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Abstract. We study two estimators of the long-range parameter of a covariance
stationary linear process. We show that one of the estimators achieve the optimal
semiparametric rate of convergence, whereas the other has a rate of convergence as
close as desired to the optimal rate. Moreover, we show that the estimators are
asymptotically normal with a variance, which does not depend on any unknown
parameter, smaller than others suggested in the literature. Finally, a small Monte
Carlo study is included to illustrate the finite sample relative performance of our
estimators compared to other suggested semiparametric estimators. More specifically,
the Monte-Carlo experiment shows the superiority of the proposed estimators in terms
of the Mean Squared Error.
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1. Introduction

In recent years there has been a growing interest in the study of covariance sta-
tionary scalar processes x4, t = 0,+1,42,..., which are observed at times t = 1,...,n,
and whose spectral density function is neither bounded nor greater than zero at some
frequency A¢ € [0,7]. Denoting by v, = E((zo — Ez¢)(zq — Exo)) the lag-¢ autoco-
variance of ., the spectral density function of zy, f(}), is defined from the relation
Yo =J"_f(N)cos(gA)dA, g =0,%1,....

Most of the research has focused, without loss of generality, on the particular case

(1.1) fFA) ~CX™% a5 A— 0+

where C' € (0,00), d € (—3,%) and “~” means that the ratio of left- and right-hand
sides tends to one. When d = 0, f(\) € (0,00) and corresponds to the so-called weakly
dependent stationary process. When d > 0, f()) diverges to infinity and we say that the
stationary process x; exhibits long-range dependence and when d < 0, f(\) converges
to zero as A — 0+ and we say that x; exhibits the phenomenon called antipersistence
or negative dependence. We will refer d as the long-range parameter, although this is
normally used when d > 0 only.

When full parameterization of f(A) is given, that is, it depends on an unknown
finite set of parameters, say #, parametric estimators of § for the model f(\;6) have
been exhaustively studied. See Yajima (1985), Fox and Taqqu (1986), Dahlhaus (1989),
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Giraitis and Surgailis (1990) and Hosoya (1997) among others, and Cheung and Diebold
(1994) for a study of their small sample performance. However, one possible criticism
is that their statistical properties are very sensitive to a correct specification of the
model. In particular, misspecification can lead to inconsistent estimators of the long-
range parameter d in (1.1).

To avoid such criticisms and when the main interest is in the estimation of d, (semi-
parametric) estimators of d have been examined which only take into account the be-
haviour of f(\) at frequencies around the origin. Among such estimators, we can mention
the pioneering work by Geweke and Porter-Hudak (1983) and its modification given by
Robinson (1995a) and Robinson (1994, 1995b6). Although the estimators of d provided
in Robinson (1994, 1995a) have a closed (explicit) form, they have the possible drawback
that the asymptotic distribution may not be Gaussian, see Lobato and Robinson (1996),
or of not being as efficient as the estimator GSE given in Robinson (1995b). However,
the latter one, compared with Robinson’s (1995a) estimator, does not achieve the opti-
mal semiparametric rate of convergence obtained by Giraitis et al. (1997), although by
a logarithmic factor.

Following an earlier suggestion by Parzen (1986), our aim in this paper is to provide
statistical justification of two estimators of d, denoted d and d*. The latter estimator
achieves the optimal semiparametric rate of convergence, as that of Robinson (1995a),
whereas the former achieves a rate of convergence as close as desired to the optimal rate,
so that their rate of convergence are faster than the GSE by a logarithm factor. That is,
if we denote by n?, say, the optimal semiparametric rate of convergence, d has a rate of
convergence (even faster than) n®[loglogn|~® for any arbitrarily small & > 0. However,
contrary to Robinson (1995a) we do not need to assume that the data is Gaussian.
Moreover, if we are concerned with the Mean Square Error (M.S.E.), which in finite
samples can be a more appropriate measure of performance of an estimator, we observe
from the Monte-Carlo simulation in Section 3, that both d and d* clearly outperforms
the estimator in Robinson (1995a). Finally, the asymptotic variances of d and d* are
smaller than those in Robinson (1995a, b).

The remainder of the paper is organized as follows. In the next section, we describe
the estimators of the parameter d and some results regarding the statistical properties
of the spectral density estimator at frequencies converging to the origin. In Section 3,
we provide a Monte Carlo experiment to assert the finite-sample performance of our
estimators and we compare them with those described in Robinson (1994, 19954, 1995b).
In Section 4, we provide the proofs of the results given in Section 2, whereas in Section 5,
we present some technical lemmas needed for the proofs of Section 4.

2. Estimation of the long-range parameter

To introduce and give an insight to our estimators of d (see Parzen (1986)), supposé
that the spectral density f(\) of the process x; satisfies

fQO)=Cx"2  for Xe(0,N).

When this is the case, it follows that

d=hy (J\—l / ’ w(A7IN) log f(A)dA — (X—l / Aw(?\—l,\)dA) log f(,‘\))
0 0
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after straightforward calculation and where w(u), with u € (0,1), is a positive weight
function and h, = (-2 fol w(u)log(u)du)~™!. We can thus expect that the Riemann
discrete approximation of the right side of the last displayed equation

k k
(2.1) [ (% Zw,, log fp — (% pr) log fk+1)
p=1 p=1

is close to d, where we abbreviate f(A;) by fp, with Ay = =2, p=1,...,n -1, A=
and w, = w(p/k). However (2.1) depends on the unknown spectral density function of
xy, so that to make (2.1) feasible, we need to estimate fp.

