
that the system made up by the components of X additioned to that of X3 is linearly
independent. That situation can always be obtained by removing some components in
X and/or in Xj;
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Our approach consists in defining LRCA by using the CA of Euclidean spaces (see
Dauxois and Nkiet (1997a)); one of the interests of this approach is that it permits to
see several classical methods as particular cases of this CA. Two examples are given
below.

Ezxample 2.1. LCA with linear constraints. This method (see Yanai and Takane
(1992)) consists in searching canonical variates of X; and X, having the form f,f:) =
(a,(;),XkMk with the linear constraints Aka,(:) = 0, where Aj is a linear map from
Xy to another Euclidean space X; (k = 1,2). Suppose that, for k € {1,2}, Vi is
invertible, and put Y := Aka"le and Ey, := R(Ly,). It is clear that Ey, C E; then
(Ex + Ey,) © Ey, = E;, © Fy,. For any a € X}, and any 8 € X/, one has

E({a, Xi) 2, (8, Ye)ay) = (E(Xi ® Yie)a, B)ay = (Arev, B) x5

consequently, a r.v. f := (a, Xi)x, belongs to Ey & Ey, if, and only if, for any 8 €
Ay, (Aka,ﬁ)xé = 0; that is Ara = 0. Consequently, the LCA of X; and X, with
the previous linear constraints is the CA of By © Ey, and E3 © Ey,. Now, it will be
reformulated as LCA for suitably transformed variates. For k € {1,2}, from Lemma 2.1
we have Ey © Ey, = R(Lz, ), where Zy := X}, — UkW,ZYk with Uy := E(Y; ® Xi) and
Wy = E(Yk®2). Therefore, the previous CA is the LCA of the random vectors Z; and
Zy which can easily be expressed as transformed variates from X; and X5 respectively.
Indeed, from Uy = E(X® )V, AL = A} and W = AV, E(XE )W AL = AV AL,
we obtain Z = (Ix — Cx)Xx, where I} denotes the identity operator of Xy and Cy :=
Ax(ApViTALYALVY. Notice that Suzukawa (1997) showed that the previous LCA

with linear constraints is the LCA of two variates X; := @1 X; and X5 := Q2X5, where
@)1 and @2 are suitable orthogonal operators. In fact, this result is equivalent to the
preceding one. Indeed, the LCA of Z; and Z; is the research of canonical variates
(04, Bi)1<i<m (m € N*) and canonical coefficients (p;)1<i<m satisfying:

{ ViaViVoroi, = p2Vicu, (o, View)x, = 1, (@i, Viaj)x, =0 (for i+ 7)

Vo ViViaBi = p2ValBs, (B, VaBidw, =1, {(Bi, VaBj)a, = 0
where Vip = E(Z, ® Z;) = V5 and Vi, = E(Z®") (k € {1,2}). Since

Vi = Iy — Co)VielIx — Cr)* = (I — C)Vi = V(I — C)",
Via = (I — C1)Via(Iz — Cy)*,
and
Vi=( -GV T — Cr),  (Tn— Cu)*Vit = Vil Ik — i),

the preceding system is equivalent to

(I = C)Via Vi H Iz = Co)Varyi = Vi, (v Vividw =1, (i, Vivi)a =0
(Ip — Co)Var Vi (I1 = C)Vaols = p2Vali, (&, Vabiday =1, (&, Va€i)a, =0
(for i#j)
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with vy, = (11 —C1)*a, & = (L2 — Cg)i@i. This later system is that is shown in Suzukawa
(1997) to define the LCA of X; and Xo.

Ezample 2.2. Relative discriminant analysis. Let Y be a discrete r.v. valued into
{1,...,¢} and defining g groups. Then put X; := (1{y=1},... , l{y—q}); We define the
relative discriminant analysis (RDA) of Y and X relative to X3 as the canonical analysis
of By and Fs.3. Since Ep.3 = R(Lx,,), this RDA is the discriminant analysis of Y and
X2.3. This method have been introduced in the literature (see, e.g., Fujikoshi and Khatri
(1990), Baccini et al. (2001)) for the case where X3 is a covariate having the same mean
in the preceding ¢ groups and admiting an invertible covariance operator.

Invariance of multivariate analyses when the related variables are transformed by
linear maps have been considered in some particular forms in the literature. For in-
stance, the problem of additional information, tackled in Fujikoshi (1892) and Suzukawa
and Sato (1996) for LCA and in Fujikoshi and Khatri (1990) for covariate discriminant
analysis, defined as the research of conditions for which the results of a given analysis are
the same whether one considers some variables or subcomponents of them, is clearly a
problem of invariance of this analysis after transformations of these variables by projec-
tors (see Remark 2.3). Then, it is of interest to generalize the approach of the previous
works by searching for conditions such that the considered analysis is invariant when
the variables are transformed by linear maps which may not be projectors. This is an
important goal since in multivariate analysis it often occurs that, in order to reduce di-
memnsions, one have to work with linear transformations, and not necessarily projections,
of original variables; so it may be convenient that these transformations do not affect
the results of the given analysis. For the case of linear canonical analysis (LCA), this
generalizing approach have been tackled by Dauxois and Nkiet (1997a) who determined
conditions for having the aforementioned invariance. We will now extend this problem
to the case of LRCA. For k € {1,2}, consider an Euclidean space X}, with dimension g,
a linear map Ay, from &% to &} and the r.v. Yy = ApXi. It is easy to verify that, defining
Wia := E(Xa®Ys), Yis := Y — WisVi X3 and Wi.3 := E(YZ; ), one has Wis = AxVis,
Y3 = ApXy.3; this implies: Ly, , = Lg.3Af. The LRCA of X; and X, relative to X3 is
the triple given in equation (2.6), and similarly we consider the triple

{(¥)1gizs (B D1<i<ars (BSD)1<i<ar}

which characterizes the LRCA of Y; and Y5 relative to X3. The canonical variates
corresponding to the preceding LRCA are

I = Les(Vi) 2o, 1<i<p
and
9% = Ly, ;(W{ )V280) . 1<i< g

DEFINITION 2.2. The LRCA of X; and X is invariant for the pair (A;, Az) if the
following conditions are satisfied:
(i) r=sand pi=~ (i=1,...,r);
(ii) for all (k,3) € {1,2} x {1,...,7}, £ = g¥).
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Now, we can seek a necessary and sufficient condition for which this invariance
property holds. Notice that, since Yi.3 = AxXk.3 (k = 1,2), the invariance introduced
in the previous definition means the invariance of the LCA of X;.3 and X5.5 for the pair
(Ay, A3). Then, by applying Proposition 4.2 of Dauxois and Nkiet (1997a), we obtain:

PROPOSITION 2.2. The LRCA of X, and X, is invariant for the pair (A1, As) if,
and only if one has:

Vigs = ViaAl(AiViaA}) A Vias  and  Varg = Va3 A3 (AsVasAS) AaVora.

