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A b s t r a c t .  In this paper we consider kernel estimation of a density when the data 
are contaminated by random noise. More specifically we deal with the problem of 
how to choose the bandwidth parameter in practice. A theoretical optimal band- 
width is defined as the minimizer of the mean integrated squared error. We propose 
a bootstrap procedure to estimate this optimal bandwidth, and show its consistency. 
These results remain valid for the case of no measurement error, and hence also sum- 
marize part of the theory of bootstrap bandwidth selection in ordinary kernel density 
estimation. The finite sample performance of the proposed bootstrap selection proce- 
dure is demonstrated with a simulation study. An application to a real data example 
illustrates the use of the method. 

Key words and phrases: Bandwidth selection, bootstrap, consistency, deconvolu- 
tion, errors-in-variables, kernel density estimation. 

I. Introduction 

In this paper  we consider the problem of es t imat ing a density from a sample of size 
n tha t  has been contamina ted  by r andom noise. This  problem is usually referred to  as a 
deconvolution problem, and has applications in many  different fields such as biostatistics, 
chemistry and public health.  See for example Stefanski and Carroll  (1990) or Carroll  et 
al. (1995) who deal with analyzing such data.  Here we consider the so-called deconvolving 
kernel es t imator  in t roduced by Carroll  and Hall (1988) and investigated by Stefanski and 
Carroll (1990), among others. 

This me thod  of es t imat ion has already received considerable a t ten t ion  in the lit- 
erature.  Recent  related works include Wand (1998), Hesse (1999), Rachdi  and Sabre 
(2000) and Zhang and Karunamuni  (2000). See also Devroye (1989), Stefanski and 
Carroll  (1990), Fan (1991a, b, c, 1992) and Wand and Jones (1995), among others,  for 
earlier contributions.  Most of those papers  however deal only with theoret ical  aspects 
of the est imation,  and very few focus a t ten t ion  on the yet  impor tan t  issue of choosing 
the bandwid th  in practice.  Stefanski and Carroll (1990) and Hesse (1999) investigate a 
cross-validation choice of the bandwidth .  However in pract ice  this me thod  suffers from 
the same drawbacks as those known in the non-contamina ted  case, such as large vari- 
ability or mult iplici ty of the solution. See Delaigle and Gijbels (2004). Th e  la t ter  paper  
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proposes plug-in type of bandwidth selectors, based on asymptotic approximations of 
the mean integrated squared error. These plug-in procedures already improve upon the 
cross-validation technique. In the present paper we propose a bandwidth selection pro- 
cedure based on bootstrap techniques, which can be considered as a competitor of the 
asymptotic techniques. We establish the asymptotic theory which justifies the use of 
this bootstrap bandwidth selector. 

A detailed comparison, via simulation studies, of the three practical bandwidth 
selection procedures (plug-in, bootstrap and cross-validation) can be found in Delaigle 
and Gijbels (2004). Their finite sample comparisons revealed that  the plug-in method 
and the bootstrap bandwidth selection method outperform the cross-validation method 
in all examples considered, and that  they are competitive procedures in the sense that  
none of the two can be claimed to be best in all cases. A very interesting point for the 
bootstrap procedure is that  it does not require the generation of bootstrap samples. Due 
to its special structure, the bootstrap estimate of the mean integrated squared error can 
be computed directly from the original sample. In fact, it simplifies a lot further since 
the only quantity that  needs to be computed from the original sample is an empirical 
characteristic function. 

Bootstrap bandwidth selection in case of non-contaminated data has been studied in 
several papers, including Faraway and Jhun (1990), Marron (1992), Grund and Polzehl 
(1997) and Hazelton (1999). In the present paper we consider the case of data that  
are contaminated by random noise, and develop a bootstrap procedure to choose the 
bandwidth parameter. This bootstrap-based bandwidth selection method requires the 
choice of a pilot bandwidth. We will see that a good choice for this pilot bandwidth is 
a bandwidth which is optimal for estimating the integrated squared second derivative of 
the target density. Such a bandwidth has been proposed by Delaigle and Gijbels (2002), 
and is easy to use in practice. 

We prove the consistency of the proposed bootstrap bandwidth selector, defined 
as the minimizer of the bootstrap estimator of the mean integrated squared error. We 
first prove that  the bootstrap estimator of the mean integrated squared error of the 
density estimator converges (in L 2) to the exact mean integrated squared error. We then 
show that the ratio of the bootstrap bandwidth selector and the minimizer of the mean 
integrated squared error converges to one in probability. The finite sample performance 
of the bandwidth selection procedure is illustrated via a simulation study from which we 
can conclude that  the method performs quite well. 

The paper is organized as follows. In Section 2 we recall the definition of the 
deconvolving kernel estimator and some of its theoretical properties. In Section 3 we 
define the bootstrap estimator of the bandwidth, and discuss how to choose the pilot 
bandwidth. In Section 4 we establish theoretical properties of the bootstrap bandwidth 
selector. Finally in Section 5 we illustrate our method on a few simulated examples, and 
also apply it to some real data. All proofs are deferred to the Appendix. 

2. Deconvolving kernel estimator 

Let Y1,. �9 Yn be an i.i.d, sample of size n from a random variable Y of unknown 
density f y ,  satisfying Y = X + Z, where X is a random variable distributed according 
to f x ,  and Z is a random variable representing the measurement error, distributed ac- 
cording to fz .  Suppose that  X is independent of Z and f x  and f z  are continuous. We 
assume here that  the distribution of the error Z is fully known, which is the usual as- 
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sumption in this context. This assumption might seem to be quite restrictive, but reflects 
the reality that one often has not sufficient information to estimate the distribution of Z 
and hence one needs to assume full knowledge of Z. In the case where fz  is known up to 
some parameters, one may estimate these parameters through repeated measurements 
on several individuals. See the real data example. The case where fz  is totally unknown 
may also be considered. Such a problem necessitates further observations such as for 
example a sample from fz  itself, and will not be studied here. See Barry and Diggle 
(1995) and Neumann (1997). 

Let K be a kernel function, supported on ~ ,  real-valued and such that f K(x)dx = 
1. Denote the Fourier transform of K (or its characteristic function if K is a density) by 
~gK(t) = f eitxI((x)dx. The deconvolving kernel estimator of f x  at x E ~ is defined by 

(2.1) fx(x;h) = -~ ~ K z ;h , 
j = l  

where 

(2.2) KZ(u; h) = (27r) -1 f e-it~g(t)/~z(t/h)dt, 

with h > 0 a smoothing parameter depending on n, called the bandwidth and where ~z  
is the characteristic function of Z. Throughout this paper we suppose that for all t E f / ,  
~z(t) r 0. See for example Carroll and Hall (1988) and Stefanski and Carroll (1990). 

Furthermore we make the assumption that KZ(.; h) is supported on N,  is real- 
valued, and IKz (.; h) l is integrable. 

Throughout the paper we will use the notation Kh(X) = h-lK(x/h), for any func- 
tion K. 

From studies about the deconvolving kernel density estimator it is already known 
that the kernel should rather be chosen among densities whose characteristic function 
has a compact and symmetric support. See for example Stefanski (1990), Stefanski and 
Carroll (1990), Fan (1992), Wand and Jones (1995), Wand (1998) and Hesse (1999). 
Although this assumption can be relaxed in the case of ordinary smooth error densities 
(see Definition 1 below), we will in this paper work exclusively with compactly supported 
PK. The use of such kernels guarantees the existence of the density estimator in (2.1). 
An example of such a kernel is given by 

(2.3) K(x) 48cosx ( l_  15 ) 1 4 4 s i n x ( 2  - 5 )  

w i t h   K(t) = (1 - t2 )31t_ l ,1 ] ( t ) .  