To that end, define the discrete Fourier transform and periodogram of x; by

(2.2) a(\) = (2mn)"M2Y "™ and  I(N) = [a(M)?

respectively, where the correction for an unknown mean of z; will be unnecessary since
the statistics in (2.2) are to be computed at the Fourier frequencies A.
A common estimator of f()) is the average periodogram

1 m/2

(2.3) fo) = i > I+ X))

F=—m/2;04+X;#0

1 - 0.

where m = m(n) is an even number such that m=! +mn~

When the spectral density f(\) of the process z; satisfies (1.1), some statistical
properties of (2.3) are known. In particular, Robinson (1994) showed that f (0) /C/\;f/‘é
converges in probability to 1, whereas Hidalgo (1996) proved that, under suitable condi-
tions, the continuous version of f (\) is m!/?-consistent and asymptotically normal when
A lies in any open set outside the origin. Although some statistical properties of the
periodogram at frequencies A = A, — 0 are known, see Robinson (1995a) or Hurvich
and Beltrao (1993), the statistical properties of the estimator given in (2.3) for those
Ap — 0+ have not been studied yet. Due to the aforementioned results of Robinson
(1994) and that the rate of convergence of the second moment of f(A) can be very slow
for A = A, with p < m/2, see Proposition 2.4, f(\) would have some adverse conse-
quences for the results of Theorem 2.2, in particular for the behaviour of expressions

(4.17) and (4.18). So, we modify the estimator given in (2.3) by

m/2

(2.4) B=Ff00) = —= > Lunz(3 <)
j—*m/Q
m/2

+ — Z G+ L (0 < |p| £ %)

where I; = I(A;) and Z(-) denotes the indicator function.
Thus we could estimate the parameter d by

k k
" 1 ~ 1 -
(2.5) d=hy (E E wp log fp — <—15 _;_ wp) log fk+1) ,
p=1 p=1
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that is, (2.1) with f, replaced by its estimate fp given in (2.4).

Although d is consistent, as can be easily shown from Propositions 2.1-2.3 below,
it possesses the undesirable property of having a slower rate of convergence than that
obtained by Giraitis et al. (1997). Heuristically, this is because

Bl -1=0Q) for p=0(m),

where fy = CA\J 2d and fp is as in (2.4) but with I; being replaced by f;, induces a
“bias” term in the estimator d which does not converge to zero fast enough. Thus, we
modify d as follows. Let

omn(ifon(s) (E)(2)

where
& 2d m m/2 2d m
=70%) J_%ﬁ*"" (5 <iwl)+> ZA;+.p|I(0<|pls—5)

and define the estimator (another estimator is given in (2.7)) of d by
(2.6) d=d— b(d)

where d is a preliminary estimator of d, say that in (2.5), but with a bandwidth number
m = k2 in the definition of f, given in (2.4).
Before we analyze the properties of (2.6) and/or (2.7), it is convenient to examine

the properties of fp. For that purpose, introduce the following regularity assumptions:

A.1. There exist C € (0,00), d € (—31,3) and 8 € (0,2] such that

fA)=Cx"24(1+0(W\) as A—0+.

A.2. {z.} is a covariance stationary linear process

o o0
— 2 —
Ty = g ajetj, E aj <oo, ag=1,
7=0 j=0

where Ele; | Fi—1] = 0; Ele? | Fio1]) = 1; Elles|® | Fee1] = pe, £ = 3,...,2r and
r > 2, almost surely ¢t = 0,%1, ... and where F; is the o-algebra generated by {es;s < t}
and with joint fourth cumulant of ey, es,, €, and e, satisfying cum(es,, es,, €tq,€1,) =
IieI(tl = t2 = t3 = t4)

A.3. a>\< la(A)] = OA~¢|a(N)]) as A — O+, for ¢ = 1 and 2 and where a()) =
Z;io aje.

A4 %—-I——Tlr—L—»Oasn—)oo.

Assumptions A.1 and A.3 are not elaborated on since they are the same as those
employed by Robinson (1995b). Assumption A.2 is similar to that in Robinson (1995b)
except that we allow e; to have more than four finite moments. Its motivation comes
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because the rate of convergence in Proposition 2.3 depends on the number of finite mo-
ments of e; (compare with Brillinger’s (1981), Theorem 7.7.4). Assumption A.4 indicates
that the bandwidth parameter m increases slowly with n.

Write g, = g(Ap) = lfp -1

PRrROPOSITION 2.1. Assuming A.1-A.4 withr =2 in A2, as n — oo,
(a) Form <p <k such that k/n+m/k — 0, E(g,) = O(m~!logm).
(b) Form/2 <p<m,

E(g,) = O(m**~1(2p — m) "2 logmZ(d > 0) + m ™' log® mZ(d < 0)).
(¢) For1<p<m/2,

1 logm
E(gp):0<p2d — s L(d > 0)+

mI(d < 0)) :

PROPOSITION 2.2. Assuming A.1-A4 withr =2 in A2, as n — o0,
(a) Form <p <q<k such that k/n+m/k — 0,

0(1) if lg—pl<m

m Cov(gy, =
(99> 9a) { On~'m+mp~lq¢ 2 +mp2log’q) f m<|qg—p|

(b) Form/2<p<g<m,

mCovlaman) = 0 (7 (4 7) +1og (2E2) 7 (2= 1))
+O((2me>4d_1I(d>%>> +o((’;"‘72d_‘%§gllz(d20)).
(c) For 1 <p<q<m/2,
m Cov(gy, gg) = O (I (d < i) 1 log (2”;;)’”)1((1: i))
o ((%)M_lz (4> i)) ro (™ M1z 0)).

PROPOSITION 2.3. Let k = k(n) be such that k/n — 0. Assuming A.1-A 4, as
2
n — 00, SUPy—1, .k |gp| = Op(m_l/Q_l/r kl/r) + 0p(1).

THEOREM 2.1. Let p = p(n) be such that p~* + p~'m + n~lp — 0. Assuming
A1-A 4, as n — oo, m'/3g, A N(0,1).

To study the properties of (2.6), introduce the additional assumptions:
142,
A5, # + 7+ kn:gg + m(T2+k;)/(2r) — 0, where #is as in A.1 and r as in A.2.