Remark 2.3. The previous notion of invariance for LRCA is related to the prob-
lem of additional information in canonical analysis which interested some authors. For
example, Siotani (1957) studied the effect of adding variates on the canonical coefficients
and Fujikoshi (1982) determined conditions for which LCA remains unchanged when
subcomponents of the involved variates are omitted. When, for k € {1,2}, we have the
decomposition in direct sum A} = X,El) @ X,EQ), an analogous problem of additional infor-
mation can be formulated for LRCA. Consider m; (resp. mx2) the projection operator

on X,gl) (resp. X,§2)) along X,gz) (resp. X,Sl)) and put:
Xij =me5 X (1=1,2).

We say that the pair (X2, X92) does not provide additional information on the LRCA
of X7 and X, relative to X3 if this later LRCA is invariant for the pair (m1,792;1). A
necessary and sufficient condition for this invariance is obtained by applying Proposition
2.2 to the pair (w11, 72;1); now, by taking X3 = 0 we obtain the condition of Fujikoshi
(1982).

3. Asymptotic study of LRCA

The asymptotic theory for classical LCA is well known; the earlier works on this
subject focused on the asymptotic joint distribution of the sample canonical correlation
coefficients under normality (see Hsu (1941)) or nonnormality (see Muirhead and Water-
naux (1980)). Later, asymptotic distributions both for these coefficients and for sample
canonical vectors and /or projections were derived under normality and when the popu-
lation canonical correlation coefficients are distinct (see Anderson (1999) and references
inside) or under nonnormality and in case the preceding coefficients have multiplicities
(see Arconte (1980), Pousse (1992), Larrére (1994) and Fine (2000)). In fact, asymptotic
study for LCA or others multivariate statistical analyses reduces to determining consis-
tency and asymptotic distributions for eigenvalues, eigenvectors and eigenprojections of
an operator which is known to be consistent and for which an asymptotic distribution is
known. That is not technically difficult nowadays since one can apply results of Dossou-
Gbete and Pousse (1991) for a selfadjoint random operator, or those of Eaton and Tyler
(1994) when one focuses on singular values of a random matrix which may be not sym-
metric. Finally, making an asymptotic study for a statistical multivariate analysis mainly
consists in studying the consistency and in deriving an asymptotic distribution for the
related operator.

In this section, we focus on asymptotics for LRCA. Although it is a particular
LCA, the results of asymptotic study for this later analysis cannot been applied to
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it. Indeed, these results hold when an i.i.d. sample of the related random variables is
avalaible; but, as we will see below, we don’t have any sample of (X;.3, X2.3). These r.v.
are unobservable ones because their definitions (see equation (2.4)) involve covariance
operators which are unknown in practice. Then, consistency and asymptotic distribution
for the sample operator related to LRCA are not straightforward and there is an interest
to determine them.

We suppose that, for all (k,m) € {1,2} x {1,2,3}, we have:

(AD) E(1Xpl%,) < +o0

(A2) V,, is invertible;

(A3) E.NE;= {0},

(A4) Vig =1
where I denotes the identity of X}.

Remark 3.1. From Lemma 2.2 we know that the assumptions (A2) and (A3) imply
thas V.3 is invertible. Then Assumption (A4) does not restrict the generality; indeed

one can always reduce to that situation by considering Yy = V,‘::s1 / 2Xk instead of X
(k = 1,2), and since V,;31 /2 is invertible the transformation X — kag} / 2Xk yields
invariance of the LRCA.

Let (Xfi),Xg),Xéi))lgiSn an i.i.d. sample of the triple Z = (X;,Xs,X3); for
(m,k,7) € {1,2,3} x {1,2}?%, we consider:

— 1 .
X =3 X9,
=1

1N () _ e
B1) Vi =- ;(XS,J -Xn)®
1 - 1 - n *
32 WP =3P -XM e X =V for k#j
i=1
Notice that " = L™ x®% _x™® 44 v =1y xWex® _XMeX Y,
then by the strong law of large numbers V,&L ™ and Vk(Jn ) almost surely uniformly converge

to Vy, and Vj; respectively, as n — 4+oco. This shows that for large values of n, V:,,(") is
invertible (a.s.); thus we can define

(3.3) VW = vy @y Ty and
n n 1 *
(3.4) Vigh = Vi) - viViM v = vk

We also have the almost sure uniform convergence of Vk(,';) to Ik, as n — +00. Then, for
large n, Vk(g) also is invertible (a.s.) and we put:

—1/2 n n —1/2

We take the spectral analysis of Tl(_%) as an estimator of the LRCA of X; and X> relative
to X3 and our goal is to study the asymptotic properties of this estimator and its
eigenelements.
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Let A" := (X;)1<j<s (resp. A := (A\i)1<i<p, ) be the strictly decreasing (resp. complete

nonincreasing) sequence of the eigenvalues of T7.3, we denote by m; the multiplicity of

Aj. Tt is clear that \; = p? with p; = 0if i > r and that, putting v; = 1+ Zf;(} my (with

mo = 0), one has )\; = Ay;. Then we consider the orthogonal projection operator P; onto
e L

the eigenspace of T1.3 associated to A}, that is P; := it ! a% . Moreover, letting

i=v;

(/\ ))1<1<m be the complete sequence of eigenvalues of 1( 3), we consider an orthonormal

basis (ag,&n)lslgpl of associated eigenvectors such that a%,n is associated to /\En)

we pllt Pj(n) = Zl'/j+mj—1 gz%)@n

1=y

, and

3.1 Almost sure convergence

As already noticed, the empirical covariance operators defined in equation (3.1)
and equation (3.2) almost surely uniformly converge to the corresponding covariance
operators. Thus, V(") (resp. V(")' V1(2" g,,) almost surely uniformly converges to I; (resp.
Iy; Vi2.3). Consequently, T, 1(3) converges almost surely uniformly to 73.3. A direct
application of Proposition 3 of Dossou-Gbete and Pousse (1991) gives the following
almost sure convergence properties of the eigenelements of Tl(_';).

