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Abstract. We consider a boundary crossing probability of a Brownian bridge Bo
and a piecewise linear boundary function u(t) —yh(¢). The main result of this paper
is an asymptotic expansion for v — oo of the boundary crossing probability that
Bo(t) is larger than the piecewise linear boundary function u(t) — vh(t) for some t.
Such probabilities occur for instance in the context of change point problems when
the Kolmogorov test is used. Examples are discussed showing that the approximation
is rather accurate even for small positive -y values.
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1. Introduction

We consider boundary crossing probabilities of the Brownian bridge Bo(t) and a
piecewise linear boundary function u(t) — vh(t). For an arbitrary positive function u(t),
t € [0,1], we are interested in

(1.1) p(7v; h) = P{By(t) > u(t) — vh(t) for some t € [0,1]}, > 0.

Such functions p(<y;h) occur as asymptotic power functions of weighted Kolmogorov
tests for testing the hypothesis that a regression function is constant against the alter-
native that an arbitrary regression function appears. Note that for this interpretation h
corresponds to a fixed normalized alternative. For more details see Section 3.

There is a lot of literature dealing with the computation of boundary crossing proba-
bilities P{By(t) > I'(t) for some ¢ € [0,1]}. A nice survey on boundary crossing probabil-
ities is given in Siegmund (1986). If I is a straight line, the probability is well known, see
for example Karatzas and Shreve (1991), pp. 264-265. Scheike (1992) gave an expression
for the probability if I" consists of two straight lines. Wang and Potzelberger (1997) and
Janssen and Kunz (2000) dealt with the case of a piecewise linear I' and the Brownian
motion instead of the Brownian bridge. These results can be easily transformed to the
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case of piecewise linear I' and the Brownian bridge. Wang and Potzelberger (1997) gave
an integral expression for (1.1) which can be numerically determined by Monte Carlo
simulations, see also Potzelberger and Wang (2001) for two-sided boundaries. Novikov
et al. (1999) and Potzelberger and Wang (2001) obtained bounds for the approximation
error of the integral expression if an arbitrary function is approximated by a piecewise
linear function. Janssen and Kunz (2000) expanded the integral expression for piecewice
linear functions in a sum of multivariate normal distribution functions. This sum be-
comes more and more complicated for an increasing number of linear pieces. Thus, (1.1)
can be calculated numerically but not analytically by these formulas. In order to com-
pare the weighted Kolmogorov tests with other tests, however, one needs some analytic
expression for (1.1).

In this paper we consider the problem of accurately approximating this boundary
crossing probability (1.1) for a rather large v. Often the large deviations principle or
extreme value theory can be applied to derive the leading term of such an approximation.
Similar estimates using the large deviations principle are accurate usually up to the order
o(?%) for the log of the probability (1.1). Such results can be found e.g. in Varadhan
(1984) and Ledoux (1996). By a first accurate estimate, Bischoff et al. (2003a, 2003b)
derived an estimate for the log of the probability (1.1) up to the o(7y)-term where the
leading term of this expression is of order v2. We are interested, however, in a more
accurate estimate to obtain an approximation of the power function p(y; h). For that we
need an approximation which is asymptotically equivalent to (1.1).

In Section 2 we derive such an exact asymptotic approximation of (1.1) for yh(t) —
u(t) piecewise linear. In Section 3 we apply our result to some particular examples.
Numerical calculations show that the approximation formula is rather accurate even for
small values of «.

2. Main results

Recently, Bischoff et al. (2003a, 2003b) have shown the following boundary crossing
probability for the Brownian bridge and the boundary function b,(t) := u(t) — vyh(t),
t € [0,1]. This probability occurs in the context of weighted Kolmogorov tests in a
natural way, see Section 3 for details. Let h be the smallest concave majorant of h and
denote the right-hand derivative of hon [0,1) by i'. Let &’(1) be defined as the left-hand
derivative of & in 1. Then under certain conditions (for details see Bischoff et al. (20034,
2003b)) it is true that

(2.1) P{vt € [0,1] : Bo(t) < b,(t)}

~ exp (—v2||i»|12/2 - [t o), 7o

where || - || denotes the norm of the reproducing kernel Hilbert space belonging to the
Brownian bridge By(t), t € [0,1]. For results for the behavior of P{Vt € [0,1] : By(t) <
b,(t)} for v — 0 see e.g. Janssen (1995) and Janssen and Kunz (2002).