A common way to measure the closeness of the density estimator f'x ('; h) to its target 

f x ( )  is to compute the Mean Integrated Squared Error (MISE) of f'x('; h), defined by 

MISE{Tx(.; h)} -- E / { f x ( x ;  h) - h( )I2dx 
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which, after some algebra, can be written as 

(2.4) MISE{f'x(.; h)t  = (271-nh)  - 1  /I~K(t)121~z(t/h)l-2dt 
+ (1 -- n-1)(27c) -1 / I~x(t ) [2[~K(ht)[2dt  

+ R ( f x )  - 7c -1 / I ~ x ( t ) 1 2 ~ K ( h t ) d t ,  

where we introduced the notation R(9) = f g2(x)dx, for any square integrable function 
g. See for example Wand and Jones (1995) and Wand (1998). The optimal bandwidth 
hn for the estimation of f x  is then the bandwidth which minimizes MISE{f'x (.; h)} with 
respect to h. For simplicity of notation and to highlight the dependency in h, we will 
rather write MISE{fx(. ;  h)} as MISE(h) in what follows. 

The asymptotic properties of the deconvolving kernel estimator have been studied 
in several papers, among which Stefanski and Carroll (1990), Fan (1991a, b, c, 1992). 
These properties depend strongly on the error distribution. As in Fan (1991a) we classify 
the errors in two categories, the ordinary smooth distributions and the supersmooth 
distributions. 

DEFINITION 1. The distribution of a random variable Z is said to be 
(i) supersmooth of order/3 if its characteristic function ~z( t )  satisfies: 

d01tl ~~ exp(-Itl~/~ ') _< I~z(t)l _< dlltl ~1 exp(-Itl~/V) as t --* oc, 

for some positive constants do, dl,/3, ~' and constants/3o and/31; 
(ii) ordinary smooth of order/3 if its characteristic function Pz  (t) satisfies: 

doltJ -~  _~ I~oz(t)l _ dl ] t l  - ~  as t -+  oo, 

for some positive constants do, dl and/3. 

It has been proved in Fan (1991c) that for supersmooth error densities (e.g. normal 
and Cauchy densities) the optimal rate of convergence of the density estimator to f x  
is logarithmic, and hence very stow. By contrast this rate is much faster (algebraic) for 
ordinary smooth error densities (e.g. gamma and Laplace densities). Recall that this 
rate is n -2/5 in the error free case. This difference in convergence rate between the two 
classes of error densities also shows up in the simulation results in Section 5. 

3. Bootstrap selection of the bandwidth 

3.1 Bootstrap estimator of the mean integrated squared error 
The optimal bandwidth hn defined as the minimizer of MISE(h) cannot be found 

in practice since the MISE involves unknown f x  related quantities. In this section we 
define an estimator of the optimal bandwidth, based on smoothed bootstrap techniques. 

Bootstrap procedures for selection of the bandwidth in kernel density estimation 
from non-contaminated data have been studied in previous papers including Taylor 
(1989), Faraway and Jhun (1990), Jones et al. (1991), Falk (1992), Hall et al. (1992), 
Marron (1992), Grund and Polzehl (1997) and Hazelton (1999). 
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We now propose a bootstrap bandwidth selection method for contaminated data. 
Let f'x('; g) be the deconvolving kernel estimator of fx obtained from YI,..., Yn, with 
kernel L and pilot bandwidth g. Draw a bootstrap sample X~,..., X~, from f'x(';g), 
and after having added noise Z, use the contaminated bootstrap sample to construct a 
deconvolving estimator f~c('; h) of f'x('; 9), with kernel K and bandwidth h. Then the 
bootstrap estimator of the MISE is given by 

MISE* (h) E*/ 7. ---- {f~:(x; h) - ]'x(x; g)}2dx 

-- [Bias*{]'~:(x; h)}]2dx + Var {f~(x; h)}dx, 

where E*, Bias* and Var* all involve expect~ions conditionally upon Y1,... ,Yn, and 
are taken with respect to the pseudo density fx ('; g), and the estimator of the optimal 
bandwidth is defined as the minimizer of MISE*(h). From (2.4), it is immediate to see 
that the bootstrap MISE may also be written as 

(3.1) MISE*(h) = (27rnh) -1 / I~K( t ) ]21~z( t /h ) I -2d t  

+ (1 -- n-1)(27c) -1 /[~x,9(t)121~K(ht)12dt 

-t- R ( f x ( ' ;  g ) )  --  7C - 1  /]~X,g(t)I2qOK(ht)dt, 

where ~x,9(t) is the Fourier transform of f'x('; g). 
Note that (3.1) is nothing but an approximation of the exact MISE, where the 

unknown fx has been replaced by a deconvolving kernel estimator f 'x( ' ;g).  Although 
it may then seem at first that g should be set equal to h, the bandwidth needed to 
estimate fx, a closer look at expression (3.1) reveals that  g needs not be optimal for the 
estimation of fx, but rather for the estimation of quantities involving fx. See Subsection 
3.2. Similarly, the kernel L needs not be equal to K, but this choice is less important 
and will not be discussed here. 

In the case of non-contaminated data Taylor (1989) and Marron (1992), among 
others, remarked that this bootstrap bandwidth selection procedure, unlike many other 
bootstrap estimation procedures, does not require the generation of any bootstrap sample 
in practice. This also holds in case of contaminated data since expression (3.1) can 
be computed entirely from the original sample. Note that minimizing MISE*(h) with 
respect to h is equivalent to minimizing 

(3.2) MISE~ (h) = (27rnh)-I / ]~K (t)] 2 ]~z (t/h)]-2dt 

+ (1 - n-1)(27c) -1 /I~X,g(t)[21~K(ht)I2dt 

7r-1 /]~x,9(t)12PK(ht)dt' 

with respect to h, and this only requires calculation of ~x,g(') from the original sample. 
Furthermore we have that ~X,g(t) = ~y,n( t ) .  ~L(gt)/pz(t), with ~y,n the empirical 



24 A. DELAIGLE AND I. GIJBELS 

characteristic function of Y. See Remark 2 below. So, in practice the only quantity 
that needs to be calculated in MISEr(h) is this empirical characteristic function. This 
simplifies considerably the computations involved in this bootstrap bandwidth selection 
procedure. 

Remark 1. In this method we used a smoothed estimator of f x  since resampling 
with replacement from the data  would lead to a bootstrap estimator of the bias equal to 
zero, resulting in a bootstrap bandwidth chosen on the basis of the variance only (instead 
of the whole MISE). See Faraway and Jhun (1990) for the non-contaminated case and 
Delaigle (1999) for the contaminated case. An alternative to the smoothed bootstrap 
could be to use a classical non-smooth bootstrap, but with bootstrap samples of size 
ra < n, as proposed by Hall (1990) in the non-contaminated case. See Delaigle (2003) 
for more details. 

Remark 2. A useful expression for calculation of ~X,g(t) in (3.1) can be derived as 

follows. Let f'y (-; g) be the 'usual kernel estimator' of f y  based on the sample Y1, .. �9 Y~, 

and using the kernel L, i.e. f'w(x; g) = n -1 }-]l<~<n Lg(x - Yi). By Lemma A.6 of the 
Appendix, we see that ~X,g (t) = ~Y,9 (t)/~az (t), where ~y,g (t) denotes the characteristic 

function of f'y(X; g), for which it is easily proved that it equals ~y,~(t) �9 ~L(gt), with 
~Y,n the empirical characteristic function of Y. We conclude that ~x,g(t) = ~y,n(t) .  
~L(gt ) /~z( t ) .  

3.2 Choice of the pilot bandwidth 
The quality of the estimator of the density f x  depends strongly on the choice of the 

bandwidth h, which on its turn depends on the choice of the pilot bandwidth g. In case of 
error free data, it is already known that, to give good estimates, the bandwidth g should 
preferably be of an order of magnitude larger than h, at least when using second order 
kernels. See Faraway and Jhun (1990), Falk (1992), Hall et al. (1992), Marron (1992), 
Hazelton (1999) and Jones (2000). In this context, efficient procedures for choosing g 
have been proposed. See for example Jones et al. (1991), Hall et al. (1992) or Jones et al. 
(1996) for a survey. Throughout this paper we assume that K is a second order kernel. 

The simple choice of g that  we propose here is based on the fact that, under sufficient 
smoothness conditions, an asymptotic representation of the MISE is 

h4 / 
AMISE(h) = - ~ # ~ ( K ) R ( f ~ )  + (27rnh) -1 I~g(t)l 2 . I~z(t /h)l-2dt ,  

where #2 (K) = f u2K(u)du denotes the second moment of the kernel K.  See Proposition 
4.1 in Section 4. The bootstrap estimator of this quantity is 

(3.3) h4 2 R 7"1~ / AMISE*(h) = -~#2(K)  ( f~( . ;g) )  + (27rnh) -1 I~g(t)l 2. Ipz(t /h)l-2dt .  