Let £({) denote the set of continuous Lipchitz functions of order (.
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A.6. w(u) is a positive weight function which belongs to £(1) and such that w(0) =

THEOREM 2.2. Assuming A.1-A.3, A5 and A6, as n — o0,

1
m'/%(d - d) A N(0,®%); &, = hw/ w(u)du.
0

From Theorem 2.2 we observe that the asymptotic variance of d is smaller than
those in Robinson (1995a, b). Indeed, suppose that w(u) =1 — u¢. Then, when ¢ = o0,
that is w(u) = 1, h2, = 1/4, our estimator in (2.6) is as efficient as that of Robinson
(1995b). However for 1 < ¢ < 00, the asymptotic variance of d is smaller than 1 /4. For
instance, in the lower end of admissible values of ¢, that is ¢ = 1, h,, = 2/3, so that the
asymptotic standard deviation is equal to 1/3, which is 33% smaller than 1/2 obtained
by Robinson (1995b). Moreover, we observe that the asymptotic distribution of d does
not depend on any unknown quantity or parameter. Finally we observe that A.5 implies
that the rate of convergence of d is as close as desired to the optimal semiparametric
rate of convergence obtained by Giraitis et al. (1997) and achieved by the estimator in
Robinson (1995a). In particular choosing, say, m = kloglog k]~ for any arbitrarily
small o > 0, the rate of convergence of Robinson’s (1995a) estimator is faster than d by
the factor [log log k]"‘/ 2 which in finite samples is negligible. For instance, for k = 1032,
that is n = 10% taken 8 = 2 in A.1 and o = .01, [loglog k]*/? = 1.003. This, in terms
of the M.S.E., which in finite samples gives a better and more accurate measure of the
performance of an estimator, implies that the M.S. E. of d will still be smaller than that
of Robinson (1995a). This is confirmed in the Monte-Carlo experiment, where d tends
to be much better than the estimators of Robinson (19954, b) in terms of M.S.E. On
the other hand, it should be mentioned that the rate of convergence of d is faster than
that of Robinson (1995b) by a logarithm factor.

One, possibly, undesirable feature of the estimator of d given in (2.6) is that it
depends on a preliminary estimator d. However, it is worth observing that the choice of
k'/2 as the original bandwidth in d appears not to be very crucial. Indeed, this is the
case as we can always iterate the estimator, that is,

d¥ = d — b(dl™V),

where d'¥) is the estimator of d at the i-th iteration. More specifically, from the proof of
Theorem 2.2, in particular part (b), we observe that as long as the original choice of m
in fp, say m*, satisfies that m/(m*)* — 0 for some a € (0 1), after a finite number of
iterations c/i\(l) will have the same asymptotic properties of d.

A second undesirable feature, from a theoretical point of view, is that d does not
achieve the semiparametric optimal rate of convergence. So, it might also be convenient
to provide an estimator of d which avoids the need for a preliminary estimator, as well
as achieving the optimal semiparametric rate of convergence.

To that end, we consider the following estimator

(2.7) F =gl va
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where v, = v(p/m), 5 =m™ 37" | v, and

~ 1 .. .
dp = hw (Ezwé lngg _wpl()gfp+l> 3

£=1

with hy, = 2f0 w)(log u)du) ™, we = w(€/p), T, = p~ 1 3b_, we and f, = () as
defined in (2.3) Wlth m=m there

Remark 1. It is worth mentioning that the results of Theorem 2.3 below follow if
instead of f()\) we use f ()\) However, the Monte-Carlo experiment indicates that the
finite sample properties of d* are better when f(A) is used instead of f (/\) This is the
main motivation to use f()) instead of f()) in the definition of d

Before examining the properties of dA*, we need to modify slightly the results of
Propositions 2.1 to 2.3 for those frequencies A, such that 2p < m;. Define

m1/2

- f~(’\p) = i+ 1 Z fi+p-

j=—m1/2;j#~-p

and write g, = §(\,) = f;‘lf;} -1

PROPOSITION 2.4. Assume A1-A4 withr = 2 in A2. For1l < p < %3}, as
n — 00,

E(jy) =0 ( 1‘:1(2;) I(d>0) + l—%m—l)I(d < 0))

my Var(gp) = O (I (d < i) + log(mq)T (d = Z) +midlz (d > i))

PrOOF. The proof of this proposition is omitted since it follows by an easy modi-
fication of Propositions A.1 and A.2 of Hidalgo and Robinson (2002). O

PROPOSITION 2.5. Assuming A.1-A .4, as n — oo,

sup  |gp| = 0p(1).

p=1,....m

Let us introduce the following assumptions:
A.7. The weight functions w(u) and v(u) belong to £(1/4) and L(1) respectively

and satisfy that w(u) ~ cu¢, for some 1/4 < ¢ <1, and v(u) ~ cu as u — 0+.
A8 —+'—2‘+ HI:;B—F +W—>O where S is asin A.1 and r > 3 in

A2.

Two comments about A.7 are in place. First, the reason to require that w(u) ~ cu$
as u — 0+ with ¢ > 1/4 is due to a bias problem of our estimate of the long range
parameter d, cf. the second term on the right of (4.19), that otherwise it would exist
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in the limiting distribution of m!/2(d* — d). Second, it is worth noting that we could
generalize the weight v(u) to v(u) ~ cu* with the requirement that ¢ < u to guarantee
that the function z7'w(1/x)v(z) is integrable, but at the expense of strengthening the
rates of m and my in A.8. However, for simplicity we keep A.7 as it stands.

THEOREM 2.3. Assuming A.1-A.3, A.7 and A.8, as n — o0,
m2(d* — d) & N(0,h2 8?)

where ® is

(/Olv(a:)dm)_l/ol ((U(u)/olw(x)da:) —/u1 de) du

Theorem 2.3 indicates that, in contrast with the estimator given in (2.6), d* does
not require a preliminary estimator of d, nor to iterate (2.6) starting from d, and attains
the optimal semiparametric rate of convergence. Moreover, its limit distribution does
not depend on any unknown parameter and it is more efficient than those in Robinson
(19954, b). However, the asymptotic variance of d* is greater than the estimator given
in (2.6), although the difference of the asymptotic variance of d* and d is small. As an
example, choose v(u) = u and w(u) = u'/3(1 — ©'/®), which implies that |k, |® ~ 7/17
instead of ®,, = 1/3.