In the following we derive the exact asymptotics (7 — 00) for the special case of a
piecewise linear boundary function b,,. For stating our main result we need the following
notation. Let © = (z1,...,z;)" € R* and let M C {1,...,k}. Then the vector that
comnsists of the components whose indices belong to M is denoted by zas := (m,),Te M €
IRMI| Accordingly, as for vectors, Ay denotes the |J| % |I| submatrix of the k x k matrix
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A obtained by deleting all rows and all columns with indices in {1,...,k} \ J and in
{1,... ,k}\ I, respectively. If J = I, then we write A instead of Ay;. In the last case
we drop the index J if J = {1,... ,k}. Further for two sets L, M C {0,1,...,k+ 1}, the
set LM is defined by LM := {i € {0,1,...,k} :i € L,i+1 € M}. The latter notation
is not used when indexing matrices.

THEOREM 2.1. Let h : [0,1] — IR be a continuous and piecewise linear function
with h(0) = h(1) = 0 and h(t) > 0 for some t € (0,1), let 0 = tg < t; < -+- <
tr < tk41 =1, k > 1, be the points such that {(0, h(0)), (t1,h(t1)),... , (1, (1))} are all
nodes of the polygon h, let h > h be the smallest upper concave polygon of h, and let
I C{1,...,k} be the set of indices such that {(0,h(0)), (t:;,h(t;)), (1, R(1)) | i € I} are
all nodes of h. Further we put

Ji={j€{l,...,k}\I:h(t;) = h(t;)}, J:=Ju{0,k+1},

K:={1,...,k\N(IUJ)={j € {1,...,k} : h(t;) # h(t;)}.
Let w : [0,1] — IR be a continuous and piecewise linear function which is linear on every
interval [t;,tit1], ¢ = 0,...,k and with up := u(0) > 0, ug41 = u(l) > 0 and put
u = (u(t1),...,u(te)) 7. Let S be the covariance matriz pertaining to the random vector
(Bo(t1),...,Bo(tr)) of a Brownian bridge By(t) with paths in C([0,1]). Then, we have
(2.2) P{¥Vt€0,1]: Bo(t) < by(t)}

= P{Vt € [0,1] : Bo(t) < u(t) — vh(t)}

= cutn gy oxp (<A 2~ [ udh ) IS o),

Y — 00,

Cu,ty,... tik = (271-)_'”/2'21[—1/2

x exp(—u] (81) lur/2) [ I 2/t~ m} g 50D
ielTuIJuJr

S
_ + T+ +2¢ ]
X T, T, — —

i—EKI ' 1g< ' g [Qi(ri +a)rf + @)y +rf +@)]’

_ h{t) = h(tie) _ h(tiz1) — h(t:)

;=

= h'(ti—) — B'(t:+),

ti—ti1 biv1 — i
ri =2(h(ti—1) — h(ti—1))/(ti — tio1),
rh = 2(A(tis1) = h(ti1))/(tir — ti), Q€1
D = (2r) MV2|(S) 1) 112
X / H z; H T; H [l — exp(—2x;xip1/(tiz1 — )]

1205 ieg1  i-1eld  eji
X exp(——(fl:J —uy+ E]I(E{)_IUI)T((ER)_I)](Cﬂj —uy+ 2]1(21)—1’&})/2)(1151,
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with [1,cq--- =1 and if J = 0 then we put D :=1.