PROPOSITION 3.1. (i) Foranyj € {1,...,s} and any i € {vj,...,v; + m; — 1},
(A nene converges almost surely to }\;-.

(ii) For any j € {1,. } (P (m) Jnen+ converges almost surely uniformly to P;.

(iii) If m; =1, then (a1 3, n)neN‘ converges almost surely to ag 1)

3.2 Convergence in distribution

Here, we will derive the asymptotic distribution of \/ﬁ(Tl(Z) —T1.3) and, consequently,
those of the eigenelements of this operator.

We identify X7 x Xy x X3 with the direct orthogonal sum X = X; @ Xy & A%,
the aforementioned orthogonality being related to the inner product of X defined by
(z,y)x = anzl(mm,ym)xm for all ¢ := anzl ZTm € X and all y := Zm_l ym € X.
Then we can write Z = 3> | X,, and put Z; = 3% _ X x® (i=1,...,n). In the same
way, the space L(X1 x X x A3) of linear maps from Xl X Xy X X3 into itself will be
identified to the orthogonal sum M = €, ., ;<3 L(Xm, X;), where for any pair (F,G) of
Euclidean spaces, we denote by L(F,G) the space of hnea.r maps from F into G (when
F = G, we will write L(F)). Hence we can write V = E(Z®") = > 1<m <3 Vim (With
Vjj :=V;). Let us consider: o

7<n)__ZZ _ Zx(n)

(n) (n) : (n) ._ y/(n)
Vi = n}:(z -Z = > v (with VY .=V")

=1 1<45,m<3

35)  Ho=va(Va-V)= 3 Va(Ve - Vim).

1<j,m<3
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For (r,s) € {1,2,3}%, we denote by p,, the orthogonal projection operator from
M = @, j<3 L(Xm, Xj) to L{X;, A;), that is the operator such that for all A =
i< <3 A,;j € M, one has p,s(A) = A, First, we will prove three useful lemmas.

LEMMA 3.1. For k € {1,2}, one has \/E(Vk(g) —Iy) = affg(Hn), where H,, is
defined in equation (3.5) and (afﬁ)neN* is a sequence of random operators from M

to L(Xy) which converges almost surely uniformly to the operator ax.3 of L(M, L( X))
defined by:

ak-3(A) = prr(A) — pra(A)V3 Wak + ViaVy ' pas(A)Vy Wag — Via Vs pax(A).

Proor. Using equation (3.3) and I = Vi3 = Vi — Vk3V3*1V3k, we have:

V- L=V -V -,
=V VPV TV — Vit ViaVy Vi
= (VM -y - (v - ng)V?f")vlvg(g)
F VWD (VP - VTV Via Ve (Vi — Vi),

Hence \/ﬁ(Vk(g) —Iy) = agg(Hn), where agg is the random operator of L(M, L(X}))
defined by:

n -1 n n) "1 — -
a3 (A4) = prr(A) — pra(AVED T VE + Via Vi paa(A)V Ve — Via Vi Ipai(A).

Then, the almost sure uniform convergence (agg)neN‘ to ag.3 is obviously deduced from
that of V3(") (resp. VE,,(,?)) to V3 (resp. Vai). O

LEMMA 3.2. One has \/7_1(‘/1(2")3 — Viga) = a§§?3(H,,), where (agg_):,)neN' is a se-
quence of random operators from M to L(X;, Xy) which converges almost surely uni-
formly to the operator ay2.3 of L(M, L(Xy, X1)) defined by:

a12.3(A) = p12(A) — p13(A) V5 'Wag + ViaVy ' pas(A) Vs Wag — ViaVy ' paa(A).

Proor. Using equations (2.5) and (3.4), we can write:

-1

Vi = Viza = iy — Vie = VPV vl 4 vigVy v,
-1
= (Vg = Viz) — (V) = vig) Vi v
n -1 n _— n _
+ VsV (V) — V)V VY — VigV (VY — V).

Thus we have va(Viy} — Vias) = a{¥s(H,,), where a\y € L(M, L(Xy, X)) is defined
by:

n -1 -1 — -
a{P5(A) = pr2(A4) — pra(AV TV 4 Vv Pas(A)V5 Vi) — VigVy I psa(A).
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Then, the almost sure uniform convergence (a,(fg)neN* to ag.3 is obviously deduced from
that of Vi™ (resp. V4" to V3 (resp. Vaz). O

Similarly, we also have:

LEMMA 3.3. One has v/A(V") — Var.s) = aSTs(H,), where (aS¥s)nen- is @ se-
quence of random operators from M to L(Xy, Xy) which converges almost surely uni-
formly to the operator agy.3 of L(M, L(X1, X)) defined by:

a21.3(A) = pa1(A) — pa3(A)V5 1 Vay + Vas Vi ' pas(A) Vs 1 Vay — VasVy 13 (A).

These lemmas permit us to obtain the asymptotic distribution of \/TL(TI(%) — T1.3)-
In what follows, we consider the operator:

T A e LX) %(A+A*) € £(X),

that is the orthogonal projector onto the subspace of the selfadjoint operators in £(X7)
and ® denotes the tensor product of operators, associated with the Hilbert-Schmidt
inner product: (T, S}y = tr(T'S*).

PROPOSITION 3.2. \/E(Tf’;) — Th.3) converges in distribution, as n — +00, to a
r.v. U having a centered normal distribution in L(X)) with covariance operator given by:

2 ‘-2
I = E[(n(—Vi23Vo1.3 X5 — V12-3X§Z.’;V21-3 +2V12.3(X1.3 ® X2.3)))® ]

Proor. We have:
VAT — Tia) = VWS T - VLV Vv

+ WVAES — Viaa) Vi3~ G 2
~VizaVsy VAW — RV
+ Vizalva(Val) — Vara)is
+ V12.3V21.3[\/'15(V1(.§)_”2 - I)].

