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A b s t r a c t .  Many time series in the applied sciences display a time-varying second 
order structure. In this article, we address the problem of how to forecast these non- 
stationary time series by means of non-decimated wavelets. Using the class of Locally 
Stationary Wavelet processes, we introduce a new predictor based on wavelets and 
derive the prediction equations as a generalisation of the Yule-Walker equations. We 
propose an automatic computational procedure for choosing the parameters of the 
forecasting algorithm. Finally, we apply the prediction algorithm to a meteorological 
t ime series. 
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1. Introduction 

In a growing num ber  of  fields, such as biomedical  t ime  series analysis,  geophysics,  
te lecommunicat ions ,  or financial d a t a  analysis,  to name  bu t  a few, explaining and  infer- 
r ing f rom observed serially corre la ted  d a t a  calls for non-s t a t iona ry  models  of their  second 
order  s t ructure .  T h a t  is, var iance and covariance,  or equivalently the spec t ra l  s t ruc ture ,  
are likely to change over t ime.  

In this article, we address  the  p rob lem of whether  and  how wavelet  me thods  can  
help in forecast ing non-s t a t iona ry  t ime  series. Recently,  Antoniadis  and  Sapat inas  (2003) 
used wavelets  for forecast ing t ime-cont inuous  s t a t iona ry  processes. T h e  use of  wavelets  
has proved successful in cap tu r ing  local features  of observed data .  The re  arises a na tu ra l  
quest ion of whether  they  can also be  useful for predict ion in s i tuat ions  where  too litt le 
homogeneous  s t ruc tu re  at  the  end of  the  observed d a t a  set prevents  the  use of  classical 
predic t ion me thods  based on s ta t ionar i ty .  Obviously,  in order  to  develop a meaningful  
approach,  one needs to control  this devia t ion f rom sta t ionar i ty ,  and hence one first needs 
to th ink  abou t  wha t  kind of non- s t a t iona ry  models to fit to the observed data .  Le t  us 
give a br ief  overview of the  exist ing possibilities. 
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Certainly the simplest approach consists in assuming piecewise stationarity, or ap- 
proximate piecewise stationarity, where the challenge is to find the stretches of homo- 
geneity optimally in a data-driven way (Ombao et al. (2001)). The resulting estimate 
of the time-varying second order structure is, necessarily, rather blocky over time, so 
some further thoughts on how to cope with these potentially artificially introduced dis- 
continuities are needed. To name a few out of the many models which allow a smoother 
change over time, we cite the following approaches to the idea of "local stationarity": 
the work of Mallat et al. (1998), who impose bounds on the derivative of the Fourier 
spectrum as a function of time, and the approaches which allow the coefficients of a 
parametric model (such as AR) to vary slowly with time (e.g. M~lard and Herteleer-De 
Schutter (1989), Dahlhaus et al. (1999) or Grillenzoni (2000)). The following fact is a 
starting point for several other more general and more non-parametric approaches: every 
covariance-stationary process Xt  has a Cram5r representation 

f 
(1.1) Xt = / A(w) exp(iwt)dZ(w),  t C Z, 

J ( -  "/'r ~ T : ]  

where Z(~o) is a stochastic process with orthonormal increments. Non-stationary pro- 
cesses are defined by assuming a slow change over time of the amplitude A(w) (Priestley 
(1965), Dahlhans (1997), Ombao et al. (2002)). All the above models are of the "time- 
frequency" type as they use, directly or indirectly, the concept of a time-varying spec- 
trum, being the Fourier transform of a time-varying autocovariance. 

The work of Nason et al. (2000) adopts the concept of local stationarity but re- 
places the aforementioned spectral representation with respect to the Fourier basis by a 
representation with respect to non-decimated (or translation-invariant) wavelets. With 
their model of "Locally Stationary Wavelet" (LSW) processes, the authors introduce a 
time-scale representation of a stochastic process. The representation permits a rigorous 
theory of how to estimate the wavelet spectrum, i.e. the coefficients of the resulting rep- 
resentation of the local autocovariance function with respect to autocorrelation wavelets. 
This theory parallels that  developed by Dahlhaus (1997), where rescaling the time ar- 
gument of the autocovariance and the Fourier spectrum makes it possible to embed 
the estimation in the non-parametric regression setting, including asymptotic consider- 
ations of consistency and inference. Nason et al. (2000) also propose a fast and easily 
implementable estimation algorithm which accompanies their theory. 

As LSW processes are defined with respect to a wavelet system, they have a mean- 
square representation in the time-scale plane. It is worth recalling that  many time 
series in the applied sciences are believed to have an inherent "multiscale" structure 
(e.g. financial log-return data, see Calvet ant Fisher (2001)). In contrast to Fourier- 
based models of nonstationarity, the LSW model offers a multiscale representation of 
the (local) covariance (see Section 2). This representation is often sparse, and thus the 
covariance may be estimated more easily in practice. The estimator itself is constructed 
by means of the wavelet periodogram, which mimicks the structure of the LSW model 
and is naturally localised. 

Given all these benefits, it seems appropriate to us to use the (linear) LSW model 
to generalise the stationary approach of forecasting Xt  by means of a predictor based 
on the previous observations up to time t - 1. While the classical linear predictor can 
be viewed as based on a non-local Fourier-type representation, our generalisation uses a 
local wavelet-based approach. 
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The paper is organised as follows: Section 2 familiarises the reader with the gen- 
eral LSW model, as well as with the particular subclass of time-modulated processes. 
These are stationary processes modulated by a time-varying variance function, and have 
proved useful, for instance, in modelling financial log-return series (Van Bellegem and 
yon Sachs (2003)). In the central Section 3, we deal with the theory of prediction for 
LSW processes, where the construction of our linear predictor is motivated by the ap- 
proach in the stationary case, i.e. the objective is to minimise the mean-square prediction 
error (MSPE). This leads to a generalisation of the Yule-Walker equations, which can 
be solved numerically by matrix inversion or standard iterative algorithms such as the 
innovations algorithm (Brockwell and Davis (1991)), provided that the non-stationary 
covariance structure is known. However, the estimation of a non-stationary eovariance 
structure is the main challenge in this context, and this issue is addressed in Section 4. In 
this and the following sections, we address this problem by defining and estimating the 
localised autocovariance function in an appropriate way. In the remainder of Section 3, 
we derive an analogue of the classical Kolmogorov formula for the theoretical prediction 
error, and we generalise the one-step-ahead to h-step-ahead prediction. 

Section 4 deals with estimation of the time-varying covariance structure. We discuss 
some asymptotic properties of our estimators based on the properties of the corrected 
wavelet periodogram, which is an asymptotically unbiased, but inconsistent, estimator of 
the wavelet spectrum. To achieve consistency, we propose an automatic smoothing pro- 
cedure, which forms an integral part of our new algorithm for forecasting non-stationary 
time series. The algorithm implements the idea of adaptive forecasting (see Ledolter 
(1980)) in the LSW model. In Section 5 we apply our algorithm to a meteorological time 
series. 

We close with a conclusions section and we present our proofs in two appendices. 
Appendix A contains all the results related to approximating the finite-sample covariance 
structure of the non-stationary time series by the locally stationary limit. In Appendix B, 
we show some relevant basic properties of the system of autocorrelation wavelets, and 
provide the remaining proofs of the statements made in Sections 3 and 4. 

2. Locally Stationary Wavelet processes 

LSW processes are constructed by replacing the amplitude A(w) in the Cram~r 
representation (1.1) with a quantity which depends on time (this ensures that the second- 
order structure of the process changes over time), as well as by replacing the Fourier 
harmonics exp(iwt) with non-decimated discrete wavelets Cjk(t), j = - 1 , - 2 , . . . ,  k C Z. 
Here, j is the scale parameter (with j = - 1  denoting the finest scale) and k is the location 
parameter. Note that unlike decimated wavelets, for which the permitted values of k 
at scale j are restricted to the set {c2-J, c E Z}, non-decimated wavelets can be shifted 
to any location defined by the finest resolution scale, determined by the observed data  
(k E Z). As a consequence, non-decimated wavelets do not constitute bases for g2 but 
overcomplete sets of vectors. The reader is referred to Coifman and Donoho (1995) for 
an introduction to non-decimated wavelets. 