Remark 2.1. a) Under the weaker assumption: the function b,(t) is lower semi-
continuous piecewise linear, we may derive along the same lines the exact asymptotic for
the boundary crossing problem.

b) In the asymptotic result obtained by (2.2) the term in the exponential remains
the same as long as we consider piecewise linear functions h that have the same h and
fixed u. The exponent of  takes its minimum if h = h.

c¢) Note that the asymptotic result (2.2) depends only on the shape of h near the
concave hull A. .

d) Note further that K = @} implies J = § and that K = @ is equivalent to h = h.

Putting specifically h = h in the above theorem, we obtain:
THEOREM 2.2. Under the assumptions of Theorem 2.1 we get for h = h

(23)  P{vte[0,1]: Bo(t) < by(t)}

k k
= 23R/ 2010 =k/2 exp(—uT £ u/2)uguk H(ti+] —t;)7%/2 H g3
i=0 i=1

X exp (—fnkn"’/fz = udﬁ') k(1 4 o(1)), 7 o0,

with g; :=— h(t)—h(tio)) _ Altea)=h(t) _ ﬁ'(ti—) — B (t:4).

ti—ti-1 tiv1—1t;

_ Proor or THEOREM 2.1. We use the following abbreviations: h; := h(t;), hi =
h(ti),i=0,...,k+ 1. In Bischoff et al. (2003a, 2003b) it was shown that for v > 0

(24)  P{Vte[0,1]: Bo(t) < b,(t)}

k
= (2m)~*/? [H(ti+l - ti)_l/Q} / exp(~z' =z /2)q(x)de
i=0 z<u—~h

with
(2.5)  q(z) := [1 — exp(—2up(ur ~ vh1 — z1}/11)]

k-1

x ]I = exp(=2(ui — vhi — 2:) (i1 — Yhiss — Tig1)/ (tigr — )]
i=1

x [1 — exp(—2ug+1(uk — Yhe — 21) /(1 — tk))]-

By Lemma 4.1 of Bischoff et al. (2003a) the unique solution of the quadratic
programming problem Ps : ‘minimise 'Y 'z with linear constraints £ > h =
(h(t1),...,h(t;)) 7 is given by & = h = (h(t),... ,h(ty))" and

(2.6) i?,IUJ = hjyyy, and if |K| >0, ’;«K > hy,

(2.7) (Z7)"*h; > 0y,

(2.8) mina’ %z = RSk =h, (S) ks = ] (S1) " hy
Tz

1
- / (R)2dx = |Af? > 0,
0
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with I,J, K as defined above. Clearly the index set I is unique and |I| > 1. Both
index sets J and K can be empty. In order to avoid complicated notation, we assume in
the following that |J|,|K| are positive. The proof for J or K empty is easier, therefore
omitted here.

We remark in passing that the inverse covariance matrix of ¥ and its determinant

are
141 1 \
t1—to + to—11 ta—11 0 0
1 1 1 1
to—11 ta—1t; + t3—ta ty3—t2
It __1 1 1 -
0 ts—ta ot Tt ) 0 ’
. . _— 1
) tr—tk-1
1 1 1
0 0 th—tik—1 th—lk—1 + tk+1—tk)

k
=Y = H(ti+1 —t:)7' >0
=0

respectively, and both A, h are in the reproducing kernel Hilbert space corresponding to
By.
T

=T
Without loss of generality we can assume &' = (.’L';—-,CB}F), ul = (uIT,’u}r), h =

~T ~T _
(hf,h;) with index set I := {1,...,k} \ I = JU K. To continue put &,, :=
S
(@], 2] /)" = (uf,ul)T +(h,hy)".
Next, transforming (2.4) by € — —x., ,,, we obtain

(2.9) PVt € [0,1] : Bo(t) < by (1)}
k
= (2m)~*/? [H(ti+1 - ti)_1/2] v
=0
« [ oy ST r/2a( u)d
with
k ~
g(—y) = [t - exp(=2(z:/v) + v(hi — hs))
=0