From (3.3) we see that asymptotically, the only g related quantity is R(~)~(.;g)), 
which is best estimated by choosing g as the optimal bandwidth for estimating R(f~c ). 
See Marron (1992) for a similar remark in the error free case. Delaigle and Gijbels 
(2002) provide a practical optimal bandwidth for estimating R(f~c), which is based on 

minimization of the mean squared error of R(f '~ (.; g)). They prove that asymptotically, 
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the MSE-optimal bandwidth g~ for estimating R(f(~)), for any integer r >_ 0, is the 
bandwidth which minimizes the absolute value of the asymptotic bias of the estimator 

R(f~')(-;9~)), given by 

(3.4) ABias(R(f(x r) (-; g~))) = - g~p2(K)R(f~2 (~+1)) 

+ (27rng~+x) -1 f t2~[pK(t)J2" [pz(t/g~)l-2dt. 

The proposed two-stage procedm'e for selecting g2 reads as follows: 

Step 0: Estimate R(f(x 4)) via the normal reference method (assuming a parametric 
normal model for fx), i.e. 

R(~)- 8!3x9 

where, for example, ~ = ~ - Var(Z), with ~ the empirical variance of the Y- 
observations, is a consistent estimator for a~c = Var(X). 

Step 1: Substitute R(f(x 4)) for R(f(x 4)) in (3.4) and select a bandwidth g3, an opti- 

mal bandwidth for estimating R(f(x 3)) by minimizing the absolute value of the resulting 

asymptotic bias. Obtain R(f(x 3) (.; g3)). 

Step 2: Substitute R(f(x3)(.;ga)) for R(f(x a)) in (3.4) and select the bandwidth g2 = 
g for estimating R(f~c ). 

In our simulation study this choice of initial bandwidth g proved to work well, and 
hence we propose to use this pilot bandwidth in practice. Of course, any bandwidth g 
which satisfies the conditions of the theorems of Section 4 would lead to a consistent 
bootstrap procedure, and therefore any appropriate choice of the initial g could be used 
in practice. 

4. Consistency of the bootstrap method 

Throughout this paper we will assume that h and g tend to zero such that nh --* c~ 
and ng -* cc as n tends to infinity. These are classical conditions necessary to ensure 
the convergence of a density estimator to the target density. We also assume that Lz is 
absolutely integrable. The following conditions will be necessary. 

CONDITION A. 
(A1) supx~t a [f(~)(x)l < ce for j = 1 , . . . , 4 ;  

(A2) f [f~(x)[dx < ce and f ]f(x3)(x)]dx < ce; 
(A3) fx  is square integrable. 

CONDITION B. 
(B1) K and L are symmetric and bounded continuous functions such that  

f K(x)dx= 1, f L(x)dx= 1, f yS[K(y)[dy < oc and f y2lL(y)[dy < co; 
(B2) pK(t) and pc( t )  are supported on respectively [--BK, BK] and [-BL, BL], 

with 0 < B K ,  BL < oo. 

CONDITION C. 
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(c1) 
0 , . . . ,  8; 

(c2) 
( c 3 )  

o(nh); 
(c4) 

{ f  IL z �9 LZ(u;g)ldu}{f  ItlJl~L(t)I2lpz(t/g)l-2dt} = o(n2g y+2) for j = 

f I n * LZ(u;g)ldu = O(v~) ;  
l imn-.o~ h -1 f I~K(t)121~z(t/h)[-2dt = oc and f IpK(t)121~z(t/h)l-2dt = 

f t41~L (t) 121~z (t/g) 1-2dr - -  o ( n g 5 ) .  

The above set of conditions might look quite overwhelming at first sight, especially 
Condition C. However, for a given density function f z  and given kernels K and L, this 
condition can be translated into conditions on the bandwidths h and g. In Subsection 4.2 
we will discuss to which conditions on h and g it leads in case of a certain class of ordinary 
smooth error densities. Moreover, we will explain in that section that the practical pilot 
bandwidth g as proposed in the previous section, and the optimal bandwidth h of for 
example Fan (1991b) satisfy the above assumptions. 

Concerning Condition B, an example of a kernel with 8 finite moments is given by 

(sin(x/lO) ) 10 
K(x) = c \ ~ , 

with c a normalizing constant. Its characteristic function has a compact support that  is 
included in [-1,  1]. See Delaigle (2003). 

4.1 Consistency results 
In what follows we prove that the bootstrap MISE estimator is a consistent estimator 

of the MISE. Therefore we first establish the asymptotic orders of the bias and variance of 
the bootstrap integrated squared bias and the bootstrap integrated variance separately. 
Then we gather those properties in a theorem concerning the whole bootstrap estimated 
MISE. To simplify the proofs, we will suppose that Tz is symmetric. Note however that 
with a little more effort, the proofs can be adapted to a non symmetric ~z.  

Remark 3. Note that the symmetry of ~z  together with the symmetry of a kernel 
K implies that the function KZ(.; h) as defined in (2.2) is symmetric. This fact will be 
used in the proofs. 

Proposition 4.1 below, established by Stefanski and Carroll (1990), describes in 
detail the behaviour of the integrated squared bias, the integrated variance, and mean 
integrated squared error of the deconvolving kernel estimator. In the following, the 
integrated squared bias and its bootstrap counterpart will be denoted by respectively 
ISB(h) and ISB*(h). 

PROPOSITION 4.1. (Stefanski and Carroll (1990)) (i) Under Conditions (A1), 
(A2), (B2), and if K is a second order kernel with f lu3K(u)ldu < co, we have 

4 

ISB(h) = h 2 ,, -~-#2(K)R(f~)  + o(hd). 

(ii) Under Conditions (A3), (B2) and (C3) we have 

f Var{f'x (t; h)}dt : (2~rnh) -1 f [pK(t)12I~z(t/h)]-2dt + O ( n - 1 ) .  
d d 
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(iii) Under Conditions (A1) to (A3), Conditions (B2) and (C3) and i l K  is a second 
order kernel with f lu3K(u)ldu < oc, we have 

h4 2 K tt f MISE(h) = ~ - P 2 ( ) R ( f ~ )  + (27rnh) -1 j I~K(t)[21pz(t/h)l-2dt + O(n -1) + o(h4). 

In the next two propositions we provide the asymptotic order of the bias and the 
variance of the bootstrap integrated variance (Proposition 4.2) and of the bootstrap 
integrated squared bias (Proposition 4.3). 

PROPOSITION 4.2. Under Conditions (A3), B and (C3), we have 
(i) Bias[f * ~'* �9 Var {f~;(t, h)}dt] = O(n-1).  

A 

(ii) Var[f  Var*{f~:(t; h) }dt] = o(n-2). 

PROPOSITION 4.3. Under Conditions (A1), (A2) and B 
(i) I f  (C4) is satisfied, we have Bias[ISB*(h)] -- o(h4). 

(ii) I f  (C1) and (C2) are satisfied, we have Var[ISB*(h)] -- o(hS). 

Since MISE*(h) = ISB*(h) + f V a r  {f~:(t, h)}dt, and hence 

] E[MISE*(h)] = E[ISB*(h)] + E Var { f ) ( t ;  h)}dt 

and 

Var[MISE*(h)] _< Var[ISB*(h)] + Var Var { / k ( t ,  h)}dt 

+ 2 ~ r [ I S B * ( h ) ] . V a r [ / V a r * { f ' ) ( t ; h ) } d t ] ,  

combining Propositions 4.2 and 4.3 leads to the next theorem, which establishes the 
convergence of the bootstrap MISE estimator to the exact MISE. 

i.e. 