For any invertible selfadjoint nonegative operator T', one has

(3.6) T2 = -_T"YXT -T2+ 1)~

where I denotes the identity. Then applying this equality with T = Vl(,g) and using the
three previous lemmas, we obtain:

n -1 —1/2 N n)~1 n —-1/2
\/E(Tf-s) - T1~3) = - Vl(g) a§’.‘§ (Hn)(‘/l(-g) + Il) 1%(;%‘@(-3) ‘/'2(1-21,‘/1(-3)

-1 n —1/2 n -1 —1/2
+aiPs(H)Vss VasVis — ViasVyy el (H)Vahi%
+ V12<3a§71L.)3(Hn)V1(,7§)—1/2

)~ (n n -1/2 —
— V12-3V21~3V1(.3) a§.§ (Hn)(V1(.3) +1)7!
= <Pn(Hn)
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From the almost sure uniform convergence of V](2" %, Vl(g) and VQ(,g), as n — 400, to

Via.3, Iy and I respectively, we deduce that (¢, )nen+ almost surely uniformly converges
to the operator p € L(M, L(X})) defined by:

1
p(A) = — i[a1~3(A)V12~3V21-3 + Via.sVa1.3a1.3(A)] + a12.3(A) Va1.3

+ Viz.saz1.3(A) — Vissaa.s(A)Var 3.

Further, we have:

1 n ®2 _-(n)®2
H,=+n gZzi -vi-Z" .

=1

By the central limit theorem \/ﬁf(n) converges in distribution to a r.v. having a cen-

tered normal distribution in X with covariance operator E(Z @), this implies that AR
converges in probability to 0 in X', as n — +00. Hence H,, has the same asymptotic dis-

tribution than /n[: 3% | Z;X’Z — V]; thus, by the central limit theorem, H,, converges in
distribution, as n — +o0, to a r.v. H having a centered normal distribution in M, with
c =2 <
covariance operator defined by E[(Z®” )®°], where Z® := Z®° — E(Z®"). Moreover,
we have
lln(Hn) = o(Hn)ll£(xy) < lln = @llooll Hnllm,

where || ||oo is the uniform convergence norm. Since ||H,||ar (resp. ||on —¢|loo) converges
in distribution (resp. in probability), as n — +o0o, to ||H||a (resp. 0), the previous
inequality shows that ¢, (H,) — ¢(H,) converges in probability, in £(X]), to 0 as n —
+00. Hence ¢,(H,) has the same asymptotic distribution than ¢(H,), that is the

distribution of ¢(H) because ¢ is linear. This means that /n(T] 1(7;) - T1.3) converges to
the same centered normal distribution than U = ¢(H); the related covariance operator
is:

52 52, 2052, 2°. . &2
I'=E[(p(H)® ] = ¢E[H® J¢* = vE[(Z® )¥ ]p* = E[(¢(Z2® ))¥].
It remains to give an explicit expression of I'. We have:

013(Z2% ) = X&' — Vi — (X3 ® X1 — Vig)Vy 1V
+ V13V3_1(X§®2 — V)V ay — ViV (X ® X3 — V)
= X2~ (VisVy ' X3) @ Xy — X, ® (ViaVy 1 Xs)
+ (VisVy 1 X3)®" — Vi + Vaa Vg Wy
= X{Q; — I,
0123(2% ) = X2 ® X1 — Viz - (X3 ® X1 - Vig)Vy 'Vay
+VasVy N(XS — Va)Vy WWae — ViaVs ! (X2 ® X3 — Vi)
=Xo® X1 — (VaaVy ' X3) @ X1 — Xo ® (VisV5 ' X3)
+ (VasVz ' X3) ® (VisVy ' X3) — Viz + VisVy ' Vay
= Xo3® X1.3—Vi23;
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similarly
6L21-3(Z®2 ) =X1.3® Xo.3 — Vor.3,
and " R
a2.3(Z® ) - X§®3 - IQ.
Hence
c 1 2 2
P(2%") = = SI(XT — 1)VizaVera + VizaVara(X 5 — 1))
+ (X923 ® X1.3 — Vi2.3)Var.3 + Vi2.3(X1.3 ® Xo.3 — Var.3)
2
—Vi23(X$3 — I2)Vor3
2 2
(3.7) = m(~Vi2.3Vo1.3X %5 — V123 X3 Va1.3 + 2V12.3(X1.3 ® X2.3));

this completes the proof. O

This proposition permits us to obtain the asymptotic distributions of the eigenele-
ments. For j € {1,...,s}, considering the operators

1
Si= Y P
7 /\/_ —)‘l

1<I<s 145 7
\Ifj :T e £(X1) — PjTSj + SjTPj € ﬁ(Xl),
V.. T € L(X1) — P;TP; € L(X),
0, : T € L(X) — S;Tol") € £(xy),

denoting by A the continuous map which associates to T' € L(X;) its complete non-

increésing sequence of eigenvalues, and putting pl(-") = /\z(-"), Py = ,//\;-, we have

PROPOSITION 3.3. Forj € {1,...,s}, one has:
(i) the sequence \/E(Pj(") — Pj) converges in distribution, as n — +o0o, to a T.v.

having a centered normal distibution in L(X)) with covariance operator A; = V;T'¥7.

(ii) the sequence (\/ﬁ(z\z(n) — X))y <i<v;+m;—1 converges in distribution, as n —
+00, to A(E;), where &; is a r.v. having a centered normal distribution in L(X;) with
covariance operator A} = \P;F\Il; .

(iii) If o # 0, then (v/(p™ ~ p}))v,<i<v, +m;~1 converges in distribution, as n —
+00, to A(E;), where & is a r.v. having a centered normal distribution in L(X1) with
covariance operator A = (4X;)~' W0} .

(iv) If mj =1, then \/ﬁ()\f,?) — A}) converges in distribution, as n — +oo, to tr(§;),
and for j satisfying p} # 0, \/ﬁ(pl(-") — p;) converges in distribution, as n — +o0, to
tr(gg)

(v) If mj =1, then \/ﬁ(aglfg,)n — o)) converges in distribution, as n — +00, to a
r.v. having a centered normal distribution in X with covariance operator A} = ©; I'©].
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Proor. (i) and (ii). From Proposition 4 in Dossou-Gbete and Pousse (1991), wi

know that \/ﬁ(Pj(") P;) (resp. (v/n ()\(") A3))v; <i<v;+m;—1) converges in dlstribution
as n — +oo, to \I/j(U) (resp. A(&;), where §J = W5 (U)). Since ¥;(U) (resp. §;) is a
linear function of U, then it has a centered normal distribution. Its covariance operator
are easily shown to be A; (resp. A}).