X (Tig1 /Vi+1) + V(Rhir1 — hig1))/ (tigr — )],

where v = 1(i € TU{0,k+1}) +71(i € I) for 0 < i < k+1, o = up > 0,
T41 = Ugy1 > 0 are constant, and hg = hgyq = ho = ilk_H = 0 has been used.
In the light of Lemma 4.2 of Bischoff et al. (2003a) we have for y,y* € RF with

'y =05
(210) (w+y) = w+y*) =y Sy + 2] () i+ v (S0 ke

Since L ~ ~ ~
(hi = hi—1)/(ti — tic1) = (hix1 — hs)/(tig1 — ts), €1
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we obtain

(2.11) (Z~'h);=0;, and Viel:(Z7'h); #0,

hence putting y = (], /7)" — v and y* = vh, v > 0 we get by (2.10)

(212) 2y, 57 @y = (2], 2] /7) )2 (] 2] /)T —w)

+2a] (Z1) " hr — 2yu] (B1) 7 hr +°h{ (Z1) My
Using once again Lemma 4.1 of Bischoff et al. (2003a) we have
(2.13) - / wdh = u SR = u] (5)" hy < oo,
Thus we may write as v — oo
mI’uZ_lw%u =0(1/7) +¥¥|hl* + 2'7/udl~z’

+((xf,00) —u" )T ((z{,0{) " — u) + 2z{ (Z1) 'Ry
and _ ~
1 —exp(—2(xi /vy + v(hi — hi))(@iv1 /1) + Y(hig1 — higa))/(tig1 — t3))

[1 — exp(=2z;(hit1 ~ hir1)/(tix1 — )] (L +0(1)), i€ IK,
[1 - exp(—2zi1(hi — hi)/(tip1 — )] (1 +0(1)), i€ KI,
_ ) [ —exp(—2@imig1 /(ti — 1)) (1 4 0(1)), ieJ,
) 2z / ((tie1 — )Y (L + o(1)), i€,
2x;ziv1/((tivr — t)7) (1 + o(1)), ieljoriel,
|1+ 0(1), otherwise.

Next, substituting in (2.9) we obtain further
P{vt € [0,1] : Bo(t) < by(t)}

k
= (L +o(1))(2m) %2 [H(ti-i-l - ti)_lﬂ} l: IT  2/tin - tt)]

i=0 icITULIVJI

x A~ H1=2U= 1= ] gy (—72I|71H2/2 - 7/ud’~l’>
x / _exp(0(1/7) - ((=],0]) — uT)z"!
z>v(h—h)

x((@f,00)" —w/2—z; () k) J]  lwmiwil
i€ IIULIuJI

X H (1 — exp(—2z;(hit1 — hiy1)/(tis1 — t5))]

iclK
X H [1 — exp(—-2x,~+1 (il, - hi)/(ti+1 - ti))]

ieKI
X H (1 — exp(—2z;Tiy1/(tita — ti))]dx

iedJ
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s o (1) exp (—72”13112/2 o [ udﬁ') A T=21=11-1T (4 o(1))

for v — 0.

By the definition of the index set I and from (2.6) we get

lim y(h — k) = &0, With (&co)rus =010y, (Eeo)k = —00K-

Y00

Further by Lemma A.1 and (2.13)
z) O Ty > YR (Z1) T Ry — 2yuf (B1) T hy
+(zr —up) " (Ep) " Her — up) + 227 (S1) 7 Ay
= ¥?||A|? + 27/ud7l' + (z; —up) (2) N (=r — ug) + 22 (Z1) " Mhy,

hence Lebesgue’s Bounded Convergence Theorem (see e.g. Theorem 1.21 of Kallenberg
(1997)) implies

k
’Yli_’nolocu,tl,...,tk(FY) = (2m)7*/2 I:H(tH—l —ti)_lﬂ} [ H 2/(tiy1 — ti)
i=0

i€ MULjuJI
< [ ep(=(@],0f) ~ uT)E (2] 0)T — u)/2
—z; (1) h)
x H [wizipa] J] 11— exp(=2@i(hivs — hig1) /(b1 — t:))]

ieHTuIjuJr ielK
x [T 11— exp(=2zi11(hs = )/ (tig1 — t:))]
i€KI
x T 1 — exp(—2ziwig/(tiga — t:)))da
iedj
= cu,tl,... RN