By way of example, we recall the simplest discrete non-decimated wavelet system: 
the Haar wavelets. They are defined by 

Cjo(t) -= 2J/2][{0,1 ..... 2-5-1_1} ( t )  - -  2 J / 2 ] [ { 2 - j - 1  ..... 2 - J  --1} ( t )  

for j = - l , - 2 , . . ,  and f E Z ,  
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and Cjk(t) = Cy0(t - k) for all k E Z, where ~A(t) is 1 if t E ,4 and 0 otherwise. 
We are now in a position to quote the formal definition of an LSW process from 

Nason et al. (2000). 

DEFINITION 1. A sequence of doubly-indexed stochastic processes Xt, T (t : 0 , . . . ,  
T - 1) with mean zero is in the class of LSW processes if there exists a mean-square 
representation 

--1 o0 

(2.1) Xt 'T=  E E Wj,k;TCjk(t)~jk, 
j=- -J  k=-o c  

where {r is a discrete non-decimated family of wavelets for j = - 1 , - 2 , . . . , - J ,  
based on a mother  wavelet r  of compact  support  and J = - m i n { j  : s ~ T} = 
O(log(T)),  where s is the length of support  of Cjo(t). Also, 

1. ~jk is a random orthonormal  increment sequence with E~jk = 0 and 
Cov(~jk, ~em) = 5jehkm for all j ,  g, k, m; where 5je = 1 if j = g and 0 otherwise; 

2. For each j ~< - 1 ,  there exists a Lipschitz-continuous function Wj(z) on (0, 1) 
possessing the following properties: 

�9 }-~-_1_cr IWj(z)12 < cc uniformly in z E (0, 1); 
�9 there exists a sequence of constants Cj such tha t  for each T 

fk\ C3. 
(2.2) sup Wjk;T--WjI~I  

k = 0 , . . . , T - 1  ' \ 1 ]  T ' 

�9 the constants  Cj and the Lipschitz constants  Lj are such that  ~-]~-1_~ s + 
f~jLj) < oo. 

LSW processes are not uniquely determined by the sequence {Wjk;T }. However, 
Nason et al. (2000) develop a theory which defines a unique spectrum. This spectrum 
measures the power of the process at  a part icular  scale and location. Formally, the 
evolutionary wavelet spectrum of an LSW process {Xt,T}t=o ..... T- l ,  with respect to r  is 
defined by 

(2.3) Sj(z) = IWj(z)l 2, z e (0,1) 

and is such tha t ,  by definition of the process, Sj(z) = limT__.~ ]Wj,[zT];TI 2 f o r  all z in 
(0 ,1)  

Remark 1. (Rescaled time) In Definition 1, the functions {Wj(z)}j and {Sj(z)}j 
are defined on the interval (0, 1) and not on {0 , . . .  , T -  1}. Throughout  the paper, we 
refer to z as the rescaled time. This idea goes back to Dahlhaus (1997), who shows tha t  
the time-rescaling permits  an asymptot ic  theory of statistical inference for a t ime-varying 
Fourier spectrum. The rescaled time is related to the observed time t E { 0 , . . . ,  T - 1} 
by the natura l  mapping t = [zT], which implies tha t  as T --* oo, functions {Wj (z)}j and 
{Sj(z)}j are sampled on a finer and finer grid. Due to the rescaled t ime concept, the 
est imation of the wavelet spectrum {Sj(z)}j is a statistical problem analogous to the 
est imation of a regression function (see also Dahlhaus (1996a)). 



F O R E C A S T I N G  NON-STATIONARY PROCESSES BY WAVELETS 741 

In the classical theory of stationary processes, the spectrum and the autocovariance 
function are Fourier transforms of each other. To establish an analogous relationship for 
the wavelet spectrum, observe that the autocovariance function of an LSW process can 
be written as 

CT(Z, T) = Cov(X[zT],T , X[zT]+%T) 

for z E (0, 1) and ~- in Z, and where [. ] denotes the integer part of a real number. The 
next result shows that this covariance tends to a local covariance as T tends to infinity. 
Let us introduce the autocorrelation wavelets as 

OO 

�9 = j < 0, T e Z. 
k~--oo 

Some useful properties of the system {tgj }j<0 can be found in Appendix B. By definition, 
the local autocovariance funct ion of an LSW process with evolutionary spectrum (2.3) 
is given by 

--I 

(2.4) 
j = - o c  

for all ~- C Z and z in (0, 1). In particular, the local variance is given by the multiscale 
decomposition 

--1 

(2.5)   2(z) = c ( z , 0 )  = St(z) 
j ~  --(:X) 

aS ~I/j (0) z 1 for  a l l  s ca l e s  j .  

PROPOSITION 2.1. (Nason et al. (2000)) Under the assumptions of Definition 1, 
i f  T --* co, then ICT(Z, T) -- C(Z, ~-)I = O(T -1) uniformly in T C Z and z E (0,1). 

Note that formula (2.4) provides a decomposition of the autocovariance structure of 
the process over scales and rescaled-time locations. In practice, it often turns out that  
spectrum Sj (z) is only significantly different from zero at a limited number of scales 
(Fryilewicz (2002)). If this is the case, then the local autocovariance function c(z, T) has 
a sparse representation and can thus be estimated more easily. 

Remark  2. (Stationary p rocesses )A stationary process with an absolutely 
summable autocovariance function is an LSW process (Nason et al. (2000), Proposi- 
tion 3). Stationarity is characterised by a wavelet spectrum which is constant over 
rescaled time: S j ( z )  = Sj  for all z E (0, 1). 

Remark  3. (Time-modulated processes) Time-modulated (TM) processes consti- 
tute a particularly simple class of non-stationary processes. A TM process Xt,  T is defined 
as  
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Fig. 1. These simulated examples demonstrate the idea of a sparse representation of the 
local (co)variance. The left-hand column shows an example of a smooth time-varying variance 
function of a TM process. The example on the right hand side is constructed in such a way that 
the local variance function c(z, 0) is constant over time. In this example, the only deviation 
from stationarity is in the covariance structure. The simulations, like all throughout the article, 
use Gaussian innovations ~jk and Haar wavelets. (a) Theoretical wavelet spectrum equal to zero 
everywhere except scale - 2  where S-2(z) = 0.1 + cos2(37rz + 0.257r). (b) Theoretical wavelet 
spectrum S-2(z) = 0.1 + cos2(37rz + 0.25~r), S - l ( z )  = 0.1 + sin2(31rz + 0.251r) and Sj(z) = 0 
for j r - 1 , - 2 .  (c) A sample path of length 1024 simulated from the wavelet spectrum defined 
in (a). (d) A sample path of length 1024 simulated from the wavelet spectrum defined in (b). 

where Yt is a zero-mean stationary process with variance one, and the local standard 
deviation function ~(z) is Lipschitz continuous on (0, I) with the Lipschitz constant D. 
Process Xt,T is LSW if 

�9 the autocovariance function of Yt is absolutely summable (so that Yt is LSW with 
a t ime- inva r i an t  s p e c t r u m  { S y  }j);  

�9 and  if t he  Lipschi tz  cons t an t s  n x = D ( S  Y)1/2 sat isfy  the  r equ i remen t s  of  Defini- 
t ion  1. 
If  these  two cond i t ions  hold,  t h e n  the  s p e c t r u m  Sj (z) of  Xt,T is g iven by  the  fo rmula  
Sj(z)  = a 2 ( z ) S y .  T h e  local  a u t o c o r r e l a t i o n  func t ion  p(T) -- c ( z , T ) / c ( z , O ) o f  a T M  
process  is i n d e p e n d e n t  of  z. 

However ,  t he  real  a d v a n t a g e  o f  i n t roduc ing  genera l  L S W  processes  lies in the i r  
abi l i ty  to  m o d e l  processes  whose  b o t h  var iance  and  a u t o c o r r e l a t i o n  func t ion  v a r y  over  
t ime.  F igure  1 shows s imula t ed  examples  of  L S W  processes  in which  the  s p e c t r u m  is 
on ly  n0n-ze ro  at  a l imi ted  n u m b e r  of  scales. A sample  rea l i sa t ion  of  a T M  process  is 
p l o t t e d  in Fig.  1(c), a nd  Fig.  l (d )  shows  a sample  rea l i sa t ion  o f  an  L S W  process  wh ich  
c a n n o t  be  mode l l ed  as a T M  series. 
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3. The predictor and its theoretical properties 

In this section, we define and analyse the general linear predictor for non-stationary 
data which are modelled to follow the LSW process representation given in Definition 1. 