We finish this section indicating that the results of the asymptotic distribution of
both d and d* does not depend on the location of the singularity of the spectral density
f(A). To that end, suppose that model (1.1) is modified to

fO)~CIA=2%24  as A= X9
where C € (0,00) and d € (—1/2,1/2).

Write
m/2 m/2 m
fp:f(’\l’):— Z IitptsT ( >+_ZIJ+P+S (0<p§ 5)
J——m/2
and
. .. 1 m1/2
fp:f()\p) = my + 1 Z Tivp+s

j==ma/2j+p#0

with A the closest Fourier frequency to A° and define

d()\ )= — il ( pr log fpf—p) wlog(ﬁcﬂf—k—l)) - b(a)

m

o 1 1 ~
d*(As) =7 I%vadp
p=1

with » .
. P - . v .
5=t (% S welog(fef 1)~y log(fp+1f—p—1)> ,
=1
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and pr and fp defined as above. Let us introduce
A.1". There exist C € (0,00), d € (—3,1) and 8 € (0,2] such that as A — A°

0 = CIA = X0)=24(1 + O(]A — X9))) if <1
S CIA= XN HAH CIA = XN+ O(A - A0B))  if 1<pB<2.

A3, Wla()\)l = O(IX = A°|=¢la(N)]) as A — A9, for ¢ = 1,2, and where a(\) =

oo i z]x\
ijo ;e

Remark 2. Assumption A.l" indicates that as the spectral density function does
not need to be symmetric around A’ # 0 as is the case when A\’ = 0, so that the
approximation of f(A) by C|XA — A%|=2¢ cannot be better than O(|]A — X\°|), see also
Hidalgo (2002).

COROLLARY 2.1. Under the same conditions of Theorem 2.2 with A.1' and A.3'
replacing A.1 and A.3 respectively

(a) m2(d(As) — d) S N (0, 82)

and under the same conditions of Theorem 2.3 with A.1' and A.3' replacing A.1 and
A3 '
(b) m'2(d*(A;) ~d) 5 N(0,h3,8?).

PrROOF. The proof follows by identical arguments to those of Theorems 2.2 and
2.3, and thus it is omitted. O

3. Monte Carlo simulation

In this section we shall performm a Monte Carlo experiment to shed some light on
the finite sample behaviour of our estimators (2.6) and (2.7) of the long range parameter
d introduced in the previous section. Also, we will examine their relative performance
compared with some previous semiparametric estimators of d.

In particular, the estimators d and d* are compared with three other semiparametric
estimators. Consider the estimator of the spectral distribution F(}),

n)\/27r]
Z L.
Thus, we can obtain an estimator of d by

1 {1 ) 1og{ﬁ<qu)/ﬁ(xm)}}

dave = =
AVE = 9 log q

where g € (0,1). See Robinson (1994) and Lobato and Robinson (1996) for the asymp-
totic properties of d 4y g. The second semiparametric estimator of d to be considered is
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the simple closed-form estimator
1
1 Z;Zq log I; (1083 “m Iy 1085)

droc = —5 1 .
21 log (logj -~ logf)

This estimator is a slight modification of that of Geweke and Porter-Hudak (1983).
Although, to provide asymptotic theory for dzoc, as suggested by Kiinsch (1986) and
Robinson (1995a), requires that an increasing number of frequencies Aq,. .., A¢ should
be deleted, we have decided to keep them, on the grounds of easier comparability of
droc with our estimators and the estimator proposed by Kiinsch (1987) and studied by
Robinson (1995b), which we now introduce.

Table 1. Bias of the estimators.

Sample size n = 64 n = 128 n = 256
Bandwidth m=4 m=8 m=16 m=8 m=16 m=32 m=16 m=32 m=64
d=—-04 AVE —.015 -—-.120 —.170 —.023 —-.110 -.190 —.040 —.100 -.200
LOG —.011 —-.080 —.130 —.008 -.070 —.128 —.010 —.060 —.120
GAU 132 .018 —.048 —.048 -.022 —.071 —.006 —.044 —.081
dy 164 .091 .053 121 .061 .035 .097 .047 .026
Jg 196 122 .080 .150 .089 .059 123 072 048
(f;; .003 019 —.003 053 047 011 .108 .056 .004
ds .002 .014 —.010 .048 .039 .001 .100 .045 —.009
d=-0.2 AVE —.042 —-.032 .047 —.011 —.025 —.043 —.003 —.021 —.049
LOG .002 -—.018 —.036 .003 -—.013 —.032 .000 —.009 —.030
GAU .041 -.011 .050 —.006 —.028 —.044 —.016 —.026 -.037
&1 .065 .041 .022 .053 .035 018 .048 .034 .016
da .083 .058 .037 .068 .049 .032 .061 .046 .028
d3 —.075 —.010 —.008 004 .025 .014 .052 .037 .015
(i4 —.076 -.014 —.013 .001 .021 .008 .048 .031 .009
d=10.0 AVE —-.102 —.052 —.023 —.046 —.026 .010 —-.020 -.012 -.005
LOG 004 -.004 —.001 .002 —.001 000 .001 .002 000
GAU —.031 -.026 —.020 —.022 —.020 -.011 —.022 —.013 -.005
(il —.047 -.031 —.018 —.030 —.018 —.009 —.017 —.009 -.005
(22 —.042 -.028 -.017 —.028 —.017 -.009 —.016 —.008 —.004
ds -.133 —.055 —-.030 ~.054 —.026 —.013 —.022 —-.013  -.007
J4 —.134 —.056 —.030 —.054 —.027 —.013 —.023 —.014 -.007
d=0.2 AVE —.180 —-.110 —-.050 —.100 —-.059 —.023 —.060 —.036 —.010
LOG 010 006 017 .008 .008 017 .005 .009 .015
GAU —.099 —.044 —.004 —.041 —.017 .004 -.020 -.001 .009
dy —.156 -.099 —.049 —.104 —.061 —.022 —.066 —.035 —.006
32 —.164 -.112 —.063 —.116 —.074 —.036 —.079 —.048 —.020
(ig —.176 —.099 —.051 —.103 —.072 -.034 —.086 —.051 —-.020
ds —.175 —.097 —.047 -.101 —.068 —.028 —.082 —.045 —.012
d=0.4 AVE -.270 —-.177 —-.120 —-.180 —.125 —.080 -.130 -.100 -.060
LOG .021 .019 .034 .021 019 .032 .014 017 027
GAU —.181 —.084 —-.019 —.088 —.030 .005 —.034 —.007 .016
dy —-.258 —.157 —.066 —~.163 —.084 -.010 —.090 —.029 .029
122 —.281 —.185 —.095 —.191 —.112 —.039 —-.118 —.057 .002
ds —.222 —.143 —.069 —.148 -.104 —.038 —.132 —.064 —.006