It can be easily shown that cy,,... .+, is some positive constant. This constant can be
calculated as follows. To this end we define

J={1,...,k}\J=1UK,

K:={1,.. ,k})\K=1uUJ,

KIK :={iel:i—1,i+1€ KU{0,k+1}},
KIK :={iel:i—-1€ Ku{0},i+1€ K},
KIK :={iel:i-1€K,i+1€ KU{k+1}},
KIK :={iel:i—-1,i+1€ K}.

Again we assume that the index sets defined above are non-empty. The other case can
be dealt with similarly.
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Using Schur complements, we have

((@].0) ~u)=" (2] 0])" ~w)
=uj (B1)rur + (27 — up + Sp(E0)  un) TS @ — up + Z(S1) )
= u;(EI)‘luI + (iBJ —uy+ EJI(EI)—I’U,I)T(SJ)_I(IEJ —uy+ E_][(E})_lu])
+yk(E ) rYxk,

with

S=(=Zp7
Yi =Tk — uk + Skr(Z1) " tur — Sks(S5) Ny — us + Zu(Er) " ug).

We get

k
_ _ 1{1el} 1{kel
Cur.. tn = (2m)7F/2 H(ti+1 —t;)"1/2 H 2/(tiv1 — ;) Uo{ € }uk<{f-1€ ’
=0 ie HUIjuJr

x exp(—u; (37) " us/2)
X / exp(—(a}J —ugy+ EJ[(E[)_LU,I)T
z5205

X (SJ)_l(.’BJ —Uujy+ ZJ[(E[)_IU[)/2) H T; H Tiq1

i€l ielJ
x ] 1 — exp(—2zizir1/(tigr — t:)))da s
i€y
< [ exp(-yk(E kv /2dyx
RIK|
oo
X H / z7 exp(—ziq;)dzx;
ieRIR 7 °
Sy ~
x I1 / ziexp(—zigi)[1 — exp(—2z;(hir1 — hiy1)/(tir1 — ti))]dzs
iRk 79
o0 ~
X H / z; exp(—z:gi)[1 — exp(—2zi(hi—1 — hi—1)/(ti — t:i-1))}dz;
ickIg ’°

X H /000 exp(—:g;)[1 — exp(—2z;(hi—1 — hi—1)/(ti — tic1)))

i€ KIK
X [1 — exp(—2xi(hi+1 — hi+1)/(ti+1 — tz))]dl‘,

Next, using
o0
/s%mFMMZWﬁ
0

/Ooo sexp(—gs)(1 — exp(—cs))ds = 1/q* — 1/(c + ¢)?,
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/000 exp(—qs)(1 — exp(—cs))(1 — exp(—as))ds

. aca + ¢ + 2q)
~gle+g)la+g)atctg)
((EH) ) = -2aE) 'S = Er - ZuEN) ™2™
= ()M,
=] = [Z£I((E"Hx) 7,
Zxl = 1Z((Bg) D)7

and putting

c7a?q>0’

D = (2m) V2 () a2

« [ e T1 =TT 0 - exp(-2zis /(i = )]

iedl  i-1e€l]  ejf
X exp(—(wj —uy+ EJ[(Z])—I'U;I)T((Ek)_l)J(mJ —ujy+ EJ](Z[)—'I’U,[)/z)d.’EJ,

we get

Cuy,ee e = (20) VSTV 2 exp(—u] (S1) M ur/2)