THEOREM 4.1. Under Conditions A, B and C, we have 

E[MISE*(h)] = MISE(h) + o(h 4) + O(n -1) = MISE(h) + o(MISE(h)), 

Var[MISE*(h)I = o(n -2) + o (h 8) + o(h4n -1) = o(MISE2(h)), 

MISE*(h) ~ 1, as n -~ co. 
M~SE(h) 

We conclude that  under certain conditions, the MISE and its bootstrap counterpart  
are asymptotically equivalent. From Theorem 4.1, we deduce the following theorem, 
which shows that  if we restrict our search of the bootstrap bandwidth to an interval 
around the real optimal bandwidth,  the MISE and the bootstrap MISE used either 
with the real optimal bandwidth or with its bootstrap estimator are also asymptotically 
equivalent. 
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THEOREM 4.2. Let hn (resp. h*) denote the single global minimiser of MISE(h) 
(resp. ofMISE*(h)), for h ~ [Alhn, A2hn], with constants 0 < A1 < 1 and A2 > 1. Then 
under Conditions A, B and C, we have 

MISE*(h*) p 1 and MISE*(hn) p 1, 
MISE(h~) MISE(hn) 

a s  1~---> 0 0 .  

Finally the next theorem establishes the consistency of our bootstrap bandwidth 
selector. For simplicity, we only prove, in the Appendix, the theorem for the following 
subclass of error densities: 

(4.1) 
P 

{)gz(t)) -1 = ~ cjt j, where co = 1, el, c2,... , Cp are constants with cp # 0. 
j=0  

THEOREM 4.3. Let hn and h* be as in Theorem 4.2, and f z  such that (4.1) holds. 
Then, under Conditions A, B and C, we have 

h* P 1 ,  
hn 

a s  n - - - *  (X).  

From this theorem we learn that  under sufficient conditions, as the sample size 
increases, the bootstrap bandwidth tends to the real optimal bandwidth. 

It would be of interest to investigate, in further research, the rate of convergence of 
the bootstrap bandwidth selector relative to the optimal bandwidth. This is outside the 
scope of the current paper. 

4.2 Verifying Condition C 
The aim of this subsection is to get a closer look at Condition C, in order to demon- 

strate that  for a given error density and kernels K and L, this set of conditions can be 
translated into conditions on the bandwidths h and g. 

Consider the class of error densities for which {~z(t)} -1 P = ~-~j=oC2jt 2j, where 
Co = 1, c2, c4,... ,C2p-2 are constants and c2p is a constant different from zero. Note 
that  f z  is an ordinary smooth density of order ~ = 2p. An example of such an error 
density is a Laplace density for which {~z(t)}  -1 = 1 + a2z t2, corresponding to a case 
with p = 1 in the above class of densities. 

Suppose now that  the kernel function K satisfies (B2) and the following condition: 

CONDITION D. K is 2p times differentiable and f IK(2J)(x)dxl < c~, for j = 
0 , . . . , p .  

In order to check Condition C, we investigate first the behaviour of the quantities 
appearing in this condition. The following results can be shown: 

Result 1. Under Condition D, we have 

f ltl j [~gK(t)12 Iqpz(t/h) l-2dt = O(h-4p), for j = 0, 1, 2 , . . . .  
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Result 2. Under Condition D, f IK �9 KZ(x; h)ldx = O(h-2P). 

Result 3. Under Condition D, f IK Z �9 KZ(x; h)ldx = O(h-4p). 

The proofs of these results are reasonably straightforward and are omitted. Details 
can be obtained from the authors upon request. 

The above results will allow us to verify Condition C for this class of error densities 
and kernels. Assuming that  the kernels K and L satisfy Condition D, it is easily seen 
that  the quantities involved in Condition C behave as follows: 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

{ /"  ]LZ * LZ(u;g)[du} { /  ]tlJ199L(t)121~z(t/g)1-2dr } 

=O(g -sp)--o(n2g j+2) for j = 0 , . . . , 8 ;  

I lL * LZ (u; g)ldu -- O(g -2p) = o(v~);  

h -1 /I~K(t)121~z(t/h)l-2dt = O(h -1-4p) ~ oo as 

/ l~K(t)121~z(t/h)l-2dt = O(h -4p) = o(nh); 

t4 I~L (t) l 2 [~z (t /g) l-2dt  -- O(g -4p) = o(ngS), 

n ---~ cx~; 

where the expression following the second equality sign or the arrow indicates what is 
required by Condition C. 

Putt ing h = cn -~ and g = dn -~, with c and d positive constants, we can translate 
the requirements in (4.2) (4.6) into the following very simple requirements on h and g: 

1 1 
- -  - - o  O < a <  4 p + 1  and 0 < ~ / <  4 p + 5  

The optimal bandwidths h and g satisfy these requirements. Indeed, for ordinary 
smooth error densities of order ~ -- 2p, the MISE-optimal bandwidth h for estimating 
f x  in case of contaminated data is of order 

h ~,. n -1 / (2k+ap+l) ,  

where k > 0 denotes the order of the kernel function. This result can be found in Fan 
(1991c). The MSE-optimal bandwidth g for estimating R(f~) is, for ordinary smooth 
error densities order of/~ = 2p, of order 

g ~,~ n -1 / (k+4p+5)  

as has been shown by Delaigle and Gijbels (2002). 
One can also easily check that  when h and g satisfy Condition C, then also do c. h 

and d.  g where c and d are positive constants. As a consequence, all bandwidths h and 
g which behave (in rate) as the optimal bandwidths also satisfy the conditions. 
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5. Simulations and real data example 

5.1 Simulation study 
We now investigate the finite sample performance of the bootstrap bandwidth se- 

lection procedure via a simulation study. Our study involves four f z  densities, chosen 
because they show some typical features that can be encountered in practice. These 
densities, in increasing order of estimation difficulty, are: 

1. Density #1: X ~ N(0, 1) 
2. Density #2: X ~ X2(8) 
3. Density #3: X ~ 0.5N(-3,  1) + 0.5N(2, 1) 
4. Density #4: X ~ 0.4 Gamma(5) + 0.6 Gamma(13). 
Figure 1 shows the four target densities. From each of these densities, 500 samples 

of size n = 50, 100 and 250 were generated, each of which was then contaminated by a 
sample from either a N(0; a 2) or a Laplace(r error density. For each configuration, 
the parameter az was chosen such that  the ratio VarZ/VarX equals 0.25, except for 
density #4  where we took V a r Z / V a r X  = 0.1 (the latter density is more difficult to 
recover). The 8 moments condition on K imposed by Condition (B1) is needed to prove 
the consistency results but is mainly technical. From our simulation results it seems 
that  in practice we can use kernels with for example 2 finite moments. In our simulation 
study we use the kernels K = L as defined in (2.3). 

To apply our method in practice, we need to 
1. Choose an initial bandwidth g, following the two-stage plug-in procedure as dis- 

cussed at the end of Subsection 3.2; 

-4 -2 0 2 4 

@ 
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X 

0 5 10 15 20 25 

x 

Fig. 1. The four target densities: a normal density (top left panel), a chi-squared density 
(top right panel), a mixture of two normal densities (bottom left panel), and a mixture of two 
gamma densities (bottom right panel). 
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2. On a grid of h, search the value which minimizes MISEr(h) in (3.2) and obtain 

h n ' b ~ 1 7 6  ; 

3. Estimate fx(x) by ]'x(x;hn,boot). 
In order to evaluate the performance of the estimation procedure, we compute the 

Integrated Squared Error (ISE) of f'x ('; hn,boot) for each calculated estimate. This allows 
us to classify the 500 estimates from the best one (i.e. the one with the smallest ISE) 
till the worst one (i.e. the one with the largest ISE). In all figures reported below, the 
estimates represented correspond to the first (1st quart), second (median) and third 
quartile (3rd quart) of these 500 ordered ISE's. The target density is always represented 
as a solid curve. 

Figure 2 shows the results of the estimation of a X 2 (8) density (density #2 )  with 
different error densities (Laplace error and Gaussian error) and sample sizes. We see that 
even for a sample of size as small as 50, the method performs quite well. We observed 
similar results when trying to recover a standard normal density, and hence we do not 
report them here. 