(iii) If p} # O, then from the equality

V(e = g5 = V(Y = 356" + )

we can write (vA(A™ — p\))us<icuyim1 = BO) where ™ 1= (VA(A™
N))v; <i<v;+m;—1 and BJ(.") is the random operator

(n)

(-'171)1/3<z<1/]+m]—1 € R™ — (xz(p + P;)_l)u,-gigu,-+m,-—1 € R™.

For i € {v;,...,v; + m; — 1}, pin converges almost surely, as n — +o00, to pfj, then

BJ(-") converges almost surely uniformly to the operator B; := (2p})~'Ig~;, where Igm;
denotes the identity of R™i. Moreover, we have:

IB& ™) - By(n™)lles < 1B = By loolin™ s

Since Hn](.") |lgms (resp. ||BJ(-") — Bj||oo) converges in distribution (resp. in probability), as
n — 400, to ||A(§;)||rms (resp. 0) the previous inequality implies the convergence in
probability of B(")(nj(")) B, (77] )} to 0 as n — +00. Hence B( )(n](n)) and B; (773(”))
have the same limit distribution using (ii) and the continuity of B;, we then conclude
that (\/_(pfn) — P}))v;<i<v;+m,—1 converges in distribution, as n — +o0, to A(¢]) where
£ = (2p;~)_1fj. Clearly, £ has a centered normal distribution with covariance operator
(4X;) " T

(iv) and (v). If m; = 1, then &; and & have ranks equal to one then A(¢;) = tr(§;)
and A(£}) = tr(£;). Moreover, we know from Proposition 4 in Dossou-Gbete and Pousse
(1991) that \/_(a§"§)n - a. 3)) converges in distribution, as n — 400, to ©;(U), that is
a centered normal r.v. with covariance operator A} = ©; I'©7. O

The covariance operator I' can be expressed using the canonical variates and coef-
ficients related to the LRCA. For (i,5) € {1,... ,p1}?, put

eiys = oi ®af) + afy ®al)y
and

Fz] 3= "p; f (]) Pngf -3 2(J§ + 2p]f (J)
(with p; = 0 if i > r); we then obtain

1 ~
COROLLARY 3.1. One has: T' = i Zlgi,j,k,lgpl ]E(Fij-3Fkl-3)5ij-3®5kl~3-

Proor. From (P2) and (P3) (see Section 2), it is easily seen that if i < r,
‘/12.3ag% = pza% and that if ¢ > r, Vlz.gagg = 0 (because V21.3V12.3ag% = 0). Then,
using equation (2.8), we obtain:

P p2

X23®X13=3 > fi3ffofl®al) = (X153 ® X23)"
i=1 j=1
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and for k € {1,2}:
Sy G) () o )
ZZ Ic]3ak3 k]-3~

i=1 j=1

Thus, using equation (2.9), we obtain

p1 p2
(38)  Vies =E(Xpa®X13) = 3> 8ipiad) ® ol = Zma2 L@ all,
i=1 j=1
T ®?2
VigsVar.3 = ZP?Q%
i=1
and using again equation (2.8)
2 &? k
Viz.sVa1.3 XD = Z Z (]) f?ag g’, a% ® ag ?2

i=1 1<5,k<p1

p1
j) gk
- T SRt 0al)

1<6,k<r j=1
NS 24 1)) o o)
% 1
= ZZP?J‘L filsails ® eq's;
i=1 j=1
moreover
®2
2 Pi P2 ( )
VizaX$3Vars = (Vi3 X23)® = 1> pifals 305 ® alh)of)
=1 j=1
®2
~(Soselt) - X smlifaioat
1<4,j<r

and

r pL P2 . G

Vi2.3(X1.3 ® X2.3) —ZZZPZ 1585 ® afd) (o} ® off))
1=1 j=1k=1
= > pifi3ffa) e el

1<4,5<r

Thus
&*? &?
I'=E||n~ Z F”a(l) alf) =E||~ z Fijol) © al?) .
1<s,5<r 1<4,5<p1

the second equality being justiﬁed by the fact that if ¢ > r or j > r then Fj; = 0.

Noticing that = (a ® agj :)3 3€ij.3, one sees that the required result is obtained. O
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3.3 Asymptotic study of the elements associated with the null eigenvalue

As it was noticed for the usual LCA (see Larrére (1994)), the previous results can
not be exploited for statistical inference involving only the eigenelements associated with
the null eigenvalue of T3.3. Indeed, easy calculations show that the eigenvalue limiting
distributions obtained in Proposition 3.3 are Dirac distributions. Then it is necessary to
use another approach for having the asymptotic distributions related to these associated
eigenelements. Notice that we implicitly suppose r < p; (else there does not exist a null
eigenvalue).

Let Py be the orthogonal projector onto the eigenspace associated with the null
eigenvalue of T7.3, we have

P1 2 ®2
Py = Z alg
i=r+1
and put P{™ := 4 alg &% from the Assertion (ii) of Proposition 3.1 we have the

almost sure uniform convergence of PO(") to Fy, as n — +00. Then Pén)Tl(")P(") almost
surely uniformly converges to PyT1.3F = 0, as n — +00. Now, we can derive the limit

distribution of nP{V T P{™. Putting P := YP2 + agl)3 we have

PROPOSITION 3.4. The r.v. nP{" T P{™ converges in distribution, asn — +0o,
to WU*, where ¥ 4s a r.v. having a centered normal distribution in L(Xa, X;), with
covariance operator:

To = E[(Po( X253 ® X1.3)P))®’].

ProoF. We have nPMT{WPM™ = @, 0%, with ¥, = vabPMvw v .

V(n) 2 . Using equation (3.8) and the orthonormality of the agg’s, we obtain PyVia.3 =
0. Thus

= /r(B{™ — )V(") RN A
+Polva(y " - v
+ Po[Va(Vigh - Viaa) Vi o

+ PO‘/12~3[\/E(V2(.731)‘1/2 — bI)l;

then using the relation in equation (3.6) with T = Vk(g) (k =1,2) and the Lemmas 3.1
and 3.2, we have

where (™ is the random operator

1/2

n n —1/2 _ n _

n@) = — BV Mm@ + ) VT 4 Ral (VD)
n)~12 (n n)~1/2 —
— PoViasVyy  asi(M)(Vyy T+ L)
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which converges almost surely uniformly to the operator i defined as
1 1
TeM— —5P0a1.3(T)V123 - §P0V12~3aQ-3(T) + Poay2.3(T) € L(Aa, AY).