dy —~.221 —.138 —.061 —-.144 —.095 -.026 -.122 —.051 008
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Consider the objective function

m

1 _ -
QC,d) = — > {log CA;2 + c7IAH L)

=1
Then, Robinson’s (1995b) estimator is defined as

m

. 1 1
doay = argmin [log{ — Y A2 % —2d= logh,
de(—1/2,1/2) mj; v m; ’

Using an algorithm of Davies and Harte (1987) and the random generator GO5DDF
from the NAG library, Gaussian time series were generated with mean zero, variance
unity and lag-j autocovariance

1 . .
Y= (17 + 1P = 25T 4 1j - 1.

Table 2. Standard deviation of the estimators.

Sample size n = 64 n =128 n = 256
Bandwidth m=4 m=16 m =32 m=8 m=16 m =32 m=16 m=32 m =064
d=-04 AVE 560 .407 .303 .382 .297 .216 277 .209 155

LOG 627 .350 216 .350 216 139 217 140 089
GAU 307 173 .084 .190 .104 051 121 071 .034
dy 141 113 .086 115 .086 .062 .084 .060 .043
ds .125 104 .081 .104 .080 .058 077 056 .040
ds .149 115 .086 124 .091 .066 .084 064 046
ds .148 114 .085 .123 .091 .066 .085 .065 047
d=-02 AVE 493 .340 .239 .325 .239 168 .230 164 119
LOG 628 .341 207 .350 212 135 .212 134 .089
GAU .345 .239 159 .244 161 109 .166 .109 .073
dq 139 114 .088 113 085 060 .081 058 041
da 119 .101 .080 .100 077 .056 .074 .053 .038
ds .209 142 .106 .140 .094 068 .080 .062 .046
ds .209 .143 108 141 095 070 .081 .063 .047
d=00 AVE 436 284 .188 2786 193 128 187 130 091
LOG 628 .340 208 .348 214 135 210 134 .089
GAU .366 270 175 .268 175 111 173 .110 .071
dy .141 119 .094 117 .088 .063 .084 .060 .043
da 120 .105 084 .103 080 .058 077 .056 .040
ds 247 .150 111 .146 .096 071 .081 064 .048
ds 248 .152 113 148 .098 073 .083 .066 .049
d=02 AVE .383 232 144 228 1150 .094 .146 099 .066
LOG .631 .342 .209 .348 213 135 .209 134 089
GAU .362 .266 173 264 175 111 172 .109 .073
da 151 131 .104 .129 .100 .073 .086 .070 .051
ds 128 .116 .094 114 .090 067 .095 .065 047
ds .268 .160 121 155 .105 .079 .089 072 .054
ds 270 .163 124 158 .108 .081 .01 075 .056
d=04 AVE 333 .183 .105 178 1109 065 .109 065 _050
LOG 625 .343 .213 .350 .216 135 .213 137 .090
GAU .333 .222 134 221 138 .091 .142 .094 .065
d1 162 144 114 .143 112 .083 110 .084 .059
da .140 131 .108 129 105 .081 .103 .081 .061
ds 262 .164 124 162 117 .089 .105 .088 .066

dg 263 .165 .125 .164 119 .090 .108 .089 .066
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The corresponding spectral density function satisfies A.1 with 8 = 2. Five different
values of d were employed, d = —04, —-0.2, 0, 0.2 and 0.4. The sample sizes chosen
were n = 64, 128 and 256. When the estimator d given in (2.6) was employed, for each
sample size, three different values of k were chosen: n/16, n/8 and n/4, while m was
chosen as k/max{1; [loglogk|} where [z] means the integer part of z. Meanwhile for
the estimator d* in (2.7), for each sample size three different values of m were chosen:
n/16, n/8 and n/4, while m; = m®5%{loglogm]. Observe that this choice of m; satisfies
A8 with r = 3. For each (d,n,k) and (d,n,m) combination, 5000 replications were
generated. In Tables 1-3, we have reported the bias, standard deviation and M.S.E. of
the estimators used in the Monte Carlo experiment. R

We should point out that although no asymptotic theory is available for d 4v g when
d = —0.4 or —0.2, or that the asymptotic distribution of dayvr when d = 0.4 is not
Gaussian, see Lobato and Robinson (1996), (it follows a Rosenblatt distribution, see
Taqqu (1975) for a definition), we have included it to gain some insight about its finite

Table 3. MSE of the estimators.