In Fig. 3 we compare the results of the bootstrap method with the cross-validation 
method of Stefanski and Carroll (1990) for the mixed normal density (density #3 ) ,  with 
samples of size 50 or 250 contaminated by a Laplace error. The estimation task was 
a bit more difficult for this mixed density: the estimates managed to recover the two 
modes, but the peaks were underestimated. In this ease, since the density presents quite 
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F i g .  2. Estimation of the X2(8) density for a Laplace error with n = 5 0  (top left panel), and 
n = 2 5 0  (top right panel), or for a Gaussian error with n = 5 0  (bottom left panel), and n = 2 5 0  

(bottom right panel). 
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Fig. 3. Estimation of the mixed normal density for a Laplace error with the bootstrap method 
and n = 50 (top left panel), and n = 250 (top right panel), or with the CV method with n -- 50 
(bottom left panel), and n = 250 (bottom right panel). 

different features at different places, the estimator would rather require use of a local 
bandwidth  (but this would require more computat ions) .  Despite this difficulty, we see 
that  the bootstrap selection method  performs quite well in recovering the density and 
it outperforms the cross-validation method  which gave too  variable results. The  plug-in 
method  of Delaigle and Gijbels (2002, 2004) gave results similar to the bootstrap case. 
See Delaigle and Gijbels (2004) for a more complete comparison of the three methods.  

Recovering the mixed gamma density (density # 4 )  turned out  to be more difficult. 
Figure 4 shows the results obtained with  a Laplace noise for sample sizes 50 and 250. 
Al though the  500 ISE-values were of about  the same magnitude as for the other fx 
densities, we see that  the est imate had difficulties to recover the two modes.  Even 
when,  for a larger sample size, the two modes were detected,  the est imate then had 
difficulties to recover their shapes. However as in the case of a mixed norma] density, 
this problem is inherent to the choice of a global parameter, and is not  really due to a 
failure of the method  itself. It would be possible to adapt our technique to the search of 
a local bandwidth,  but to the extent  of a complicat ion of the method,  which would not  
necessarily guarantee better results. 

The conclusions from the simulations remain unchanged if we replace the Laplace 
error by any ordinary smooth  density, or if we replace the Gaussian error by any su- 
persmooth density. We also believe that  for most regular densities fx (i.e. densities 
wi thout  any strong feature) the est imation method with bootstrap bandwidth  selector 
will perform quite well, at least for a reasonable value of the ratio Vat Z/Var X.  As a 
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F i g .  4. Est imation of the mixed gamma density for a Laplace error wi th  n = 5 0  (left panel) 
and n = 2 5 0  (right panel).  

matter of fact one should not expect to get a very good estimate of f x  if the sample is 
too contaminated by noise. 

5.2 Real data application 
The data come from a pilot study on coronary heart disease, reported by Morris et 

al. (1977) and analyzed in, for example, Clayton (1992) and Cordy and Thomas (1997). 
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Fig. 5. Est imation of the ratio of poly-unsaturated fat to saturated fat intake for a Laplace 
error or a normal error with Var Z = 4 / 3  Var X (top left panel),  Vat  Z = (2 /3 )  Vat  X (top right 
panel),  Var Z -- ( 1 / 3 ) V a r  X (bot tom left panel),  and no error (bot tom right  panel).  
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They consist of measurements of the ratio of poly-unsaturated fat to saturated fat intake 
for 336 men in a one-week full weighted dietary survey. Among them, 61 individuals 
completed two such surveys, reporting on their diet during two weeks, separated by 
6 months in time. We suppose that  the actual ratio is invariant within an individual 
(see also Clayton (1992)). Since the error distribution is unknown, we will compute the 
density estimator of the actual ratio in case of a normal or a Laplace error distribution. 

The error variance may be estimated through the two repeated measurements on 61 
individuals. More precisely we will estimate Var Z by half the empirical variance of the 
61 differences between the repeated measurements on each individual, which corresponds 
approximately to the situation that  Vat Z = (2/3) Vat X. This estimation of the error 
variance may be not very accurate but can at least give us some insight into it. Since 
we cannot guarantee that  this error variance is close to the exact one, we also consider 
Vat Z = (4/3) Var X, Var Z = (1/3) Var X and even Var Z = 0. 

The results are depicted in Fig. 5. The figure suggests that  the actual density is 
skewed to the right. The estimators assuming different error distributions do not differ 
much. Note that  the variance estimated through repeated measurements seems to be 
plausible: the other variances result into estimates that  look less smooth or a little bit 
too smooth. In other words, these variances seem to be either too large or too small. 
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Appendix 

In this section we provide the proofs of the main results as stated in Section 4. 
These proofs rely on some useful facts about various functionals involving the kernels 
K and L and the 'kernels' K Z and L z, defined in (2.2), and on some facts about the 
empirical characteristic function. These facts are summarized in the next section. 

Denote by f * g(.) = f f ( .  - y)g(y)dy the convolution of the functions f and g. The 
following notations will be used throughout the appendix: 

(A1) 

D(x) = K(x)  - 5o(x) 

a(x) = D ,  D(x) 
b(x) = L Z* LZ(x;g) 

B(x)  = L ,  LZ(x;g) 

#i(K)  = f uiK(u)du 

# i (K  * K)  = f u i (K  , K)(u)du 

with 50 the Dirac delta function 

the i-th moment of the kernel K 

the i-th moment of the convolution K * K,  

and similar moments for the kernel L and the convolution L �9 L. 
From Condition B, we know that  the functions ~K(')  and ~L(') are bounded by a 

finite constant. Without loss of generality we will suppose that  this bound is equal to 1. 

A.1 Preliminary lemmas 
We start by recalling a form of Taylor's theorem with integral form of the remainder 

term. 
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THEOREM A.1. (Integral form of the remainder term in a Taylor expansion) Let 
m E ~W and f be a real-valued function which is (m + 1) times differentiable on an 
interval I.  Then Va E I and Vh 7~ 0 E I such that a + h E I, we can write 

(A.2) m hm+l L1 
f (a  + h) = E f(J)(a)~'l. + ~ f(m+l)(a + hu)(1 - u)mdu. 

j=0  

The next lemma is essentially due to Stefanski and Carroll (1990). See also Delaigle 
and Gijbels (2002) for a proof. 

LEMMA A.1.  

(A.3) 

For a kernel K satisfying Condition (B2) we have 

LEMMA A.2.  

(A.4) 

Under Condition (B1), we have 

l i D ,  < oo for D(x) lixiJ dx j = 0 , . . . ,  12. 

PROOF OF LEMMA A.2. Under Condition (B1), we have 

i K ( x  - y)K(y)dy - 2K(x) + 5o(x), D D(x) 

and thus ID * D(x)l  _< 

ID, <_ D(x) iixiJ dx 

f IK(x - y)K(y)ldy + 21K(x)l + 5o(x), and hence 

i~2 IxlJlK(x- y)K(y)Idydx + 2 i IxlJlK(x)ldx + S IxPSo(x)dx 

jn/2 IxPlK(x - y)K(y)ldydx + 2 a f IxlJlK(x)ldx" 

Using Condition (B1) and the change of variable u = x - y, we find 

J 
S~: Ixl'lK(x- y)K(y)ldyd- _< ~ C~ S~ I~lkl"l'-'<lK(~)llgm)ld~'du 

k=0 2 

where C~ denotes the binomial coe~cient (~). This proves the lemma. [] 

LEMMA A.3. Under Condition (B1), we have 

(A.5) # i ( K ) = p j ( D * D ) = O  for i = 1 , 3 , 5  and j - - 0 , 1 , 2 , 3 .  

(A.6) #o(L* L) = 1, # I ( L *  L) = 0, 
#2(IL * LI) < co, p4(0 * D)  = 6 # 2 ( K ) .  

OO~ 

PROOF OF LEMMA A.3. The proof is straightforward, but  rather technical and 
will be omitted here. See Delaigle (2003). [] 
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LEMMA A.4. Under Condition (B2), for all x E Kt and j E ~V, we have 

Ib(J)(x)l < (2~) -1 [ ItlJl~(t)l~l~z(t/g)l-~dt. 
J 

PROOF OF LEMMA A.4. Under (B2), we have 

= f g)dy 

----- (27r)-2 / ( /  (--it)Je-U(x-u)~L(t)/~z(t/g)dt) 

• ( /  e-isY~L(S)/~z(s/g)ds) dy 

= (27t")--2 / ~gl (Y)~g2 (y)dy 

= (27r) -1/(-- i t)Je-i tX~2L(t)~z2(t/g)dt ,  

where gl(t) = (--it)Je-itx~L(t)/~z(t/g), 92(S) = ~L(S)/~z(S/g), and where we used 
Parseval's identity. This proves the result. [] 

LEMMA A.5. Under Conditions (B2) and (C1) we have 

f lb(u)b (j)(u+x)ldu=o(n2g j+2) VxC ~,  for j = 0 , . . . , S .  (A.7) 
J 

PROOF OF LEMMA A.5. Under Condition (B2), we have 

f fb(u)b(J)(u + x)ldu _< sup Ib(~)(u)l f Ib(u)ld~ 

_< (2~-) -1 / I t l J l~L(t )12l~z( t /g) l -2dt  /Ib(u)ldu 

= (27r) -1 { f  ItlJ'~L(t)]2l~z(t/g)l-2dt} {/I LZ *LZ(u;g)ldu} 
--_ o(n2gj+2), 

where we used Lemma A.4 and Condition (C1). [] 

Let f'y(.; h) denote the usual kernel density estimator of fu  based on the kernel K,  
and let f'x ('; h) be the deconvolving kernel density estimator of f x  based on the kernel 
K,  and defined in (2.1). 