One knows that (see Dossou-Gbete and Pousse (1991)) v/n(P{™ — Py) = ¢ (/n(T{% —
T).3)), where ¢(™ converges almost surely uniformly to

¢:Te€ E(Xl) +— PyTSo + ST Py € L(Xl)

@2
and So:=—>1_, p; 2007 As /(T — T1.3) = gn(H,) where ¢, converges almost
surely uniformly to ¢ (see the proof of Proposition 3.2), ¥,, converges in distribution to

7' (H) where
(3.9) 1'(T) = ¢(o(T)) + n(T) = Pop(T)So + Sop(T) Po + n(T);

since 7’ is linear, n'(H) has a centered normal distribution in £{X7). Its covariance
operator is

Po = nBIH® " = wE[(2%") ¥ = E[ln' (2" )

(recall that Z ®* — 78° _ E(Z®")). Using equation (3.8) and the orthonormality of the
a,(f,)g_’s (k = 1,2) implies V21.350Vi2.3 = P} — Is. From equations (3.7) and (3.9), and
recalling that PyVi2.3 = 0, we obtain 17(Z®2 ) = Po(X2.3 ® X1.3)P{; this completes the
proof. O

4. Some applications

4.1 Testing for the lack of linear relative association

LRCA may be seen as a tool which permits to see if there is or not a linear relative
association between X; and X, relative to X3. We say that there is a lack of linear
relative association, if

(4.1) Vig = VigVi ' Vay,

that is Vio3 = 0. One knows that (see, e.g., Timm and Carlson (1976)) when
(X1, X2, X3) has a normal distribution this property is equivalent to the conditional
independence of X; and X3, given X3.

Following an approach which has been used for classical LCA (Cramer and
Nicewander (1979), Lin (1987), Cléroux and Lazraq (1988), Dauxois and Nkiet (1997b),
Nkiet (2000)), a class of linear relative association measures have been introduced by
Dauxois and Nkiet (2002). These measures have the form m,x, (X1, X3) := ®()), where
® is a continuous symmetric function from RP* to R, satisfying ®(z) = 0 & z = 0.
These measures can be used for testing for lack of linear relative association since equa-
tion (4.1) is equivalent to m,x, (X1, X2) = 0 (see Dauxois and Nkiet (2002)). Then we
consider the test of Ho : m/x,(X1, X2) = 0 against Hy : mx, (X1, X2) > 0.

We take as test statistic, the r.v. ®(A(™) because, by (i) of Proposition 3.1 and
the continuity of @, it is a strongly consistent estimator of m,x, (X1, X2). In order to
derive the asymptotic distribution of ®(A(™) under Hpy, we suppose that the following
assumptions hold:
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(A5) ® is twice differentiable on an open set O containing A and A(™(w) (w € Q),
and it exists M > 0 such that for any = € O, one has | D?®(z)|| < M;

(A6) putting K¢ := %%(0), one has Kg # 0.

Since under Hyp one has s = 1, \; =0, Py =1, P, = P = P(") = I, a direct
application of Theorem 1 of Dauxois and Nkiet (2000) and Proposmon 3.4 gives

ProprosITION 4.1. Under Hy, anjl@()\(")) converges in distribution, as n —
+00, to R := tr(VW*), where U has a centered normal distribution in L(Xy, X1) with

covariance operator equal to T'o = E[(X2.3 ® X1.3)®2].

Then, for a given asymptotic level o €]0,1[, the null hypothesis is rejected when
nKz'o(A™) > Fél (a), where Fq is the distribution function of Q. Note that @ is a
regular quadratic form of normal vector; then since F¢ is continuous (see Mathai and
Provost (1992)), it is a bijective function. When (X7, X5, X3) has an elliptic distribution,
Q is of a more simpler form:

COROLLARY 4.1. If (X1, X2, X3) has an elliptic distribution with kurtosis k then
under Hy the distribution of R is (1 + K)x2, ..

PrOOF. Since (agg)lgism (resp. (ag:)),)lgjgpj) is an orthonormal basis of X} (resp.
Xs), we can write

1 p2
¥ = ZZ(‘I’ a2 3 ® a%) agjg
i=1 j=1

thus, putting Wi; := (¥, ® ol

tr(PWT) = Z Z Wi Wi tr((a) ® o) D) ® a$))
1<4,k<p1 1<5,i<p2
P1r P2

(42) - ZZ 1_77

i=1 j=1

the later equality being obtained from the properties (a5} ®@a{}) (el ®ad}) = 6;0{")®
ol and tr(alt) ® al) = (al®), a%) x, = b;. Each W, has a centered normal distri-
bution because it is a linear function of ¥. Moreover, for any (i,k,5,1) € {1,... ,p1}? x
{1,...,p2}? we have

B(WisWia) = E((T, o} © o{)(¥, ol ® af3),)
= E(((T&¥) (e} @ af)), o) ® alk)),)
= (To(a¥) ® o)), o) ® al®)),

Furthermore

Fo(agjc)a ® 0‘113) =E((X23® X1-3,Otg:); 1 3 2)2(Xas ® X1.3)),
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hence
E(Wi;Wiy) = E({X23® X (D)o (Xaa ® X1.3,05% ® aly
(Wi W) = E((X2.3 ® X1.3,05) ® al'})o(Xz.3 ® X1.3, 0% ® aia)a).

From the equalities (z ® ¥,z ® t)2 = tr((z ® ¥)(t ® 2)) = tr({z,2)(t ® y)) and
tr(t ® y) = (¢,y), it follows

E(Wi;Wit) = E(fi 33 153153

where f,g% is defined in equation (2.7) (recall that Vi.3 = I3 and Va3 = I3). Since
(F8 B £G) £y is a linear function of (X7, X2, X3), it also has an elliptic distribution
with kurtosis k. Hence

E(Wi W) = (L+ 9)E(I3ASES £3) + B R)EAT f2
+E(f13f9)E (f““’f“’)]

Under Hy, all the canonical coefficients are null since V;5.3 = 0; then using equations (2.9)
and (2.10) we obtain E(W;; W) = (1+)(6ix0;1). This shows that E(W2) = (14 %) and
if (i,7) # (k,1), E(W;;Wi;) = 0; then the r.v. (1+x)~1W;; are independent and have the
standard normal distribution. Using equation (4.2) we conclude that R = (1+£)x3,,,- O

Remark 4.1. This approach for testing lack of linear relative association yields a
general framework containing tests which are based on what is known in the literature
as partial canonical correlation coefficients. For example, the test proposed by Timm
and Carlson (1976) under the assumption that (Xi, X2, X3) has a normal distribution
appears in our context as a particular case by taking ®(z) = — Y_7* | In(1 — z;). Notice
that when p; = 1 (resp. p; = p2 = 1) our test is based on a function of the classical
partial multiple correlation coefficient (resp. partial correlation coefficient).