3.1 Definition of the linear predictor 
Given t observations XO,T, X1,T, . . .  ,Xt_I ,  T of an LSW process, we define the h- 

step-ahead predictor of Xt-l+h,T by 

t-1 
(3.1) 2t-l+h,r = E b(h) X t - l -s ;T s,T, 

8=0 

where the coefficients b (h) t-l-s;T are such that they minimise the Mean Square Prediction 
Error (MSPE). The MSPE is defined by 

MSPE(Xt-I+h,T,  Xt- l+h,r)  = E(Xt- l+h,T -- Xt-l+h,T) 2. 

The predictor (3.1) is a linear combination of doubly-indexed observations where the 
weights need to follow the same doubly-indexed framework. This means that as T ~ c~, 
we augment our knowledge about the local structure of the process, which allows us to 
fit coefficients L(h) vt_l_~; T more and more accurately. The double indexing of the weights 
is necessary due to the non-stationary nature of the data. This scheme is different to 
the traditional filtering of the data X~,T by a linear filter {bt}. In particular, we do not 
assume the (square) summability of the sequence bt because (3.1) is a relation which is 
written in rescaled time. 

The following assumption holds in the sequel of the paper. 

ASSUMPTION 1. If h is the prediction horizon and t is the number of observed 
data, then we set T = t + h and we assume h = o(T). 

Remark 4. (Prediction domain in the rescaled time) With this assumption, the 
last observation of the LSW process is denoted by Xt-I,T = X T - h - I , T ,  while )(T-I,T 
is the last possible forecast (h steps ahead). Consequently, in the rescaled time (see 
Remark 1), the evolutionary wavelet spectrum Sj (z) can only be estimated on the interval 

(3.2) [0,1 h+ 1] 
T 

The rescaled-time segment 

(3.3) (1 h + l  ) T  ,1 

accommodates the predicted values of Sj (z). With Assumption 1, the estimation domain 
(3.2) asymptotically tends to [0, 1) while the prediction domain (3.3) shrinks to an empty 
set in the rescaled time. Thus, Assumption 1 ensures that asymptotically, we acquire 
knowledge of the wavelet spectrum over the full interval [0, 1). 
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3.2 Prediction in the wavelet domain 
There is an interesting link between the above definition of the linear predictor 

(3.1) and another, "intuitive" definition of a predictor in the LSW model. For ease of 
presentation, let us suppose the forecasting horizon is h = 1, so that  T = t + 1. Given 
observations up to time t - 1, a natural way of defining a predictor of Xt,T is to mimic 
the structure of the LSW model itself by moving to the wavelet domain. The empirical 
wavelet coefficients are defined by 

t--1 

8=0 

for all j = - 1 , . . . , - g  and k E Z. Then, the one-step-ahead predictor is constructed as 

--1 

(3.4) -~t,T = ~ ~ d (') jk;Tajk;TCj k (t), 
j = - J  k E Z  

where the coefficients @~) have to be estimated and are such that  they minimise the 
MSPE. This predictor (3.4) may be viewed as a projection of Xt,T on the space of 
random variables spanned by {dj,k;T ] j  = - - 1 , . . . , - J  and k = 0 , . . . ,  T -  1}. 

It turns out that due to the redundancy of the non-orthogonal wavelet system 
{r the predictor (3.4) does not have a unique representation: there exists more 

r (1) than one solution lajk } minimising the MSPE, but each solution gives the same pre- 
dictor (expressed as a different linear combination of the redundant functions {r 
One can easily verify this observation by considering, for example, the stationary process 
X s  = E k C ~ : _ o ~  r  where ~)--1 is the non-decimated discrete Haax wavelet at scale 
-1  and ~ is an orthonormal increment sequence. 

It is not surprising that  the wavelet predictor (3.4) is related to the linear predictor 
(3.1) by 

--1 
b (1) a O) s 

j = - J  k C Z  

Because of the redundancy of the non-decimated wavelet system, for a fixed sequence 
b(1) there exists more than one sequence a (1) t-s;T' jk;T such that  this relation holds. For this 
reason, we prefer to work directly with the general linear predictor (3.1), bearing in mind 
that it can also be expressed as a (non-unique) projection onto the wavelet domain. 

3.3 One-step ahead prediction equations 
In this subsection, we consider a forecasting horizon h = 1 (so that  T = t + 1) and 

want to minimise the mean square prediction error MSPE()(t;T, Xt;T) with respect to 

b 0) This quadratic function may be written as t - s ; T "  

MSPE()ITt,T, Xt;T) ' = b t Y ] t ; T b t ,  

where bt is the vector ;b O) h(1) -1 )  and ~']t;T is the covariance matrix of t - - 1 ; T ,  " " " , V0;T'  

2 which cannot be estimated X0;T, �9 �9 �9 Xt;T. However, the matrix Et;T depends on W~k;T, 
as they are not identifiable (recall that  the representation (2.1) is not unique due to the 
redundancy of the system {~bjk}). The next proposition shows that  the MSPE may be 



F O R E C A S T I N G  NON-STATIONARY PROCESSES  BY WAVELETS 745 

approximated by bltBt;Tbt, where Bt;T is a (t + 1) x (t + 1) matrix whose (m,n)- th  
element is given by 

E S j ~ - '  ( n 2 r  + m ) / ~ j ( n - m ) '  
j = - - J  

and can be estimated by estimating the (uniquely defined) wavelet spectrum Sj. We 
first consider the following assumptions on the evolutionary wavelet spectrum. 

ASSUMPTION 2. The evolutionary wavelet spectrum is such that 

(3.5) 

(3.6) 

O0 

E sup Ic(z, ~-)1 < oo, 
T : 0  Z 

C 1 : :  ess inf ~ Sj (z)I~bj (w)12 > O, 

where Cj (w) = y2~s~=_oo Cjo(S)exp(iws). 

Note that if (3.5) holds, then 

(3.7) C2 := esssup E SJ(Z)l~J(w)12 < oo. 
z,w j < 0  

Assumption (3.5) ensures that for each z, the local covariance c(z, T) is absolutely 
summable, so the process is short-memory (in fact, Assumption (3.5) is slightly stronger 
than that, for technical reasons). Assumption (3.6) and formula (3.7) become more trans- 
parent when we recall that for a stationary process Xt with spectral density f(w) and 
wavelet spectrum Sj, we have f(w) -- ~-2.j Sj I~j (w)12 (the Fourier transform of equation 
(2.4) for stationary processes). In this sense, (3.6) and (3.7) are "time-varying" coun- 
terparts of the classical assumptions of the (stationary) spectral density being bounded 
away from zero, as well as bounded from above. 

PROPOSITION 3.1. Under Assumptions (3.5) and (3.6), the mean square one-step- 
ahead prediction error may be written as 

(3.8) MSPE(Xt;T, Xt;T) = b'tBt;Tbt(1 + OT(1)). 

Moreover, if (1) , (1) {bs;T} are the coefficients which minimise btBt;Tbt, then {bs;T} solve the 
following linear system 

(3.9) 
, ,  } E h  (1) ( n  + rn~ koj(m_ n) --_ 

m = 0  j ~ - - J  

E (t+ e (t- n) 
j = - J  

for all n = O , . . . , t -  1. 

The proof of the first result can be found in Appendix A (see Lemma A.5) and uses 
standard approximations of covariance matrices of locally stationary processes. The 
second result is simply the minimisation of the quadratic form (3.8) and the system of 
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equations (3.9) is called the prediction equations. The key observation here is that min- 
imising b~tEt;Tbt is asymptotically equivalent to minimising b~tBt;Tbt. Bearing in mind 
the relation of formula (2.4) between the wavelet spectrum and the local autocovariance 
function, the prediction equations can also be written as 

(3.10) E h(1) c m=oVt_l_m;T \ ~-~ , m - - n  =c~- - -~T- - , t -n  �9 

The following two remarks demonstrate how the prediction equations simplify in the 
case of two important subclasses of locally stationary wavelet processes. 

Remark 5. (Stationary processes) If the underlying process is stationary, then the 
local autocovariance function c(z, "r) is no longer a function of two variables, but only a 
function of T. In this context, the prediction equations (3.10) become 

t--1 
b 12,_mc(m - n) = c ( t -  n) 

m=O 

for all n = 0 , . . . ,  t - 1, which are the standard Yule-Walker equations used to forecast 
stationary processes. 