Sample size n = 64 n =128 n = 256
Bandwidth m=4 m=8 m=16 m=8 m=16 m =32 m=16 m=32 m==64

d=-04 AVE 314 .180 121 147 .100 .083 .078 054 .064
LOG .393 130 .064 122 .051 .036 047 .023 .022

GAU 117 .030 .009 .040 011 .008 .015 .007 .007

dl .047 .021 .010 .028 .011 .005 .016 .006 002

(f2 .054 .026 .013 .033 014 .007 .021 .008 .004

ds .022 .013 .007 .018 .010 .004 .019 .007 .002

cz4 .022 .013 .007 018 .010 .004 .017 .006 .002

d=-0.2 AVE 245 17 .059 .106 .058 .030 .053 027 017
LOG .394 117 .044 .123 .045 .019 .045 .018 .008

GAU 121 070 028 .060 .027 .014 .028 .013 007

dy .023 .015 .008 .016 .008 .004 009 .004 .002

(ig .021 .014 .008 .015 .008 .004 .009 .005 .002

(ig .049 .020 011 .020 .009 .005 .009 .005 002

dA4 .049 .021 012 .020 .009 .005 .009 .005 .002

d=0.0 AVE .200 .083 .036 .080 .038 .016 .035 .017 .008
LOG .394 .116 .043 121 .046 .018 .044 .018 .008

GAU 135 .074 .031 072 .031 .012 .030 .012 .005

zfl .022 .015 009 015 .008 .004 .007 .004 .002

(ig .016 .012 .007 .011 .007 .003 .006 .003 .002

ds 079 .026 .013 024 .010 .005 .007 .004 .002

da .080 .026 .014 .025 .010 .005 .007 .005 .002

d=10.2 AVE 180 .065 .023 .062 .026 .010 .025 011 .004
LOG .398 A7 .044 121 .045 .018 .044 018 .008

GAU .141 .073 .030 071 .031 .012 .030 .012 .005

d] .047 .027 .013 .027 .014 .006 .013 .006 .003

Ciz .043 .026 013 .026 014 .006 014 007 .003

ds .103 .035 017 .035 .016 .007 .015 .008 .003

dy 103 .036 .018 .035 .016 .007 .015 .008 .003

d=10.4 AVE 183 .065 .025 .064 .028 .010 029 .014 .006
LOG 391 .118 .046 123 .047 .020 .050 .019 .008

GAU 176 .056 .018 .057 .020 .008 .021 .009 .004

di .093 .045 017 .047 .020 .007 .020 .008 .004

da .099 .051 .021 .053 024 .008 .024 .010 .004

ds 118 .047 .020 .048 .024 009 .028 012 .004

dy .118 .046 .019 .047 .023 .009 .027 .011 .004
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sample statistical properties. For our estimator [1\ two different weights w, have been
used. Namely, wp, = 1 — p/k and wp, = 1 — (p/k)l/ 2. These would be denoted as
d; and d> respectively in Tables 1-3, while for d* we have chosen the weights wy =
(€/p)'/3 — (£/p)"/* and w, = (K/p)1/3 (¢/p)'/? and vp = p/m. These estimators are
denoted by (/1\3 and (/1\4 in the aforementioned tables. A word of caution is needed at this
stage. Since the purpose of this Monte Carlo experiment is to gain some insight with
regard to the finite sample performance of our estimators, for d; and d> we have used
the “unfeasible” estimator d — b(d), that is, (2.6) but with b(-) evaluated at d instead of
d. Finally, in Tables 1-3, AVE, LOG and GAU will refer to the estimators d, AVE, d}_’,oc
and dG AU, Tespectively. R

From Table 1, we observe that for d;(i = 1,...,4), there is a negative bias if d > 0
while that bias turns positive for d < 0. It seems that dy and (2\2 have a bias bigger
than that for d3 and d4 and dav g, droc and dgay. The standard deviations in Table 2
decrease as both n and m or k increase, being the performance of d1 and d2 better
than that of ds and dj as the results of Theorems 2.2 and 2.3 suggest. In almost all
cases, d; (i =1,...,4) are better than d4v g, dLOG and dGAU The M.S.E. in Table 3
shows similar results, being the overall picture from the Tables, that our estimators
qualitatively tend to outperform dav g, droc and dgau, not only asymptotically but in
small samples too. In many cases, the reduction of the M.S.E. of d;(i = 1,...,4) is very
substantial compared to the M.S.E. of d, AVE, ELOG and gg AU -

4. Proofs

4.1 Proof of Proposition 2.1
(a) By Robinson’s (1995a) Theorem 2(a), and noting that we have f; instead of its
approximation C‘/\j—2 ,

K7t L log(i +p)
R eV I e Era

since (j+p) ! log(j+p) < Km~! logm for m < p where henceforth K denotes a generic

positive finite constant.
(b) By Robinson’s (1995a) Theorem 2(a), E(g,) is bounded by

+p = O(m™logm),

/2 . 2
Z Og(J.+p+ )f]’j'P :O<log mz(ds0)+_7rﬂ.27;_l_z(d>0)> ,

by Lemma 5.2 with ¢ = 1 and a = 1 there and since by Lemma 5.4 K~! < fp)\?,‘f <K.
(c) Let £ be a finite number 0 < £ < m/2. Because p < m/2, E(gp) is

1

m/2 N ¢ m/2
(4.1) > fivp S (ELisp— fivp)+ D (Eljrp — fitp)
j=1 j=1 Jj=t+1

By Theorems 1 and 2 of Robinson (1995a), the first term of (4.1) is bounded by

m/2

-1
4
1 - l
Do fin) Do ten =0 (m¥penia 0)+ L2 <0)
j=1 j=1
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because fj1, < Kn?d(p~29Z(d > 0)+m~2¢I(d < 0)) and by Lemma 5.5, K1 < f:,)\f,f <
K. The second term of (4.1) is, by Theorem 2(a) of Robinson (1995a),

-1

m/2 m/2 2

logm logm log“m
Jj=1 J=E+1

using Lemma 5.3 with ¢ = 1 and a = 1 for the second factor on the left of the last
displayed equation and that Lemma 5.5 implies K ! < f,A2¢ < K. Now conclude since
¢ is finite. O