LEMMA A.6. Under Condition B, we have 

?'y (x; h) = (ix (.; h) �9 fz)(x). 
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PROOF OF LEMMA A.6. Straightforward by (2.1), (2.2) and the Fourier inversion 
Theorem. [] 

n } Let ~Y,n( t )  = n - 1  ~ j = l  eitYj denote the empirical characteristic function of Y. 
The following lemma summarizes some useful facts about this quantity. 

LEMMA A.7. For the empirical characteristic function we have 

= - + 2_., e it(yj-Yk) and I~Y'n(t)12 n ~T 
j ,k=l 
j#k 

E[~g,n(t)l 2 = I~y(t)12 + r t - l ( 1  _ I~y(t)l 2) _-I~g(t)[2 + O(n-1).  

PROOF OF L E M M A  A.7. The proof is rather straightforward and omitted. See 
Delaigle (2003) for details. [] 

A.2 Proofs of Propositions 4.2 and 4.3 
A.2.1 Proof of Proposition 4.2 

To deal with the integrated variance, first note that  under (A3) and (B2) and after 
basic manipulations, the integrated variance of the deconvolving kernel density estimator 
may be written as follows (see for example Stefanski and Carroll (1990)) 

(A.8) / Var{f'x (t; h) }dt -- 

and its bootstrap estimator as 

(A.9) f Var* {f'~: (t; h)}dt - 
J 

1/ 
2~nh I~K(t)]2l~z(t/h)l-2dt 

1/ 
+ ~ n  ]~K(ht)[2[~x(t)12dt' 

1/ 
27rnh I~K(t)le[~z(t/h)[-2dt 

+ ~ n  ]~K(ht) [~x,g(t)[2dt. 

In what  follows we will calculate the expectation and the variance of this boo t~rap  esti- 
mator. For simplicity we introduce the shortcut notat ion Var*(t; h) for Var*{f~c(t; h)}. 

PROOF OF STATEMENT (i). From (A.9) we find 

E I /  Var.(t; h)dt] _ 1 f [2 
2~Tnh J ]~K(t) 

]~g(t/h)]-2dt 

1/ 
+ ~ [~K(ht)[ 2 E{l~x,9(t)12}dt. 

Recall from Remark 2 that  ~x,g(t) = ~y,n(t) .  ~c (g t ) /~z ( t ) ,  and hence 

E[[~x,g(t)[ 2] = E[]~y,n(t)[2] �9 [~L(gt)12[~z(t)[ -2 
= [~x(t)]~[~L(gt)] 2 + ]~L(gt)[2[~z(t)[-20(n--1), 
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where we used Lemma A.7 and the fact that  py(t) = ~x(t) �9 ~z(t). Therefore we can 
write 

2~nh / IpK(t)121pZ(t/h)l-2dt 

+ ~ I~K(t)121~x(t/h)121~L(gt/h)12dt 

+ O(n-2h -1) f I~K(t)12 kOL(gt/h)12 kOz (t/h)t-2dt, 

where, by (A3), the behaviour of the second term is provided by 

n-' f I~K(ht)121~x(t)12[{L(gt)[2dt <_ n - 1  / I~x(t)12dt : O(~t-1), 

and, by (C3), the behaviour of the third term is described by 

n-2h-1 /I{K(t)]2[~L(gt/h)121~z(t/h)l-2dt <_ (n2h) -1 /I~K(t)121~z(t/h)l-2dt 
= o(n-1). 

Using (A.8) completes the proof of s tatement  (i). [] 

PROOF OF STATEMENT (ii). Note first that  from (A.9), we get 
Var[fVar*{f~(t;h)}dt] -- (4rr2n2)- lVar[f  I~OK(ht)121~x.g(t)12dt], and hence the task 
is to compute the latter variance term. 

Let ~o z (t) denote k OL (gt) l 2 kOz (t)I-2 k aK (ht) l 2, and note that  this is an even function. 
Then by Remark 2 and Lemma A.7, we have 

(A.10) Var [ /  ,qpK(ht)12,c~X,g(t),2,dt] 

- -Var  [ n-2  j,k=lj#k f i  / eit(YJ-Yk)~z (t)dt 

j , k = l  j',k'=l 
j#k  j '#k '  

=2n-a(n-1)Var[/eit(Y1-Y2)cpZg(t)dt ] 
+ 4n-3(n  - l)(n - 2) 

x Cov [/  eit(Y1-Y2)~z (t)dt, / eit(Y1-Ya)~z (t)dt] . 

We will now compute separately the two terms appearing on the right-hand side of 
(A.IO). 
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For the first term, let T = f eit(Yl-Y2)pz(t)dt. Then Var(T) <_ E(T2), where under 
(C3) 

E(T 2) = E./~2 ei(t+u)Y~e-i(t+~)V'2[~L(gt)[2[~z(t)[--2[~K(ht)[2 (A.II) 

x IFL (9u)12 IFz(u)[ -2 I~PK (hu)12dtdu 

• PL (gt)]2]~K(ht)]2[~L (gu) 12]~K(hu)[ 2dtdu 

<-- fn2 ]9~z(t)]-a]~z(u)l-2tFK(ht)]2]WK(hu)12dtdu 
= 

For the second term, let T be defined as above and put  U = f eiu(Y~-g3)qoZ(u)du. 
We then have 

1E(TU)[ = ./v2 ~v(t + u)~y(t)~y(u)qzz (t)~Z (u)dtdu 

<- .Iv2 [~y(t + u)[]~v(t)][~y(u)]]~z(t)]-2[~g(ht)[2[~z(u)[-2[~g(hu)[2dtdu 

= ./~ [~y(t + u)[l~x(t)lkPx(u)]]~pz(u)[-l[~z(t)]-l[~K(ht)]2[~K(hu)[2dtdu 

<-- /T42 I~x(t)llqPx(u)[[~z(u)[-l[~zz(t)l-l[qpK(ht)ll~K(hu)[dtdu 

and this term is of order o(n) since by Cauchy-Schwartz and applying Conditions (A3) 
and (C3) we have 

f ]~x(t)[[~z(t)[-lJ~K(ht)[ dr<- [ f  [~x(t)]2dt I 1/2 [ f  ,~z(t)j_2j~K(ht)j2dt],/2 
= 

For the expectation of the random quantity T we get 

E(T) = ./~ eit(Y-~)~z (t) fy(y) fv(z)dtdydz 

= / ~Y(t)~y(-t)~z(t)dt 

= f [~Y(t)[2~z(t)dt 

= f [~x(t)12l~ZL(gt)[2l~K(ht)[2dt 

<-- f I~x(t)12dt' 

which is of order O(1) by Condition (A3). Similarly for E(U). 
Therefore the covariance term Coy(T, U) = E(TU) - E(T)E(U) is of order o(n). 

Substituting this finding and (A.11) into (A.10) we get the result. [] 
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A.2.2 Proof of Proposition 4.3 
Some arguments of this proof are similar to those used by Jones et al. (1991) for 

proving their results. The main technical difficulties here come from the fact that we 
have to deal with contaminated data. 

Recall the definition of D(.) in (A.1), and denote by Oh(.) = �88 its usual 
rescaled version. It is easy to verify that Dh(x) is equal to Kh(X) -- 5o(x). 