X H 2/(ti+1 — ti) u(l){IEI}'LLIICE_kiGI}D

i€ HUIJUJT
< I] @/é) ] W/é - 1/0F + @)
ieKIK icKIK

, _ 2 e (v + 2g;)
x IT /e -1/07 +a)’] T1 [qi(ri‘+qi)(ri++Qi)(T{ +rf +Qi)]

i€ KIK ieKIK
= (2m)" 21|72 exp(—uf (S1) " ur/2)

kel
X IT  2/Gn-t) w0 D
ielTULJUJI

-
_ + re 4717+ 2 ]
X ” r; || r; || - = :

ilekr ek el [qi(ri +a)(rf + @)+ +a)

Thus the assertion of the theorem follows. O
3. Applications

In this section we explain to which extent our asymptotic results can be useful for a
test problem. To this end we consider an ordinary regression model and we are interested
in testing the hypothesis that the unknown regression function f is constant against the
alternative that it is not constant. We want to test the above problem asymptotically
with the help of the residual partial sums limit process, see MacNeill (1978a, 1978b),
Bischoff (1998), Bischoff and Miller (2000), Bischoff et al. (2003a, 2003b). Let the
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regression function f have bounded variation. Moreover, we consider in the following f
as a function in L9([0, 1], A\) where X is the Lebesgue measure. Putting

t 1
a5 (t) = /0 f(s)ds — ¢ /O f(s)ds,
the residual partial sums limit process is given by the Gaussian process
BO(t) + gf(t)v te [Oa 1]

Note that gy is identically 0 if and only if f is identically constant (as a function in
L4([0,1],A)). Thus our original test problem

Hy: f =constant  against K : f # constant
is equivalent to the test problem
Hy:9y=0 against K:gy#0.
In the following we only consider the one sided test problem
Ho:9;=0 against K :gs(t") >0 forsome t* € [0,1].

By our result (Theorem 2.1) the following definitions are useful

h(t) = hy(t) = g7l g, i f # constant,

h(t) = hg(t) =0, if [ = constant,

7= = l9sll-

A suitable test for our test problem is the weighted Kolmogorov test. By the above
defintions it can be expressed by

Reject Hy if and only if Bo(t*) + yh(t*) > u(t*) for some t* € (0,1),

where u : (0,1) — (0,00] is chosen such that we obtain a size a test. For similar
investigations for signal plus noise processes with the Brownian motion instead of the
Brownian bridge see Bischoff et al. (2003¢). It is worth mentioning that the residual
partial sums limit process is obtained by a local limit theorem under the alternative, see
Bischoff and Miller (2000). Thus our considerations on the power corresponds with the
Pitman efficiency in case v = vy is large enough for the fixed alternative f.

To simplify the following considerations, we explain only the unweighted Kol-
mogorov test, that is u(t) = u (constant). For controlling the type I error by a € (0, 1),
we have to fix u such that

P{By(t*) > u for some t* € (0,1)} = a.

This is fulfilled for u = ,/—% log(a). In the succeeding examples, we fix a = 0.05, hence
w = 1.22387. Then the power of the Kolmogorov test in the direction of & is given by

(3.1) (v, h) = P{Bo(t*) + vh(t*) > u for some t* € (0,1)}.
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Obviously, if A : [0,1] — IR fulfills the assumptions of Theorem 2.1 and if additionally
h(to) > 0 for some tg € (0, 1), then, for v sufficiently large, the power of the Kolmogorov
test in the direction of h can be approximated by

1—pral(n, k) = Curtr.... 1, €XD <—72/2 ~ v/udﬂ’) =21

The following three examples show that we already have a good approximation for sur-
prisingly small values of the parameter v. We show this result by computing the power
(3.1) numerically by formula (2.4) and by comparing these outcomes with the corre-
sponding approximations received by the formula of Theorem 2.1. Note that the direct
numerical calculation of (2.4) is only possible if k£ (the number of linear pieces) is small.