Remark 6. (Time-modulated processes) For the processes considered in Remark 3 
(equation (2.6)), the local autocovariance function has a multiplicative structure: 
c(z, T) = o-2(z)p(T). Therefore, for these processes, prediction equations (3.10) become 

t--1 
E b (1) 0-2 ( r t - t -m~  ( n 2 c t ~  t--l--m;T ~ ~ / p(m - n) = ~2 m=0 \ - ~ - ]  p(t n). 

We will now study the inversion of the system (3.9) in the general case, and the 
stability of the inversion. Denote by Pt the matrix of this linear system, i.e. 

_ 1  

(Pt)nm = E Sj \ ~ ] q2j(m-  n) 
j = - J  

for n, m = 0 , . . . ,  t -  1. Using classical results of numerical analysis (see for instance Kress 
(1991), Theorem 5.3) the measure of this stability is given by the so-called condition 
number, which is defined by cond(Pt)  = I I-PtllllPtl II. It can be proved along the lines 
of Lemma A.3 (Appendix A) that,  under Assumptions (3.5) and (3.6), cond(Pt)  <~ C1C2. 

3.4 The prediction error 
The next result generalises the classical Kolmogorov formula for the theoretical one- 

step-ahead prediction error (Brockwell and Davis (1991), Theorem 5.8.1). It is a direct 
modification of a similar result stated by Dahlhaus ((1996b), Theorem 3.20) ) for locally 
stationary Fourier processes. 

PROPOSITION 3.2. Suppose that Assumptions (3.5) and (3.6) hold. Given t ob- 
servations XO,T,... ,Xt-],T of the LSW process {Xt,T} (with T --- t + 1), the one-step 
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2 in forecasting Xt ,T is given by ahead mean square prediction error O O S P E  

{/: } 2 exp 1 aOSPE ---- ~ da;ln Sj I@j( )l 2 (1 + o r ( l ) ) .  
j = - o c  

Note that due to Assumption (3.6), the sum E j  Sj (t/T)I~j(~)l ~ is strictly positive, 
except possibly on a set of measure zero. 

3.5 h-step-ahead prediction 
The one-step-ahead prediction equations have a natural generalisation to the h-step- 

ahead prediction problem with h > 1. The mean square prediction error can be written 
a s  

M S P E ( X t + h - I , T ,  X t T h - l , T )  ~-- E(Xt+h-I,T - X t+h- l ,T )  2 = bl t+h_l~t+h-1;Tbt+h-1,  

where Y]t+h--1;T is the covariance matrix of X0,r, �9 �9 �9 Xt+h- l ,T  and bt+h-1 is the vector 

b h) b(oh),b(_hl ), ,b(h)), with b(~ b(hh)+l = 0 and b(_hh ) = --1 Like before, we t - l , ' ' ' ,  " ' "  - , ' ' ' ,  

approximate the mean square error by ~ bt+h_lBt+h_l;Tbt+h_l where Bt+h_l;  T i s  a 

(t + h) x (t + h) matrix whose (m, n)-th element is given by 

j = - J  

PROPOSITION 3.3. Under Assumptions (3.5) and (3.6), the mean square prediction 
error may be written as 

MSPE(Xt+h-1;T ,  Xt+h-1;T)  = b~t+h_lBt+h-1;Tbt+h-l(1 -t- O T ( 1 ) ) .  

4. Prediction based on data 

Having treated the prediction problem from a theoretical point of view, we now 
address the question of how to estimate the unknown time-varying second order structure 
in the system of equations (3.9). In Subsection 4.3, we propose a complete algorithm for 
forecasting non-stationary time series using the LSW framework. 

4.1 Estimation of the time-varying second-order structure 
Our estimator of the local autocovariance function c(z,T), with 0 < z < t/T, is 

constructed by estimating the unknown wavelet spectrum Sj(z) in the multiscale rep- 
resentation (2.4). Let us first define the function J(t) = - m i n { j  : s  ~< t}. Following 
Nason et al. (2000) we define the wavelet periodogram as the sequence of squared wavelet 
coefficients djk;T, where j and k are scale and location parameters, respectively: ))2 

'J( k /T)  2 = d~k;v = Xs,TCjk(S - J ( t )  <<.j <~ - l ,  k - -  s  
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Note that as ~2jk is only nonzero for s = 0 , . . . ,  ~j -- 1, the estimator Ij (k/T) is a function 
of Xt,T for t ~< k. At the left edge, we set I j (k /T)  = Ij(( / : j  - 1)/T) for k = 0 , . . .  , / : j  - 2 .  

From this definition, we define our multiscale estimator of the local variance function 
(2.5) as 

-1 
(4.1) 5 ( k , 0 )  = E 2 J I j ( k )  " 

j=-J 

The next proposition concerns the asymptotic behaviour of the first two moments of this 
estimator. 

PROPOSITION 4.1. The estimator (4.1) satisfies 

E C ( ~ , 0 )  : c ( k , o )  2tO (T-11og(T)). 

If, in addition, the increment process {~jk} in Definition 1 is Gaussian and (3.5) holds, 
then 

V a r c ( ~ , 0 )  : 2 E 2iTj c(k/T,T) ~)in(T)~2jn(O) -{-O(V-1). 
i,j=-J 

Remark 7. (Time-modulated processes) For Gaussian time-modulated processes 
considered in Remark 3 (formula (2.6)), the variance of estimator (4.1) reduces to 

(4.2) Var5 ~ , 0  --2cr4(k/T) E 2i+j p(T) ~bin(T)r ) + O ( T - I ) ,  
i,j=--J 

where p(~-) is the autocorrelation function of Yt (see equation (2.6)). If Xt,T = a(t/T)Zt,  
where Zt are i.i.d. N(0, 1), then the leading term in (4.2) reduces to (2/3)a4(k/T) for 
all compactly supported wavelets ~b. Other possible estimators of the local variance for 
time-modulated processes, as well as an empirical study of the explanatory power of 
these models as applied to financial time series, may be found in Van Bellegem and von 
Sachs (2003). 

Remark 8. Proposition 4.1 can be generalised for the estimation of c(z, ~r) for T 
0. Define the estimator 

) 0 (4.3) ~ ~ , r  = A )  , = . . . , -  
j=--J g=-y 

where the matrix A = (Aj~)j,e<o is defined by 

(4.4) Aye := (gAy, gAt) = ~ gAj(T)gAe(7). 
T 

Note that the matrix Aje is not simply diagonal due to the redundancy in the system of 
autocorrelation wavelets {gAy}. Nason et al. (2000) proved the invertibility of A if {gAj} 
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is constructed using Haar wavelets. If other compactly supported wavelets are used, 
numerical results suggest that the invertibility of A still holds, but  a complete proof of 
this result has not been established yet. Using Lemma B.3, it is possible to generalise 
the proof of Proposition 4.1 for Haar wavelets to show that 

E~ ~ ,T  =C -~,~- + 0  T -1/2 

for ~- r 0 and, if Assumption (3.5) hold and if the increment process {~jk} in Definition 1 
is Gaussian, then 

Var5 ~,7- = 2 E hi(T)hj(7-) c k , T  E~b'"(T)r + O  (T - l log2(T))  
i , j = - J  n 

for ~- r 0, where hj(T) - 1  --= E ~ = - J  A ~ l ~ e ( 7 )  - 

These results show the inconsistency of the estimator of the local (co)variance, which 
needs to be smoothed w.r.t, the rescaled time z (i.e. 5(-, T) needs to be smoothed for all 
w). We use standard kernel smoothing where the problem of the choice of the bandwidth 
parameter g arises. The goal of Subsection 4.3 is to provide a fully automatic procedure 
for choosing g. 

To compute the linear predictor in practice, we invert the generalised Yule-Walker 
equations (3.10) in which the theoretical local autocovariance function is replaced by the 
smoothed version of 5(k/T, T). However, in equations (4.1) and (4.3), our estimator is 
only defined for k -- 0 , . . . ,  t - 1 while the prediction equations (3.10) require the local 
autocovariance up to k = t (for h = 1). This problem is inherent to our non-stationary 
framework. We denote the predictor of c(t/T, ~-) by ~(t/T, T) and, motivated by the 
slow evolution of the local autocovariance function, propose to compute ~(t/T, T) by the 
local smoothing of the (unsmoothed) estimators {~(k/T, 7), k -- t - 1 , . . . ,  t - It}. In 
practice, the smoothing parameter It for prediction is set to be equal to gT, where g 
is the smoothing parameter (bandwidth) for estimation. They can be obtained by the 
data-driven procedure described in Subsection 4.3. 