4.2 Testing for dimensionality in LRCA

As in Fujikoshi and Veitch (1979) for usual LCA, we can introduce tests for deter-
mining the dimensionality of LRCA, that is the integer d € {1,...,p1} equal to p; if all
the relative canonical coefficients are non null or such that

AM2X2> 2 Ag> A==, =0

elsewhere. For doing that, we introduce for any k € {1,...,p1 — 1} a test for Hy (k)
against Hl(k), with

HF o\ > Mpgr == Ap, =0
and
HE A =0.
Notice )\k+1,... ,Ap, are the eigenvalues of ngg = QrT1.3Qk, where Qf :=

T k1 a% Then we take as test statistic the r.v. @(u}cn)), where

= O ) = AQPTE Q)
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. ®2
with QY =37, | agz,):,,’n , and @ is a symmetric function from RP1 % to R satisfying
g2
(A5), (A6) and ®(z) = 0 & z = 0. Let us consider Q}, = f;kHag% . Under

H(()k) , we obviously have Q) = P§, Qx = P, and Qé") = PO("), hence by applying again
Proposition 3.4 and Theorem 1 of Dauxois and Nkiet (2000) we obtain:

PROPOSITION 4.2. Under H(gk), nKg 1@0‘;:)) converges in distribution, as n —
400, to Ry = tr(¥x ¥} ), where ¥y has a centered normal distribution in L(Xa, X1) with

. SN2
covariance operator I'y = E[(Qg(X2.3 ® X1.3)Q%)% |

Then, for a given asymptotic level o €]0, 1], the null hypothesis is rejected when
nKz'e(\™) > Fél(a), where Fg is the distribution function of Q. For determining
the dimensionality, we use the previous test for k = p1 — 1, k = p1 — 2 and so on until
H(gk) is not rejected or k =1 (in this case the dimensionality is 1).

When (X1, X2, X3) has an elliptic distribution we have:

COROLLARY 4.2. Under H(()k), if (X1, X2, X3) has an elliptic distribution with kur-
tosis K, then the distribution of Ry, is (1 + n)x?pl_k)(m_k).
PrOOF. By similar arguments as in the proof of Corollary 4.1, we have

P11 p2

(43) tr(Tevg) =3 Wi

i=1 j=1

where W'i(f) = (W, agj: ; ®agi,)3)2. Each Wi(;“) has a centered normal distribution because
it is a linear function of ¥y. Moreover, for any (i, h,7,1) € {1,...,p1}2 x {1,... ,p2}?
we have

k k j 1 ! h
EWPWLY) = (Te(ef} ® ai)), ol @ a{)s
(4.4) = E((Qk(X2.3 ® X1.3)Q}, o) ® a{))a
X (Qr(X2.3 ® X1.3)Q%, agl-)?, ® ag’gﬁ)-

Under H((,k), the rank of T1.3 equals &, and Q) = Py, Qx = Pp; then, since Poa% =0

(resp. Péag]: % = 0) when ¢ < k (resp. j < k), we deduce from

(Qr(X23 ® X1.3)Q4, aF) ® al’})s
= tr((X23® X1A3)P6(a§% ® agj:;);)Po)
(4.5) = tr((X23 ® X1.3)(Poc'}) ® (Phali))))

and equation (4.4) that if ¢ < k or j < k then IE(Wi(jk)z) = 0, that is Wi(jk) = 0. Further,

if i >k and j > k then Poagg = agg and Péag% = ag%; hence, equation (4.5) implies

I3 h ] {
E(Wi;Wai) = E(F9 15 1390 184
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where f,g’% is defined in equation (2.7) (recall that V}.3 = I and Va.3 = I). Using similar
arguments than in the proof of Corollary 4.1, we obtain

E(W:;Wh) = (1+ 0)[E(FAD)EGEL £53) + B SDES ££3)
+ E(F{a A FE))

Since k = r, equation (2.9) implies that for j > k, we have E( f (J ) = 0. Then using
equation (2.10) we obtain E(W;;W4;) = (1 + &)(6in8;1), that is ]E( %) = (1+k) and
E(W;;Wi) = 0 if (4,5) # (h,1). We conclude that if i > k and j > k then the r.v.
(14 k)~!W,; are independent and have the standard normal distribution, and if i < k
or j < k then they are null. The equation (4.3) can be rewritten as

P

P
r(Teli) = > i W’

i=k+1 j=k+1
and this shows that Ry = (1 + K)X?pl—k)(pz—k)' 0

4.3 Testing for invariance of LRCA

Invariance for LRCA when the related variables are transformed by linear maps
have been defined in Section 2 and conditions for having this invariance property have
been obtained. Nevetheless, since these conditions involve covariance operators which
are unknown in practice, it is of interest to contruct a test which permits to see whether
or not LRCA is invariant for a given pair of linear maps. Notice that such an approach
has already been used in the literature. Indeed, in Fujikoshi (1982) and in Fujikoshi and
Khatri (1990) likelihood ratio tests for additional information in LCA and for redundancy
in covariate discriminant analysis under normal assumption were introduced. These tests
just are particular tests for invariance when the related variables are transformed by
projectors. More recently, a generalizing approach has been adopted by Nkiet (2003) who
introduced a test for the invariance of LCA when the related variables are transformed by
linear maps which may not be projectors, without other assumption on the distribution
of these variables besides the existence of four order moments.