Ezample 3.1. For a fixed 7 € (0,1) we consider the trend

min{t(1 — 1), (1 — t)7}

The constants occurring in (2.3) of Theorem 2.2 are given by k = 1, to = 0, t; = 7,
t2 =1 and

lh % =1, —/udh’ =u/\/T(1-7), u'Z7lu=u?(r(1-7))7",
q=1/vVr(1-1).

Therefore, for v sufficiently large the power is approximatively given by

h(t) = h(t) = h,(t) = t € [0,1].

P{3t € [0,1] : Bo(t) > by(t)} ~ pra(y,hs)
= 1—4u?(2/7)}/?y~3

1 U u?
X OXP (“725 MY~ Gl _T)) '

Next, we compare in Table 1 the (exact asymptotic) approximation pga(7,h.) of the
power given by the formula of Theorem 2.2 with the exact power p(7, h,) numerically
computed by formula (2.9) for several values for v and 7. Figure 1 shows the exact power
p(7,h,) and the exact asymptotic approximation pga(y, h,) for 7 = 0.2 and 7 = 0.5.
Table 2 and Fig. 2 show the relative approximation error

1 -pea(y,he)
1—p(v,hr)

by using pga instead of the exact p.

1

Ezample 3.2. Let us consider the following concave function as a trend
V2z, z €]0,1/4), V2,  z€10,1/4),

h(z) = h(z) = { v/2/4, z€[1/4,3/4), k(z)={0, z€[1/4,3/4),
V2(1—2), z€[3/4,1], —V?2, z¢€[3/4,1].
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Table 1. Exact asymptotic approximation pga (v, h+) and exact value p(7y, h+) of the power.

¥ =2 vy=4 vy=26
T PEA p PEA p PEA /4
0.1 0.9312 0.2491 0.9255 0.7752 0.9965 0.9938
0.2 0.6592  0.4085 0.9520 0.9354 0.9997  0.9997
0.3 0.5228 0.4976 0.9691  0.9665 0.9999 0.9999
04 0.4722  0.5408 0.9758  0.9759 1.0000 1.0000
0.5 0.4594 0.5538 0.9776 0.9782 1.0000 1.0000

3 4 2 3
gamma gamma

Fig. 1. Exact power (grey) and the exact asymptotic approximation (black) for + = 0.2 (left
figure) and T = 0.5 (right figure) in Example 3.1.

Table 2. The relative approximation error (1 — pga(y, hr))/(1 — p(7y, hr)) — 1 for Example 3.1.

T v=2 y=4 vy=06 vy=8 v=10 v=20

0.1 -91% —67% —43% —27% —19% —5%

02 —42% ~26% —15% —9% —6.2% —1.6%
0.3 —5.0% —7.7% —4.8% —3.0% -2.0% —0.6%
0.4 15% 0.3% —0.6% —0.5% —0.4% —0.1%
0.5 21% 2.6% 0.6% 0.2% 0.09% 0.008%

The constants occurring in (2.3) of Theorem 2.2 are given by k = 2, to = 0, t; = 1/4,
t2 = 3/4, t3 =1 and

B =1, - [udi =TSR = 2vE, TS e =,
k

[Tt —t)" =32, a=gp=v2

1=0

For v sufficiently large the power is approximatively given by
P{3t € [0,1] : Bo(t) = by(t)} =~ pra(y,h)

2 1
=1- 256%u2 exp(—4u®)y~% exp (—725 + 72\/§u) .
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1
0.8
061
0.4
0.2

oz Wm
0.4

-0.6 1
-0.8
1

Fig. 2. Relative approximation error 1;’: ;3){‘7 “;l’h)f) — 1 made using pg 4 instead of the exact p

for 7 = 0.1,0.2,0.3,0.4, 0.5 (from bottom till top) for Example 3.1.