4.2 Future observations in rescaled time 
For clarity of presentation, we restrict ourselves (in this and the following subsection) 

to the case h = 1. 
In Remarks 1 and 4, we recalled the mechanics of rescaled time for non-stationary 

processes. An important ingredient of this concept is that the data  come in the form of 
a triangular array whose rows correspond to different stochastic processes, only linked 
through the asymptotic wavelet spectrum sampled on a finer and finer grid. This mecha- 
nism is inherently different to what we observe in practice, where, typically, observations 
arrive one by one and neither the values of the "old" observations, nor their correspond- 
ing second-order structure, change when a new observation arrives. 

One way to reconcile the practical setup with our theory is to assume that for an 
observed process X 0 , . . . ,  Xt-1, there exists a doubly-indexed LSW process Y such that 
Xk = Yk,T for k = 0 , . . . ,  t - 1. When a new observation Xt arrives, the underlying 
LSW process changes, i.e. there exists another LSW process Z such that Xk = Zk,T+I 
for k = 0 , . . . , t .  An essential point underlying our adaptive algorithm of the next 
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subsection is that  the spectra of Y and Z are close to each other, due to the above 
construction and the regularity assumptions imposed by Definition 1 (in particular, the 
Lipschitz continuity of Sj (z)). 

The objective of our algorithm is to choose appropriate values of certain nuisance 
parameters (see the next subsection) in order to forecast Xt from Xo,..., Xt-1. Assume 
that these parameters have been selected well, i.e. that  the forecasting has been suc- 
cessful. The closeness of the two spectra implies that we can also expect to successfully 
forecast Xt+l from X 0 , . . . ,  Xt using the same, or possibly "neighbouring", values of the 
nuisance parameters. 

Bearing in mind the above discussion, we introduce our algorithm with a slight 
abuse of notation: we drop the second subscript when referring to the observed time 
series. 

4.3 Data-driven choice of parameters 
In theory, the best one-step-ahead linear predictor of Xt,T is given by (3.1), where 

bt ~b (1) ~ solves the prediction equations (3.9). In practice, each of the t I t_l_s;T)s=O,. . . , t - -1 
components of the vector bt is estimated using our estimator of the local autocovariance 
function based on observations XO,T,...,Xt-I,T. Hence, we have to find a balance 
between the estimation error, potentially increasing with t, and the prediction error 
which is a decreasing function of t. 

As a natural balancing rule which works well in practice, we suggest to choose an 
index p such that the "clipped" predictor 

t--1 
(4.5) Y(P) E b(1) v .Lt,  T ~- - -  t_l_s;T~Xs,T 

s=t--p 

gives a good compromise between the theoretical prediction error and the estimation 
error. The construction (4.5) is reminiscent of the classical idea of AR(p) approximation 
for stationary processes. 

We propose an automatic procedure for selecting the two nusiance parameters: the 
order p in (4.5) and the bandwidth g, necessary to smooth the inconsistent estimator 
~(z, ~-) using a kernel method. The idea of this procedure is to start with some initial 
values of p and g and to gradually update these parameters using a criterion which 
measures how well the series gets predicted using a given pair of parameters. This type 
of approach is in the spirit of adaptive forecasting (Ledolter (1980)). 

Suppose that we observe the series up to X t _  1 and want to predict Xt, using an 
appropriate pair (p, g). The idea of our method is as follows. First, we move backwards 
by s observations and choose some initial parameters (P0, go) for predicting Xt-8 from 
the observed series up to Xt-s-1. Next, we compute the prediction of Xt-s using the 
pairs of parameters around our preselected pair (i.e. (P0 - 1, go - 5), (P0, go - 5 ) , . . . ,  (P0 + 
1, go + 5) for a fixed constant 5). As the true value of Xt-s is known, we are able 
to use a preset criterion to compare the 9 obtained prediction results, and we choose 
the pair corresponding to the best predictor (according to this preset criterion). This 
step is called the update of the parameters by predicting Xt-8. In the next step, the 
updated pair is used as the initial parameters, and itself updated by predicting X t - s + l  

from X o , . . . ,  Xt-s. By applying this procedure to predict Xt-~+2, Xt-~+3 , . . . ,  Xt-1, we 
finally obtain an updated pair (Pl, gl) which is selected to perform the actual prediction. 
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Many different criteria can be used to compare the quality of the pairs of parameters 
at each step. Denote by Xt-~(P,g) the predictor of Xt-i computed using pair (p,g), 
and by It-i(p, g) the corresponding 95% prediction interval based on the assumption of 
Gaussianity: 

(4.6) It-~(p,g) = [-1.96at_i(p, g) + Xt-i(P,  g), 1.96at-i(p,g) + Xt-~(P,g)], 

where ~t2_i (p, g) is the estimate of MSPE(Xt_i  (p, g), Xt-~) computed using formula (3.8) 
with the remainder neglected. The criterion which we use in the simulations reported in 
the next section is to compute 

- g ) l  

length(It _i (p, g)) 

for each of the 9 pairs at each step of the procedure and select the updated pair as the 
one which minimises this ratio. 

We also need to choose the initial parameters (P0, go) and the number s of data points 
at the end of the series, which are used in the procedure. We suggest that s should be 
set to the length of the largest segment at the end of the series which does not contain 
any apparent breakpoints observed after a visual inspection. To avoid dependence on 
the initial values (P0, g0), we suggest to iterate the algorithm a few times, using (pl, gl) 
as the initial value for each iteration. We propose to stop when the parameters (Pl, gl) 
are such that at least 95% of the observations fall into the prediction intervals. 

In order to be able to use our procedure completely on-line, we do not have to repeat 
the whole algorithm. Indeed, when observation Xt becomes available, we only have to 
update the pair (Pl, gl) by predicting Xt, and we directly obtain the "optimal" pair for 
predicting Xt+ l. 

There are, obviously, many possible variants of our algorithm. Possible modifications 
include, for example, using a different criterion, restricting the allowed parameter space 
for (p, g), penalising certain regions of the parameter space, or allowing more than one 
parameter update at each time point. 

We have tested our algorithm on numerous examples, and the following section 
presents an application to a real data set. A more theoretical study of this algorithm is 
left for future work. 

5. Application of the general predictor to real data 

E1 Nifio is a disruption of the ocean atmosphere system in the tropical Pacific which 
has important consequences for the weather around the globe. Even though the ef- 
fect of E1 Nifio is not avoidable, research on its forecast and its impacts allows spe- 
cialists to attenuate or prevent its harmful consequences (see Philander (1990) for a 
detailed overview). The effect of the equatorial Pacific meridional reheating may be 
measured by the deviation of the wind speed on the ocean surface from its average. 
It is worth mentioning that this effect is produced by conduction, and thus we expect 
the wind speed variation to be smooth. This legitimates the use of LSW processes 
to model the speed. In this section, we study the wind speed anomaly index, i.e. its 
standardised deviation from the mean, in a specific region of the Pacific (12-2N, 160E- 
70W). Modelling this anomaly helps to understand the effect of E1 Nifio effect in that 
region. The time series composed of T = 910 monthly observations is available free 
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Fig. 2. The wind anomaly data (910 observations from March 1920 to December 1995). 
(a) The wind anomaly index (in cm/s). The two vertical lines indicate the segment shown in 
Fig. 2(b). (b) Comparison between the one-step-ahead prediction in our model (dashed lines) 
and AR (dotted lines). 

of charge at http : / / t a o .  atmos, washington, edu/data_sets/eqpacmeridwindts. Fig- 
ure 2(a) shows the plot of the series. 

Throughout this section, we use Haar wavelets to estimate the local (co)variance. 
Having provisionMly made a safe assumption of the possible non-stationarity of the 
data, we first at tempt to find a suitable pair of parameters (p, g) which will be used for 
forecasting the series. By inspecting the autocorrelation function of the series, and by 
trying different values of the bandwidth, we have found that the pair (7, 70/T) works 
well for many segments of the data; indeed, the segment of 100 observations from June 
1928 to October 1936 gets predicted very accurately in one-step-ahead prediction: 96% 
of the actual observations are contained in the corresponding 95% prediction intervals 
(formula (4.6)). 