Using Lemma A.1 and Condition B, we can rewrite the integrated squared bias as 
follows 

(A.12) ISB(h) = . /{E[f 'x(x;  h)] - f x ( x ) }2dx  

. / { E [ g Z ( x  - Y; h)] - f x ( x ) }2dx  

= / Oh * Dh(Z -- y ) f x (Y ) f x ( z )dydz  
Jn  2 

= f ( D h  * Oh f x ) ( z ) f z ( z ) d z .  

In what follows, we use the shortcut notation Oh * Dh * f x  (z) to denote (Oh * Oh * f x ) ( z )  
and similar expressions. Recall that, under Condition B, LZ(-;g) is symmetric (see 
Remark 3). The bootstrap estimator of the integrated squared bias can then be written 
a s  

ISS*(h) = . / ( O h  * Oh * f x ( . ;g ) ) ( z ) f z ( z ;g )dz  

n 

n-2 / Oh * Oh * LZ(z  - Yj;g)LZ(z  - Yi;g)dz 
i , j = l  

n 

= n -2 Oh * Dh * Lg (u; g)Lg (u - Yi + Yj; g)du 
i = 

'~ f z z = n - 2  E D h * D h * L g ( u ; g ) L g ( Y i - Y J  - u; g)du 
J i , j = l  

n 

z nZ(0;g) + n - 2  = n - l D h  * Dh * Lg �9 E Tij, 
i , j = l  
j#i 

where we used a change of variable u = z - Yj, and introduced the notation 

=/Oh, Dh * nZ(z  - Yj;g)LZ(z - Y~;g)dz (A.13) 

z LgZ)(y/ yj ;g) .  -- (Dh * Dh * Lg * 

Statement (i) of Proposition 4.3 is an immediate consequence of the following lemma, 
the proof of which is given below. 
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LEMMA A.8. Under Condition B, 
(i) i f  (A1) and (A2) are satisfied, we have E(T12) = ISB(h) + O(g2h4). 

(ii) if (C4) is satisfied, we have Dh * Dn �9 L~ �9 LZ(0;9) = o(nh4). 

To compute the variance of the bootstrap ISB, note first that 

(n.14) Var[ISg*(h)] = n-4 Var [ ~i,j=lj7 ~i Zij] 

= n -4 Coy Tij, ri,j, 
i,j=l i',j'=l 
jr j'r 

= n - 4 [ 2 f t ( n  - -  1)Var(T12) + 4n(n - 1)(n - 2) Coy (T12, T13)]. 

The behaviour of the variance and covariance term in this expression is established in 
Lemma A.9 below, and hence the proof of statement (ii) of Proposition 4.3 is completed 
with the proof of that lemma. 

LEMMA A.9. Under Conditions (A1) and B, 
(i) i f  (C1) is satisfied we have 

Var(T12) _< E(T i2) = o(n:hS g) 

(ii) /f ( i2)  and (C2) are satisfied we have 

Cov(T12, T13) = o( hS). 

PROOF OF LEMMA A.8. Proof of statement (i): Using Lemma A.1, the symmetry 
of L, and introducing the notation (L * L)g(.) for the usual rescaled version of L * L we 
can write 

(A.15) E(T12) = E . / D h  * Oh * Lg(z X2)Lg(z X1)dz 

= [ D h * D h * L g * L g ( x -  y) f x ( x )  f x (y )dxdy  
J T~ 2 

= ]~a 1)h * 

=/7r Dh * 

= /~a Dh * 

= J~2 Dh * 

+ g2/~3 

Dh (x -- y -- u) Lg �9 Lg (u ) f x  (x) f x  (y)dxdydu 

Dh(x -- v)Lg * Lg(v - y ) f x ( x ) f x ( y ) d x d y d v  

Dh(x - v ) f x  (v - gw)L * L ( w ) f x  (x)dxdwdv 

Dh(x - v ) f x ( v ) f x ( x ) d x d v  

~o 1 Dh * Dh(z - v)L * n(w)w2(1 - t) 
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• f ~  (v - g t w ) f x  ( x ) d t d w d x d v  
1 

= ISB(h) + g 2 ( D *  D ) h ( X - -  v ) L *  L (w)w2(1  - t) 
3 

• f' T(v - g t w ) f x ( x ) e t d w d x d v  

= ISB(h) + g 2. (I),  

where we used a first change of variable v = y + u and a second change of variable w = 
(v - Y) /g ,  followed by a first order Taylor expansion of f x  around v and an application 
of Lemma A.3. 

We will now show tha t  the term (I) in expression (A.15) is of order O(h4).  To see 
this, use the change of variable z = (x - v ) / h ,  a third order Taylor expansion of f x  
around v, and get 

~ L  1 h z ) d t d w d z d v  I(/)[ = D �9 D ( z ) n  �9 L ( w ) w 2 ( 1  - t ) f ~ ( v  - g t w ) f x ( v  + 
3 

h4 j~ LIL1 
= 3--(. 3 D * D ( z ) z 4 L  * L ( w ) w 2 ( 1  - t) 

• f ~ ( v  - g tw)(1  - s)3f(x4)(v + z s h ) d s d t d w d z d v  

~-58t 'h4 JTr 3f L 1 L 1 ID* D ( z ) l z 4 l L *  L ( w ) l w 2 ( l - t ) ( 1  - s) 3 

• I f~ (v - gtw)l ds dtdwdzdv 
: O(h4), 

where we used Lemma n.3,  Condit ion ( n l ) ,  Conditions (A2) and (B1) and Lemma n.2.  
Proof  of  s ta tement  (ii): First note tha t  using the notations in (A.1) and applying 

Condit ion (B2) we have 

z LZ(0;g)  = (D * D)h  * (L  Z * LZ)g(O;g) = ah * bg(O). Dh * Dh * Lg * 

Now we can write 

�9 bg(x) = f a h ( x  - y)bg(y)dy  ah 
J 
f 

= ] a ( u ) b a ( x  - hu )du  

h4 i L  1 
: - - th )dtd  

_ h 4 3 ! - 5 i L l a ( u ) u 4 ( 1 - t ) 3 b ( 4 ) ( X - - g } h U ) d t d u  , 

where we used the change of variable u = (x - y ) / h ,  a third order Taylor expansion of 
bg around x and Lemma A.3. 

Finally from Lemmas A.4 and A.2 and using (C4), we obtain 

h4'-' i So' i lah*b.(O)l < 3!2----~ la(u)lu4du I1-  tl3dt v41~OL(V)121~z(v/g)l-2dv = o(nh4),  
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which proves the s ta tement .  [] 

PROOF OF LEMMA A.9. Proof  of  s tatement  (i): Note  first that ,  by Definition 
(A.13) and the notat ions in (A.1), E(T~2 ) = E[ah * bg(Y1 - Y2).ah * bg(Y1 - Y2)]. Now, 
by the changes of variables s = (x - y - z ) / h ,  t = z / g  and w = (hs + 9 t - u ) /h ,  we have 

(1.16) E[ah * bg(Yl - Y2).ah * bg(Y1 - ]/2)] 

= ./;4 ah(x  -- y -- z)bg(Z)ah(x -- y -- u ) b g ( u ) f y ( x ) f y ( y ) d x d y d z d u  

= ./'v4 a(s)b( t )ah(hs + gt - u )bg (u ) f y ( sh  + y + g t ) f y ( y ) d s d y d t d u  

= ./'v4 a(s)b(t)a(w)bg(hs + 9t - w h ) f y ( s h  + y + g t ) f y ( y ) d s d y d t d w  

= g--1 .ITe4 a(s)b(t)a(w)b(t  + h(s - w) /g )  

x f r ( Y  + sh + g t ) f r ( y ) d s d y d t d w .  