4.2 Proof of Proposition 2.2
We begin estimating the covariance of the spectral density estimator. Writing ¢;, =
(m+1)71Z(m/2 < p) + 2/mI(p < m/2)L(j > 0),

m/2 m/2
(4.2) Cov| Y Siplitn D, bialita

j=—m/2 j=—m/2
B m/2 1
= > PiwPrag 53
]7k=—m/2

n

X Z {v(t1 — t2)v(s1 — s2) + ¥(t1 — s2)v(s1 — t2)

t1,t2,51,52=1
+ Cum(l‘tl bl xtz i xsl ) xsz)}
x exp(_i(tl - 31)/\j+p + i(tz - 52)/\k+q)-

Because 7(t) = [ €' f(w)dw, by an obvious change of variables, the first term on the
right of (4.2) is

m/2
(4.3) @%1—2 > ipbra { (/ H(61)H(Aetq-j—p — 61)f(61 + /\j+p)d91>

Jk=—m/2
X (/ H(—=02)H (02 + Ajyp—k—q)f(02 — /\k+q)d92)} ’

where H(0) = >_,_, e is the Dirichlet’s kernel. We examine the first factor
inside the braces of (4.3), the second being identical. ~Adding and subtracting
fj+p fH(Bl)H(/\k+q_j_p - 01)d91, that factor is

(44) /H(91)H(/\k+q—j—p = 01)(f(61 + Ajsp) — fitp)dbr
+ fj+,,/H(01)H()\k+q_j_,, — 01)db,.

By Theorem 2 part (c) of Robinson (1995a), the absolute value of the first term of (4.4)
is bounded by
max(log(k + g), log(j + p))

min((j + p), (k + q))

Knfjip

)



ESTIMATION OF THE LONG-RANGE PARAMETER 719

whereas the second term of (4.4) is zero unless (k+q) = (j +p), in which case is 271 fj1p.
Hence, as n — 00, (4.3) and thus the first term on the right of (4.2) is bounded in absolute
value by

m/2 . 2
max(log(k + g), log(j + p))
(45) K E i pOk,qafitpfrrq < —
j,k:——m/Z mln((] +p)7(k+q))
log(5 +p
+K Z ¢j,p¢k,qu+pfk+q (_(JT‘_) + 1) I(q —-p< m)7
i+p=k+gq JTP
where Zj+p=k+q means the terms in Z}”ﬁ_m& such that j+p=k +gq.

By the same arguments, the second term on the right of (4.2) is in absolute value
bounded by

m/2 . 2
max(log(k + ¢),log(j + p))
GO K S itualieplin, (P
Pl min{(j + p), (k + q))
log(j +p
+K Y Gipbkafivefira ( j(+p )41 I(g+p < m),
J+p=—(k+q)
where 3., (44q) denotes the terms in the double sum such that j +p = —(k + q).

Next, we examine the contribution from the third term on the right of (4.2). Apply-
ing formulae of Brillinger (1981, (2.6.3) page 26, and (2.10.3) page 39), the contribution
is bounded in absolute value by

K m/2
@) Y bt [ al-Nal-mat-Qali+u+0)
jk=—m/2 [=m,m]?
X H(A+ XNjyp) H(p = Ajip) H( ~ Aetq)
X H(Agtq — (A + p+ ¢))dAdpd(
K m/2
=3 2. Gistkalain)a(=Aisn)a(k g Mesg)l
s, k=—mj2

X

/ ( a(=Na(=pa(=Qar + p+ ()
[—m,7}3 a(’\j+p)a(*/\j+p)a()‘k+q)a(_)‘k+q)
X HA+ Ajp) H(p = Ajap) H(C = Aktq)

X H\era — (A4 1+ C)))d/\dudc

)

where we note that since f(A) > 0 for A > 0, it implies that |a();4,)| and |a(Mk+q)| > O
since (j + p) and (k + ¢q) > 0. Because

/[_ O A )G = 04 HC = M) HOksg = -+ )N
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is equal to (27)3n, using the identity

2 4
crczcseq = (c1cg — 1)(ezeq — 1) + Z(cQg_l —1)(eoe — 1) + Z(Cz —~1)+1,
=1 i=1

and proceeding as in the proof of (4.31) in Robinson (1995b), the right side of (4.7) is
bounded by

m/2
(4.8) K Y $iptralaNep)a(=Aip)a(Aesq)o(—Aetq)|
(2 e i A
n - |j+pllk+q|
+ 7+ o7 e+ g 72+ 72 4 p| T2+ QI‘”z)-
Thus,
(4.9) (4.2) = (4.8) + (4.5) + (4.6).

With these preliminaries, let us examine the covariance of the spectral density esti-
mator.

We begin with part (a). The first term on the right of (4.9) is O((n™! +
p~ g7/ f,f,) by Lemma 5.1 with 9 = 0, @ = 1 and b = 0 there and observing
that (j + p) > p/2 for p > m. Next the second term on the right of (4.9), that is (4.5).
Proceeding as with (4.8), the first term of (4.5) is O(f,f,p™2 log? q), whereas the second
term of (4.5) is zero unless ¢ — p < m, in which case is bounded by

m/2
K
T 2 fTa—p<m) =007 T~ p < m))
j=—m/2

since (j + p) llog(j + p) < K and by Lemma 5.1 with ¢y =0, a =b=1and p = ¢
there. Finally, proceeding as with the second term of (4.9), the third term on the right
of (4.9) is O(fpfop2 log? q) after observing that because p + ¢ > m, the contribution of
the second term of (4.6) is zero.

Thus, because for ¢,p > m, K~ < fp_lfp —1 < K by Lemma 5.1, when ¢ — p > m,

Cov(gp, 9q) =O(p 2log’ q+n" +p7lg V) =0 + p~lg7 2 + p~21og?q),
whereas if g+p <m
Cov(gp, 9q) = O(p~2 log;2 g+nt+ p_lq_1/2 + m_l) = O(m_l).