However, the pair (7, 70/T) does not appear to be uniformly well suited for forecast- 
ing the whole series. For example, in the segment of 40 observations between November 
1986 and February 1990, only 5% of the observations fall into the corresponding one-step- 
ahead prediction intervals computed using the above pair of parameters. This provides 
strong evidence that the series is non-stationary (indeed, if it was stationary, we could 
expect to obtain a similar percentage of accurately predicted values in both segments). 
This further justifies our approach of modelling and forecasting the series as an LSW 
process. 

Motivated by the above observation, we now apply our algorithm, described in the 
previous section, to the segment of 40 observations mentioned above, setting the initial 
parameters to (7, 70/T). After the first iteration along the segment, the parameters 
drift up to (14, 90/T), and 85% of the observations fall within the prediction intervals, 
which is indeed a dramatic improvement over the 5% obtained without applying our 
adaptive algorithm. In the second pass, we set the initial values to (14,90/T),  and 
obtain a 92.5% coverage by the one-step-ahead prediction intervals, with the parameters 
drifting up to (14,104/T). In the last iteration, we finally obtain a 95% coverage, and the 
parameters get updated to (14, l14/T).  We now have every reason to believe that this 
pair of parameters is well suited for one-step-ahead prediction within a short distance of 
February 1990. Without performing any further updates, we apply the one-step-ahead 
forecasting procedure to predict, one by one, the eight observations which follow February 
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Fig. 3. The last observations of the wind anomaly series and its 1- up to 9-step-ahead forecasts 
(in cm/s). (a) 9-step-ahead prediction using LSW modelling. (b) 9-step-ahead prediction using 
AR modelling. 

1990, the prediction parameters being fixed at (14,114/T). The results are plotted in 
Fig. 2(b), which also compares our results to those obtained by means of AR modelling. 
At each time point, the order of the AR process is chosen as the one that  minimises the 
AIC criterion, and then the parameters are estimated by means of the standard S-Plus 
routine. We observe that  for both models, all of the true observed values fall within 
the corresponding one-step-ahead prediction intervals. However, the main gain obtained 
using our procedure is that  the prediction intervals are on average 17.45% narrower in 
the case of our algorithm. This result is not peculiar to AR modelling as this percentage 
is also similar in comparison with other stationary models, like ARMA(2, 10), believed 
to accurately fit the series. A similar phenomenon has been observed at several other 
points of the series. 

We end this section by applying our general prediction method to compute multi- 
step-ahead forecasts. Figure 3 shows the 1- up to 9-step-ahead forecasts of the series, 
along with the corresponding prediction intervals, computed at the end of the series 
(December 1995). In Fig. 3(a), the LSW model is used to construct the forecast values, 
with parameters (I0, 2.18) chosen automatically by our adaptive algorithm described 
above. Figure 3(b) shows the 9-step-ahead prediction based on AR modelling (here, 
AR(2)). The prediction in Fig. 3(a) looks "smoother" because it uses the information 
from the whole series. This information is averaged out, whereas in the LSW forecast, 
local information is picked up at the end of the series, and the forecasts look more 
"jagged". It is worth mentioning here that our approach is inherently different from 
the one that attempts to find (almost) stationary segments at the end of the series to 
perform the prediction. Instead, our procedure is adapting the prediction coefficients to 
the slow evolution of the covariance. 

6. Conclusion 

In this paper, we have given an answer to the pertinent question, asked by time 
series analysts over the past few years, of whether and how wavelet methods can help in 
forecasting non-stationary time series. To develop the forecasting methodology, we have 
considered the Locally Stationary Wavelet (LSW) model, which is based on the idea of 
a localised time-scale representation of a time-changing autocovariance function. This 
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model includes the class of second-order stationary processes and has several attractive 
features, not only for modelling, but also for estimation and prediction purposes. Its lin- 
earity and the fact that the time-varying second order quantities are modelled as smooth 
functions, have enabled us to formally extend the classical theory of linear prediction to 
the whole class of LSW processes. These results are a generalisation of the Yule-Walker 
equations and, in particular, of Kolmogorov's formula for the one-step-ahead prediction 
error. 

In the empirical prediction equations the second-order quantities have to be esti- 
mated, and this is where the LSW model proves most useful. The rescaled time, one of 
the main ingredients of the model, makes it possible to develop a rigorous estimation 
theory. Moreover, by using well-localised non-decimated wavelets instead of a Fourier 
based approach, our estimators are able to capture the local time-scale features of the 
observed non-stationary data very well (Nason and von Sachs (1999)). 

In practice, our new prediction methodology depends on two nuisance parameters 
which arise in the estimation of the local covariance and the mean-square prediction 
error. More specifically, we need to smooth our inconsistent estimators over time, and in 
order to do so, we have to choose the bandwidth of the smoothing kernel. Moreover, we 
need to reduce the dimension of the prediction equations to avoid too much inaccuracy 
of the resulting prediction coefficients due to estimation errors. We have proposed an 
automatic computational procedure for selecting these two parameters. Our algorithm 
is in the spirit of adaptive forecasting as it gradually updates the two parameters basing 
on the success of prediction. This new method is not only essential for the success of our 
whole prediction methodology, it also seems to be promising in a much wider context of 
choosing nuisance parameters in non-parametric methods in general. 

We have applied our new algorithm to a meteorological data set. Our non-para- 
metric forecasting algorithm shows interesting advantages over the classical parametric 
alternative (AR forecasting). Moreover, we believe that  one of the biggest advantages of 
our new algorithm is that  it can be successfully applied to a variety of data sets, ranging 
from financial log-returns (Fryilewicz (2002), Van Bellegem and yon Sachs (2003)) to 
series traditionally modelled as ARMA processes, including in particular data  sets which 
are not, or do not appear to be, second-order stationary. The S-Plus routines implement- 
ing our algorithm, as well as the data set, can be downloaded from the associated web 
page 

http ://www. stats, bris. ac. uk/-mapzf/f isw/f isw. html 

In the future, we intend to derive the theoretical properties of our automatic al- 
gorithm for choosing the nuisance parameters of the adaptive predictor. Finally, our 
approach offers the attractive possibility to use the prediction error for model selection 
purposes. LSW processes are constructed using a fixed wavelet system, e.g. Haar or 
another Daubechies' system. It is clear that we can compare the fitting quality of each 
such model by comparing its prediction performance on the observed data. In the future, 
we intend to investigate this in more detail in order to answer the question, left open by 
Nason et al. (2000), of which wavelet basis to use to model a given series. 
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Appendix 

A. Theoretical properties of the predictor 
Let Xt;T = (X0;T, . . .  ,Xt-1;T)' be a realisation of an LSW process. In this 

appendix, we study the theoretical properties of the covariance matrix ]Et;T ---- 
E(Xt;TX't .T).  As we need upper bounds for the spectral norms IIEt.TII and II~;~ll, we 
base the following results and their proofs on methods developed in ~)ahlhaus ((1996b), 
Section 4) for approximating covariance matrices of locally stationary Fourier processes. 
However, in our setting these methods need important modifications. The idea is to 
approximate Et;T by overlapping block Toeplitz matrices along the diagonal. 

The approximating matrix is constructed as follows. First, we construct a coverage 
of the time axis [0, T). Let L be a divisor of T such that L / T  --~ 0, and consider the 
following partition of the time axis: 

:Po = {[0, L), [L ,2L) , . . . ,  I T -  L,T)} .  

Then, consider another partition of the time axis, which is a shift of Po by 5 < L: 

~[:)1 = {[0, 5), [5, L + 5), [L + 5,2L + 5 ) , . . . ,  IT - L + 5, T)}.  

In what follows, assume that L is a multiple of 5 and that 5 /L  --~ 0 as T tends to infinity. 
Also, consider the partition of the time axis which is a shift of Pl  by 5: 

P2 = {[0, 25), [25, L + 25), [L + 25, 2L + 25) , . . . ,  IT - L + 25, T)} 

and, analogously, define P3, P4 , - . .  up to PM where M = (L/5) - 1. Consider the union 
of all these partitions P = { P 0 , P l , . . .  ,PM}, which is a highly redundant coverage of 
the time axis. Denote by P the number of intervals in P,  and denote the elements of :P 
by Mp, p =  l , . . . , P .  