11
0.8 0.8
0.6
0.6 0.4
p 0.2
0.4 -
0 2 4gamma6——8——10
0.2 ¢
0.2 7 0.4
-0.61
0 1 2 3 4 5 6 08
gamma 1]
Fig. 3. Power p(v, h) (grey) and the ex- Fig. 4. Relative approximation error
act asymptotic approximation pg 4 (7, h) %‘w — 1 made using pg 4 instead
(black) for Example 3.2. of the exact p for Example 3.2.

Next, we compare in Fig. 3 the (exact asymptotic) approximation pg 4(+y, k) of the power
given by the formula of Theorem 2.2 with the numerical results for the power p(vy, h) as
a function of v. Figure 4 shows the relative approximation error.

Ezxample 3.3. Let us consider the following non-concave function as a trend

(22, z €[0,1/4),

\/5(% - z) . z€[1/4,1/2),

h(z) = )
V2 (z - 5) . z€[1/2,3/4),
(V2(1 - 2), z € [3/4,1].
We have
) V2z, z € [0,1/4), ) V2, z€[0,1/4),
h(z) =< V2/4, z€(1/4,3/4), HK(z)=10, z € [1/4,3/4),

V2(1—2), z€[3/4,1], -2, z€[3/4,1)].
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11
0.81 0.84
0.6
0.6 0.41
p 0.24
0.4 0
4
0.2 0.4
" -0.6
0 T 2 3 4 5 & 'O'Bj
gamma -1
Fig. 5. Power p(,h) (grey) and the ex- Fig. 6. Relative approximation error
act asymptotic approximation pg 4 (v, h) 1—‘1”_’;(‘7(1’)@ — 1 made using pg 4 instead
(black) for Example 3.3. of the exact p for Example 3.3.

The constants occurring in Theorem 2.1 are given by k=3,t=0,t =1/4,t2=1/2,
t3=3/4,ta=1,1={1,3}, J =0, K = {2}, J = {0,4} and

II @/t —t)=2/t1-2/(1—tz) =64, |(E)7V? = V32,
ielTULJuJI

a=a=Vv2 rf=r;=2/2
Hence, the power is approximatively given by
P{3t €[0,1] : Bo(t) 2 b,(1)} ~ ppa(v,h)
2048 /2

1
=1 u? exp(—4u?)y " texp | =722 + 72V2u
81 = 2

for large . Figure 5 shows the values pr4 and the exact power p and Fig. 6 the relative
approximation error as a function of .
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Appendix

LEMMA A.l. Let y* € R% d > 2 be fized and let T be a positively definite d x d
matriz. Assume that I C {1,...,d} is an non empty index set such that for all i € I we
have (£~ 1y*); # 0. Then for all y € IR?

W+y) "=y +y") 2y (E) Ty + 2] (E0) T 'yi+ v (S0
with I :={1,...,d\\I and y] (£1)"'y; =: 0 if I is empty.

Proor. Clearly, if I = {1,...,d}, the claim follows immediately by the positive
definiteness of the inverse matrix £~!. Assume now that I is not empty and put in
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the sequel B := X7!, By := (Z71), By := (X71);. Since ¥ is positive definite, both
matrices By, Bf exist and moreover

B;—Bp(Br)'Bir=(21)""  and  Br-By(Br)"'Bry = (T)7
To this end, we obtain along the lines of Lemma 4.1 of Bischoff et al. (2003a)

(y+vy*) ' Bly+y")

= lyr + (y} + (Br) "' Bryi) + (Br) "Brryr) ' Brlyr + (yi + (Br) "' Bryi)
+ (B By ) + vl (50 y, +29] (S0 7y + oy (B) Myl

= [yr + (Br) " Brry;] ' Brlyr + (By) "' By
+yl (S0 +2y] (B0 yr +yr (57 My)

=y By +2y; () yi+yi (S0 7'y

=yi (Br — By(B1)"'Br )y + [y; + (Br) ' Brryr) ' Brly; + (Br) ™' Biry]
+2y] (S + v (51 s
> yi (S0) Yy + 291 (50) 7 'yi +yi (S0 My

giving the proof. O
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