Here we extend for LRCA an approach used in Nkiet (2003) for LCA. Note that
the results of this later work can not be applied for LRCA because we do not have an
i.i.d. sample of X;.3 and Xs.3; these r.v. are unobservable since their definitions involve
covariance operators which are unknown in practice. Let A; and Aj be linear maps
defined on &} and X, respectively. Our purpose is to introduce a test for the invariance
of the LRCA of X; and Xj relative to X3. Consider

C1(41) = [Viz3 — Vi3A} (A1 V134T) A1 Vaas|?,
C(Az) = ||Var.3 — Va3 A5 (A3Va3A5) 1 A2.3Var 3] 1%,
C(A1, As) = C1(A1) + Ca(As),

where || - || denotes the norm associated with the Hilbert-Schmidt inner product. From
Proposition 2.2 it is seen that the aforementioned test is the test of the hypothesis

Hy - C(Al,Az) =0 against H;: C(Al,Az) >0
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Defining for (k,j) € {1,2}% with k # j
Sk = ViaAf(ArVisAL) AL Vi3
S\ = Vi's ALARVE ADT AV
and

c(Ak) = IV — ST,

we take as test statistic the estimator C(") (A}, Ay) == C’l(")(Al) +C§") (A2) of C(A1, A3).
For defining the corresponding (asymptotic) critical region, we must derive the limit
distribution of C(")(A;, Ap) under Hy. Letting ;.3 and 7.3 be the operators from M
to L{X2,X1) and L(X1, Xp) respectively, defined by

(4.6) Y.3(T) = ak.3(T) AL (Ap Vi3 Af) T AxVija
— Vies A (AxVies Ap) Agar.3(T) A (AeVies A%) Ak Vija
+ Vs Ap (A VisAf) Tag; s (T) — ak;j3(T),

where (k, j) € {1,2}? with k # j, we have

PROPOSITION 4.3. Under Hy, the r.v. nC(™(A;, Ay) converges in distribution, as
n— 400, to Q = |[y1a(H)|1? + ves(H)|*.

PrOOF. TFirst, for (k,j) € {1,2}? with k # j, we have:
(47)  VA(SY - Ska) = VR(KS — Vio) AL ARV ADT AV
+ VAVes AL[(AVEE ADT = (AkVes AT ARV
+ VVis Ak (ArVisAp) AV = Viga).
It is known that for any operators T and S one has
Tt — 5t = —THT - $)S" + TV (T — 8)ker(s) — Mier(r) (T — S)S"*
(see Theorem 3.10 in Nashed (1976)); then applying this property with T’ = AkV,fg)A,‘;
and S = AVi.34; and using equation (4.7), we obtain ﬁ(S,(c"; — Sk3) = ﬂ,(c"g (Hn),
where ﬁ,(gnS) is the random variable valued into L(M, L(X5_k, X))) defined by
BEIT) = a7} (D) AL AVT A AV
— Vis A ARV AL Akl (T) A (AxVis A AV
n *y 12 *
+ Vis AL AV ADT Aral?) (T)Akﬂker(Akvk.aA,;)Aka(;?»,
* * *112
- Vk.gAkaer(AkVéz)A;)Akafjg (T) A% (ArVesAp)" AV
~+ Vk.gA,:(Aka.gA,:)TAkakj.g,(T).

From the almost sure uniform convergence of the empirical covariance operators involved
in this expression and the equalities

VisArker(awvisay) = LiaLi s Aglker (142 47) = 0,

Myer(axvisaz)AxViss = (VikaAgMker(axvi s 4:))" = (Li.3 Lk 3 A ker(1542))" = 0,
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it follows that ﬂ,(cng converges almost surely uniformly to the operator §i.3 defined by
ﬂk.g(T) = ak.g(T)A,:(Aka.gA;;)TAkaj.g
— Vs Ap(Ak Vi3 AL) T Arak.a(T) Af(Ak Vi3 AR A Vi
+ Vk.3A;;(Aka.gA;;)TAkaij(T),

that isZ Bg.3 = V.3 + ax;.3. Using this later expression and the fact that, under Hy, the
equality Vi .3 = Sj.3 is valid, we have:

nCy" (4x) = nl[ViGh — Vija = (53 — Viga)ll” = laf s (Ha) - B3 (Hy)|”
Thus:
nC™M (A, A2) = N(Ln(Hy)),
where L,, is the random operator
we M (813 — aizs)(w), (853 — ais) () € L(Xe, 1) x L(%1, X2)
and N is the continuous map
(v, w) € L(Xa, X1) x L(X1, X)) > |Jv]*> + ||w]® € R.
It is easy to verify that L, almost surely uniformly converges to the operator
L:ue L(X x X2) — (71:3(u), y2.3(u)) € L(X, X1) x L(Xy, Xa).
Further, we have

||Ln(Hn) - L(Hn)”L(Xz,Xl)XL(Xl,Xz) < ”Ln - L“OO“Hn”M§

since ||[Hyn|lar (resp. ||L, — L|loo) converges in distribution (resp. in probability), as
n — +oo, to ||H| s (resp. 0), this inequality implies the convergence in probability
of L,(H,) — L(H,) to 0 as n — +oo. Hence L,(H,) and L(H,) have the same limit
distribution; then L, (H,) likewise converges in distribution to L(H). From the conti-
nuity of N, it comes that nC(™(4;, Ay) converges in distribution to Q@ = N(L(H)) =
Irs(DIE + e[ O

Then, for a given (asymptotic) level a €]0,1] the null hypothesis is rejected if
nC™ (A1, Ag) > F5' (@), where Fg denotes the distribution function of Q. Notice that

since C(™M( Ay, Ay) is a strongly consistent estimator of C(A;, Ay) this test is consistent.
In practice, one has to replace in equation (4.6) each covariance operator by its estimator
introduced in this paper.

Remark 4.2. Additional information hypothesis in canonical analysis was dis-
cussed by Fujikoshi (1982) who introduced a likelihood ratio test for this problem. Later,
this test was considered by Kariya et al. (1987) in order to test an hypothesis related to
selection of variables in the classical MANOVA model, and it was also used by Suzukawa
(1997) for evaluating the effect on canonical correlation of imposing linear constraints.
This test is mainly based on a normality assumption for the variates. More recently,
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Nkiet (2003) proposed another test for additional information derived from a test for
invariance of LCA which does not require to do any assumption on the distribution of
the related random variables. A similar approach can be used here for LRCA; indeed,
if for k € {1,2} we have the decomposition in direct sum Ay = X,él) <) X,?), a test for
additional information in LRCA having the preceding property is obtained by using the
test of invariance developed above with Ay := mg;, where mg; is the projection operator

onto Xél) along X,?).
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