For each p, we fix a point ~p in Mp and consider matrix D (p) defined by: 

D(P)m : E S J  (~)~j(n--m)][n,mCMp 
j < 0  

where ][n,mCMp means that we only include those n, m that are in Mp. Observe that each 
~p is contained exactly in L/5  segments. The following lemma concerns the approxima- 
tion of Et;T by matrix D defined by 

5 p 
= - E D(p) Dnm L nm" 

p = l  
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LEMMA A.1. 
T -~ oc, then 

Assume that (3.5) holds. If  L ~ co, 5/L -~ 0 and L2/T -~ 0 as 

X'(Et;T -- n ) x  = X' XOT(1). 

PROOF. Define matrix ~(P) by [v'(P)'I ~t;T \~t;T]nm =- (Et;T)nm][n,mEM v" Straightforward 
calculations yield 

(A.1) x ' ( E t ; T -  D)x  = x' [,,_,8 A...,'~--'IE(v)P t;r ' ] I Y -- D(P) ) x + RestT 
k p = l  

where 

RestT = 
T/6-1 ( 5 

n,m~O 

5 - 1  

,1)  E Xn,~+**(Et;T)ne+,,,.~,5+~Xm,5+~. 
U~8~O 

Let us first bound this remainder. Replace (Et;T)nm by ~-~j Sj((n + m)/2T)kOj(n- m) 
and denote b(k) := SUpz I ~ j  Sy(z)O~(k)l = supz Ic(z,k)l. We have 

T/8--1 d5 
[RestT, ~< 2x 'x  E m i n ( d  5 , 1 )  E b(k)+Rest~, 

d= l  k=(d-1)8-{-1 

L  b(k) + b(k) + Rest  
k=l k>,/Z 

and the main term in the above is OT(1) since L ~ oc and 5/L ~ 0 as T ~ oo, and by 
assumption (3.5). Let us now turn to the remainder Rester. We have 

T-1 
Rest'  

n~m:O 
x x r( j,k Wjk;T--SJ \ 2T ] Cj,k(m)r 

which may be bounded as follows using the definition of an LSW process, and the 
Lipschitz property of Sj: 

<<. O ( T - 1 ) x ' x E ( C y  + s163  <. O(T-1)x'  x 
J 

by assumption of the lemma. 
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Let us finally consider the main term in (A.1). We have 

(A.2) 

X t v(P) 
E a.~t; T -- D (p) x 
p = l  

p=l jk 

" ) 
<- E E L,(cj + L)) XnI[nEM , E ( C j - I -  

p = l  jk j 

= O(T-1)~'~ ~ ( C j  + L,(C~ + L))(r-5 + L) 
J 

where the last equality holds because, by construction, each Xn is contained in exactly 
L/5 segments of the coverage. Since we assumed that  L2 /T  --* 0 as T ~ oo, we obtain 
the result. [] 

LEMMA A.2. Assume that (3.5) holds and there exists a t* such that x, ,  

all u r { t* , . . . , t*  + L}. Then for each to E { t* , . . . , t*  + L}, 

2 /,*+L 

,7 

= 0 f o r  

PROOF. Identical to the part of the proof of Lemma A.1 leading to the bound for 
the main term, i.e. formula (A.2). [] 

In what follows, the matrix norm IIMil denotes the spectral norm of the matrix 
M ,  i.e. max{v/A : A is the eigenvalue of M ' M } .  If M is symmetric and non_negative 
definite, by standard theory we have 

inf x t M x )  -1 (A.4) IIMll = sup x ' M x  IIM-111 = \,1=111=1 
Ilxlll=l 

L E M M A  A.3. Assume that (3.5) holds. The spectral norm ][Et;T[I is bounded in t. 
--1 Also, if (3.6) holds, then the spectral norm I1Et;Tlt is bounded in t. 

PROOF. Lemma A.1 implies 

[lNt'T[l: sup 5 P ( ~ ) ~ ( ~ n  ) 2  
, ii:~lll= 1 -L E E Sj Xn~)j,k-n][nCMp + OT(I) 

p = l  j<O 

using Parseval formula, we have 

5 
= sup d w E S  j I@(w)l 2 xnexp(--iwn)II,~eM , 

I1~111 =1 ~ :o=1 ~ .7<0 
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+ OT(1) 

< esssup Z sh(z)L;~J(~)l 2 sup LI~II~ + OT(1) 
z,~ j Ilxll~=l 

= ess sup E Ss(z)l(~J(~)l 2 + OT(1) 
Z~O3 j 

which is bounded by (3.5) (as (3.5) implies (3.7)). Using (A.4) with M = Et;T, the 
boundedness of -1 II~,;TII is shown in exactly the same way. [] 

PROOF OF PROPOSITION 3.2. The proof uses Lemmas A.I to A.3 and is along 
the lines of Dahlhaus ((1996b), Theorem 3.2(i)). The idea is to reduce the problem 
to a stationary situation by fixing the local time at ~p. Then, the key point is to use 
the following relation between the wavelet spectrum of a stationary process and its 
classical Fourier spectrum. If Xt is a stationary process with an absolutely summable 
autocovarianee and with Fourier spectrum f(.) ,  then its wavelet spectrum is given by 

Sj = E A~ 1 / (A.5) d.~ f (,k ) l~b~( A )l 2 
g 

for any fixed non-decimated system of compactly supported wavelets {~bjk}. We refer to 
Dahlhaus ((1996b), Theorem 3.2(i)) for details. [] 

We will now study the approximation of ~']t;T by B,;T. 

LEMMA A.4. Under the assumptions of Propositions 3.1 and 3.3, 

MSPE(Xt+h-I;T, Xt+h-1;T) = b't+h_lBt+h-1;Tbt+h-t + b't+h_l bt+h-lOT(1) 

and, in particular, 

MSPE(Xt,T, Xt;T) = bltBt;Tbt + bltbtoT(1). 

PROOF. By the definition of an LSW process, we have Iwjk;TI 2 = Sj((n+m)/T)+ 
(Cj + njlk - n - ml)O(T-1). Therefore, 

(A.6) 
t+h -1  

51 = t+ h-l~t+h-1;Tbt+h-1 E E bnbmr k(rt)r 
j k  n,m=O 

t + h - 1  (n + m~ 
- =  E F, Vnbm~j(n- m)s~ \ - - ~ ]  

j k  n,rn=O 

+ Rest l .  

We bound Rest1 as follows: 

t+h-1 
]Restl I~< O(T-1) E E 

j k  n,m=O 
+ Cj) IbnbmCjk(n)~)jk(m)l. 
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If •j denotes the length of support of ~bj, we have 0 ~< k - n, k - m ~ s  and so 
k - (n + m)/2 <~ s such that 

t+h-1 
IRestl I ~< O(T-l )  E E (s +Cj)lbnbm~bjk(n)~bjk(m)l 

jk n,m=0 

-< h-1 Z ej(Ljn  + C,) 
J 

= b't+h_lbt+h_lOT(1 ) by assumption. 

Finally, by Assumption (3.5), (A.6) yields the result. [] 

LEMMA A.5. Under the assumptions of Proposition 3.3, we have 
! 

blt+h_lEt+h-1;Tbt+h-1 = bt+h_lBt+h-1;Tbt+h-l(1 q- OT(1)). 

PROOF OF LEMMA A.5. By Lemma A.4, we have b' = t+h-1 ]Pat+h-1;Tbt+h-1 
b~t+h_lBt+h_l;Tbt+h_l q- b~t+h_lbt+h_lOT(1). By Lemma A.3, the inverse of Et;T is 
bounded in T and, by standard properties of the spectral norm, we have 

I I --1 bt+h-1 bt+h-1 <~ bt+h_lEt+h-1;Tbt+h-lllEt+h_l;TII 

for all sequences bt+h-1. The above gives 

! 

btt+h_l Yl, t+h_l;Tbt+h_l <~ bt+h_lBt+h-1;Tbt+h-1 
+ b't+h_,]Et+h-x;Tbt+h-1 II~;~-h_I;TIIOT(1) 

which is equivalent to 

blt+h_l]Et+h-1;Tbt+h-1 <. b't+h_lBt+h_l;Tbt+h_l(1- II]Et~_h_I;TIIOT(1)) -1 

for large T. On the other hand, we have 

b't+h-l Y]t+h-1;Tbt+h-1 > btt+h_l Bt+h-1;Tbt+h-l (1 -}-ll~-']t;llIoT(1))--I 

which implies the result. [] 

B. Estimation of the local autocovariance function 
In this section, we study the properties of the estimator of the local autocovariance. 