Using a seventh order Taylor expansion of the function b(.) around t, we can write 

7 hkg_ k 
b(t + h ( s  - w ) / g )  = k---V-(s - w)kb(k) ( t )  

k=0 

hS g -s ~01 + ~ ( S  -- W) s (1 -- O)Tb(8)(t + hO(s - w)/g)dO, 

where by tile binomial expansion, (s - w) k = ~ = 0  C ~ ( - 1 )  k - j  sJw k - j .  Combining this 
with expression (A.16) and using Lemma A.3, we find 

(A.17) E[ah * bg(Y1 - Y2).ah * bg(Y1 - I/2)] 

7 k-4 hkg_k_  1 
= E E  k! cJk(--1)k-JPk-Y(a) 

k=4 j=O 

x JT~a a(s)b(t)b(k) ( t)sj  f Y  (y + sh + g t ) f y  (y)dsdydt  

hsg-9s + 7---(--. 4 a(s)b( t )a(w)(s  - w)S(1 - O)Tb(S)(t + Oh(s - w) /g )  

x f y ( y  + sh + g t ) f y (y )dOdsdyd tdw 
7 

k=5 l<j<_k-4 
4 - j < e < 3  

+ E hk+ng-k-l(I2) + h8g-9(7!)-l(I3)' 
4 < k < 7  

O<j<_k-4 

where 

(11) = C ~ ( - 1 ) k - J  (k!g.!)-l #k_j(a)#e+j(a)  J n  2 b( t )b(k) ( t ) f , (y )  f(e) (y + gt)dydt ,  
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(12) = c g ( - 1 ) k - J ( k ! 3 ! ) - l # k - j ( a )  
1 

x 3 a ( s ) b ( t ) b ( k ) ( t ) J s 4 ( 1  _ ~)af(yn)(y + gt  + ~ h s ) f y ( y ) d ~ d s d y d t ,  

(la) = 4 a ( s )b ( t )a (w) ( s  - w ) 8 ( 1  - O)Tb(8)(t + Oh(s - ~ ) / g )  

x f y ( y  + s h  + g t ) f y ( y ) d O d w d s d y d t ,  

and where we used a third order Taylor expansion of f y  around y + g t  and applied 
Lemma A.3. By using Lemmas A.5 and A.2 and Condit ion (A1), we can now conclude 
that  

I E[ah * bg(Y1 - Y 2 ) . ah  * bg(Y1 - Y2)]I 
7 

<-- E E o(n2hk+f gk+2-k-1) 
k=5 l<_j<_k-4 

4 - j < ~ < 3  

+ E ~ ] a(s)lNj+ads 
4<k<7 

O<j<_k-4 

+ o ( n ~ h S g ) / ~  la(s) l la(~) l (s  - ~ ) S d ~ d s  

= o ( n 2 h S g ) ,  

which proves the s ta tement .  
P r o o f  o f  s t a t e m e n t  (ii): In order to evaluate Cov(T12,T13) = E ( T 1 2 T 1 3 ) -  

E(T12) E(T~3) we first investigate the expecta t ion of the product  term. It should be  
unders tood  that  all operat ions below are carried out  after having wri t ten the  expecta- 
tions as integrals, so the various steps should be unders tood  as such. 

Using Condit ion B, the  nota t ion from (A.1), a first change of variables s ~ -- x + Y2, 
t '  = z + Y3 and Lemma A.1, a second set of changes of variables u = ( x  - J ) / h ,  
v = ( x  - t ' ) / h ,  s = (s '  - y ) / g  and t --  (t  ~ - z ) / g ,  we find 

E[T12T13] = E[ah  * bg(Y1 - Y2 ) .ah  * bg(Y1 - Y3)} 

= E [ / n 2 a h ( Y 1 - Y 2 - x ) b g ( x ) a h ( Y 1 - Y 3 - z ) b g ( z ) d x d z ]  

f 
. /~2 E[ah  (Y1 - s ' ) a h ( Y 1  -- t')] E[bg( s '  - Y2)] E[bg( t '  - Y3)]ds '  d t '  

./~2 E[ah(Y1 -- s ' ) a h ( Y 1  -- t')] E[Bg(s '  - X2)] E [ B g ( t '  - X a ) l d s ' d t '  

= ./~5 ah(x - , ' )ah(x  - t ' )Bg(s '  y ) B g ( t '  z )  f y ( x )  f x ( y )  f x ( z ) d s ' d t ' d x d y d z  

. /~5 a ( u ) B ( s ) a ( v ) B ( t ) f y ( x ) f x ( x  - h u  - g s ) f x ( x  - h v  - g t ) d s d t d x d u d v  

= ~V. ~5 ~0 iu4a(u)B(s)a(v)B(t)fY(x)(l- O)3f(x4)(X-gs-Ohu) 
x f x  ( x  - h v  - g t ) d O d s d t d x d u d v  
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h 8 1 

3,3,/ 5/0 fOO u4a(u)B(s)a(v)B(t) fy(x)v4(1 - (x - gs - Ohu) 0)3f(x4) 

x (1 - {)af(~)(x - gt - {hv)d{dOdsdtdxdudv, 

where we applied subsequent ly a third order Taylor expansion of  f x  around x - gs, 
and a third order Taylor expansion of f x  around x - gt and used Condit ion (A1) and 
Lemma A.3. 

Using Condit ion (A1) and Lemma A.2 we then find 

{/ )'{/ }'/ [ E[T12T13]I <_ M3~.3 [ [u4a(u)[du [B(s)lds f y ( x )dx  = o(nhS), 

where we also used Condit ion (C2), and where M is a positive constant .  From (A.15) 
and Proposi t ion 4.1 (i) it is clear tha t  E(Tij) = E(Tik) = O(h4). This then proves that  
Cov(T12, T13) = o(nhS). [] 

A.3 Proof of Theorem 4.3 
The proof  of this result uses arguments  similar to those used in the non-contaminated 

case by Hall (1983) and Scott  and Terrell (1987). Note  tha t  the error densities char- 
acterised by (4.1) are ordinary smooth  of order ~ = p, such tha t  (2~r)-1 f ]~0g(t)[ 2 .  
[~z(t/h)[-2dt = a2ph -2p + o(h-2 ; ) ,  with a2p a constant.  We deduce that  MISE(h)  = 
AMISE(h)  + o(AMISE(h)) ,  where AMISE(h)  = h 4 p ~ ( K ) R ( f } ) / 4  + a2ph-2P(nh) -1. Let 
C = h * / h A M I S E ,  where 

(A.18) hAMISE = argmin h AMISE(h)  

= [(2p + 1)a2v/(p~(K)R(f'~))]l/(2P+5)n-X/(2P+5). 

Below, we show that  C P 1. Since hAMISE/hn ---* 1, the proof  of the theorem then 
follows immediately. By  (A.18), we find 

and 

AMISE(hAMISE) = a4/(2P+5)n-4/(2P+5)[n~(K)R(f})/(2p + 1)] (2p+l)/(2p+5) zp tr~z 

x [(2p + 1) /4  + 1], 

AMISE(ChAMISE) = ,4/(2p+5)-4/(2p+5)[p2(K)R(f~)/(2p + 1)](2p+l)/(2p+5) 
~2p ' ~ 

X [C4(2p  -~- 1)/4 + C-(2P+1)1. 

Taking the ratio of these two expressions, we obtain  

(A.19) AMISE(h~)/AMISE(hAMISE) = [C4(2p + 1) + 4C-(2P+DI/[2p + 51 

= f (C) ,  

with f :]0, +oc[--~ [1, +oc[  defined by f ( x )  = [x4(2p+l)+4x-(2P+l)]/[2p+5]. Similarly to 

Theorem 4.2, one can show that  f (C)  p 1, as n ~ 0% i.e. W? > 0, limn__.~ P ( [ f ( C ) - l [  > 
r]) = 0. Using this result and the fact tha t  f is str ictly convex and minimised by f (1 )  = 1, 
we deduce that ,  for all 0 < e < 1, 

lim P ( I C - 1 1 > e )  = lim P ( { C >  l + e I t 2 { 6 " <  l - e } )  
n - ' + o o  n----~ C~D 
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< l im P({f(C) > f ( 1  + e)} U { f ( C )  > f ( 1  - e)}) 
n - - *  O o  

_< l im P(f(C) > m i n ( f ( 1  + e), f ( 1  - e))) 
n - - - +  ( X )  

--- l im P(f(C) - 1 > m i n ( f ( 1  + e), f ( 1  - e)) - 1) 
n - - *  O o  

---- 0~ 

since m i n ( f ( l + e ) ,  f ( 1 - e ) ) - i  > 0. Consequen t ly ,  one  also has  l imn-,oo P ( [ C - I [  > e) = 0 

for all e > 1. Th i s  p roves  t h a t  C p 1, as n -+ co. []  
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