We first show some relevant properties of the autocorrelation function q2j(r) and the 
matrix A defined in (4.4). 

LEMMA B.1. 1. The system {q2j(r),j = - 1 , - 2 , . . . }  is linearly independent. 
2. Denote by qg(r) the wavelet autocorrelation function of a continuous wavelet ~b, 

i.e. g ,  

- T) ,  e q*(r) Z. 
J 

We have 
�9 - -   (2Jl l) 
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for all j = - 1 , - 2 , . . .  and 7- E Z. 

The proof of the first result can be found in Nason et al. ((2000), Theorem 1). For 
the proof of the second result, see, for example, Berkner and Wells ((2002), Lemma 4.2). 

-1 LEMMA B.2. ~j=-o~ 2J~j(7) = 50(7). 

PROOF. Using Lemma B.1 and Parseval's formula, 

E 2JkoJ(~-)= E 2Jko(2JlTI)= dw[r 
j=-o~ j=-oo j=-c~ 

(B.1) = ~o27rdwE,~(2-J(w+2kTr) )]2exp( iw~-) .  
j k~Z 

Denote by rn0(~) the trigonometric polynomial which corresponds to the construction of 
wavelet r and its corresponding scaling function r (Daubeehies (1992), Theorem 6.3.6). 
We may write 

E I~(2-J(w + 2kTr))12 = E I m ~  + 2-J- lk27r  -1- 7r)12lr + 2-J-1k27r)12 
kCZ kEZ 

and, using the 27rk-periodicity of too, 

= [m0(2--J--lo2 -~ 71")12 E 1~(2--J--102 -~- 2-J-1k271)[2 
kEZ 

= [m~ + 7r)]2 E ]m~ + 2-J-2k27r)121r + 2-J-2k2~')12 
kEZ 

_- Imo(2-~-~ + ~-)l~lmo(2-J-~)l ~ ~ 1~(2-~-~o + 2-~-~k2~-)1 ~. 
kEZ 

By similar transformations, we finally arrive at 

- j  
---- Im~ + 7r)]2 H Im~ ~ Ir + k27r)l 2 

n=2 kEZ 
- j  

-- (27r)-ilrn~ + 7r)12 H Irn~ 
rt~2 
- j -2  

= (27r)-lI1-m~ H [rn~ 
g=o 

Using (B.1), we obtain 

--1 21r --1 --j--2 
E 2Jk~J(7)= (27r)-1 f0 E dwexp(iTw){1- mo(2-J-lo2){ 2 n [m0(2~W){2" 

j=--oo j=--oo 1~=0 
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Expanding the telescopic sum over j ,  we get 

- 1  

E 
- - j - 2  --j--1 

I I -m~ H Im~ = 1 -  lim H Im~ 
j ----* - -  OG 

/=0  /=0  

+cx~ 

= 1 -  H Im~ e" 
/=0 

Thus, we obtain 

(B.2) 

--1 

j ~  - - o o  

1// { } 
= ~ d~exp(i~-~) 1 -  Im0(2%)12 

g=O 

1 f 2 r  +o0 
= 6o(7") - 2-~Jo d~exp(ira~) I I  Im~ 

~=0 

Now, it remains to prove that  the second term in (B.2) is equal to zero. By definition, 
too(w) = 2 -1/2 v'2N-1 h e -~n~' where {hk}kcz is the low pass quadrature mirror filter 
used in the construction of Daubechies' compactly supported continuous time wavelet r 
(Daubechies (1992), Section 6.4). We have 

1 f2~ L L 2N--1 

- -  J0 c/wexp(iTw) 1-I Im0(2ecJ)t 2 = I I  2-~ E hn-~mSo(n- m) 27r 
e=O g.~-O n,m=O 

which clearly tends to 0 as L tends to infinity. [] 

LEMMA B.3. Matrix A defined in (4.4) has the following properties: 

- 1  

(B 3) ~ 2%~ = 1. 
j ~ - - o o  

If, in addition, A is constructed using Haar wavelets, then 

- 1  

(B.4) ~ IAj~I ~< c .  2 ~/2 

--1 

(B.5) E A~ 1 =  2j 
~=--oo 

for all j < 0, where C is a constant. 

PROOF. (B.3) is a straightforward corollary of Lemma B.2. To prove (B.4), we 
introduce the auxiliary matrix F = DPAD, where D = diag(2J/2)j<0 is diagonal, i.e. 
Fie = 2J/2Ajz2 ~/~. Nason et al. ((2000), Theorem 2) show that the spectral norm 
of F -1 is bounded for Haar wavelets. Therefore, we obtain (B.4) as ~-_1_o~ [A~-~I[ = 

- 1  ~-]4=-~ 2J/22e/21Fjell <- C .  2 j/2. To prove (B.5), observe that if Xt,T is a white noise, 
then its classical Fourier spectrum is f(A) = (2~r) -1. On the other hand, white noise 
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is an LSW process such that  fly SjkOj(.r) = 50(7) which implies that  Sj = 2J (Lemma 
B.2). (B.5) then follows from the following property: If Xt is the wavelet spectrum of a 
stationary process with absolute summable autocovariance and with Fourier spectrum 
f ,  then its wavelet spectrum is given by Sj = E s  Aj-~ 1 f dXf(X)l~bt(X)l 2 and, moreover, 

f d l e( )l 2 = [] 

PROOF OF PROPOSITION 4.1. 

(B.6) 

We will first show 

COv ( F  Xs'T~ik(S)' E = E c(k/T"r) E n 

+ O(2-(i+j)/2T-1). 

We have 

k) ) ]  E Cts(U)~)Jk(S)r162 
8~t 

Using/ : j  = O(M2-J) in the first step, and the Cauchy inequality in the second one, we 
bound the remainder as follows: 

F O ( C~ + Ldu - k) ) (t) T Er162162162 
8,t 

< E Ce + Mnt(2-t T + min(2- i '  2-J)) u ~ E ~bts(U)r 
t s,t 

< E C~ + MLt(2 -t + 2-i/22-J/2)(Aej)l/2(Ati)l/2 
T 

2-(i+j)/2 
T 

2-(i+j)/2 

T 
By formula (B.3), 

{ t ~ ( C e  + MLt2-e)2(i+J)/2(Aej)U2(Aei) 1/2 

+ Ee MLe(AtJ)I/2(Ati)I/2} 

{I + II}. 

I <~ E(Ce+ MLt2-t)(2iAei + 2JAej) <~ Z ( c e +  ML~2-t)2E2~Ati <~ D,. 
~ i 

As ~-]~ Li2 -~ < oc, we must  have Li _< C2 i so ~-]i LiA~j <~ C again by (B.3). This and 
the Cauchy inequality give 

II <~ 2M LtAe~ LeAej <~ D2. 



FORECASTING NON-STATIONARY PROCESSES BY WAVELETS 763 

The bound for the remainder is therefore O(2-(i+J)/2T-1). For the main term, straight- 
forward computation gives 

~e~u 8~t T n 

which yields formula (B.6). Using Lemma B.2 and (B.6) with i = j ,  we obtain 

E(a(k/T,O)) = E 2j c(k/T,~)q2j(T) + O(2-J/T) 
j=--J 

= E c(k/T, T)50(T) + O(log(T)/T) = c(k/T, O) + O(log(T)/T), 
T 

which proves the expectation. For the variance, observe that, using Gaussianity, we have 

(B.7) 

2 

= 2  ( ~  C(k / r 'T)  E@in(T)~jn(O)-~-O(2-(iTj)/2z-1))n 

= 2 c (k /T ,  T) ~in(~-)~bjn(O) + O(2-( i+J)/2T-1) ,  

provided that (3.5) holds. Using (B.7), we finally obtain 

(B.8) Var(e(k/T,O))=2 E 2i+j c(k/T,T) ~in(T)~)jn(O) T O ( T - l ) -  [] 
i,j=--J 
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