This concludes the proof of part (a).
Next (b). The first term on the right of (4.9) has three typical components, namely,

m/2 m/2 m/2

> biwnfite Y, GipFieli P72 and )" @i fiupli 07k

j=—m/2 j=—m/2 j=—m/?2
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So by Lemma 5.2 with a = 1, for d > 1/4, the first term on the right of (4.9) is X;;%¢
times

O(n—l + n—1/2m4d—2(2p . m)1—4d + m4d-2(2p _ m)—4d + m4d—2(2p _ m)l/2—4d).

When d = 1/4, it is A% times

1 1 9 (2p+m 1 2p+m 1 1
— 1 — {1
© (n t i 8 <2p—m> T (og <2p—m> (2p — m)1/2 + (2p —m)

whereas for d < 1/4, it is o(m™*A\;;3%). So, the first term on the right of (4.9) is

(4.10) O (A n' + )\2 4Zd(2p—m)1'4d) I(d> 1/4)+o()\:-‘:d)1(d< 1/4)

A Az fopim
o m — V2V T(d=1/4
+ ( - + - log <2p ) (2p —m)~ ) ( 1/4).

Next, the second term on the right of (4.9), that is (4.5), whose first term, by Lemma
5.2 with ¢ = 2 and a = 1 there, is A*?¢ times

log m

0<1°g PTd<0)+ B 27(d = 0)> + O(m*2(2p — m)~4T(d > 0))

+ O(m?dt (2p - m)“Q"l_1 log? mZ(d > 0))
= O(m*~2(2p — m)"YI(d > 1/4)) + o(m™1)
+ O(m24=1(2p — m)~2¢"Hog? mI(d > 0))

using for the second term on the left that 2 ®logz < K for z > 1 and b > 0. The second

term of (4.5) is bounded by K Z;’Zﬁmp % of 74, which is A4 times

(411) O (I_(_dfn_l/“_) + log (2P+ m) I(d ;1/4) e m)1_4dI(d > 1/4)) _

2p—m m2—4d

Finally, the third term on the right of (4.9), proceeding as with the second term, is A_,*?
times

(4.12) O(m?* 1 (2p — m) ™2 N og? mZ(d > 0)) + (4.11)

Then, gathering (4.10)—(4.12) and that by Lemma 5.4, K~! < Af,‘ffp <K,
_ 1 2p+m _ 1
mCov(gp, g94) = O (I (d < 4) + log <2p— m) I (d— 4))
4d-1 2
m 1 m2¢log®m
o) - ———T(d >0
! <(zp—m) I<d>4>> +0 (G pgra@2 )

which concludes the proof of part (b).
Finally, part (c) follows by identical arguments to those of part (b) but using Lemmas
5.3 and 5.5 instead of Lemmas 5.2 and 5.4 respectively. O
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4.3 Proof of Proposition 2.3
From Hidalgo and Robinson’s (2002) Proposition A.1 and Proposition 2.1, it suffices

to examine f_l f - Ef . On the other hand, Hidalgo and Robinson’s (2002) Proposi-
P ¥4 P

tion A.3 part (a,b) implies that it suffices to examine the behaviour of fp_l(fe,p - Ef;,p),
where

m/2 m/2
Jep = fe(Xp) = :_1 Z fit+plej+p ( ) Zf]-{—p e,j+p (0<p§ %)
j=-m/2

aEd If:p = I.()\p) denotes the period0g~ram of ey. iNe only examine sup,_;,,, X
fp ' (fep = Efep)|?, being sup,_y o |y (fep — Efep)|” similarly handled.
Because sup, as[? = (sup; a7 )2/, (sWpyors ... e | (o — EFep) )72 is

T

m/2
1
i 2m)1, -1,
p:1+n{), m+1 Z ¢J+pp(( ) e,j+p )
j=-m/2

where ¢; , = f:,_1 fj. The last displayed expression is bounded by

(4.13) 27! sup sup
¢ p

1 m/2
( Z (Bj+pp((2m)1e ej+p — 1)

]—-—m/2

r

— Girsp((2m) e jys — 1)))

m/2

_ 1
+2" ' sup sup Z Pj+sp((2m) e jts — 1) )
q p

r

J——m/2
where sup, and sup, mean sup,_y -1/~ < respectively,
and s = gm!/".

The second term of (4.13) is bounded by

..........

1 m
(4.14) KSl;p Sl;p p—— Z¢j+s—m/2,p((27r)Ie,j+s—m/2 -1)
=0

m—1

> Birs-my2p — Pitst1-myap)

m+1 pard
J
X (Z((QF)Ie,€+s—m/2 - 1))
£=0

< Ksupsup
g »

r

T

1 m
K ; T — 2mM, o -1
+ Sl;psgpi¢J+s+m/2,p[ m+ 1 2:;(( 7T) e,j+s—m/2 ) )

by Abel summation by parts. Now by A.1 and A.3 and that Lemma 5.1 implies that
K1 <|f; 11| < K, we have that

|$jrs—m/2,p — Pitsti-mapl < Kfy ' (j+s—m/2)~172dp2d
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2d
D : -1
<K|——— ~m/2
<K (L) G+e-m
So, using that sup,a? < 3", a? the right side of (4.14) is bounded by

k/ml/r

2 Sew(stag) Greoma

g=1+m(r-1/r j=0 P

J
X (> (@) e ersmmpz — 1)
=0

k/ml/r m T

1
+K Y p—— > (@M e jrs—msz 1)
=0

q:l-{—m("l)/r

r

whose expectation, proceeding as in the proof of Brillinger’s (1981) Theorem 7.4.4, is
bounded by

k/m!/" m T/2

2rd
s 1
K - = -r/2
Z (s—m/2> mz ]+s—m/2)r+m

g=14+m(r=1)/r Jj=1

k/mt/" 1 r/2 k
- -r/2) — .
Koz <(s—m/z> o ) 0 (e )

g=14m{r—1)/r

because d < 1/2 and s < 2(s — m/2) since s < 2(s —m/2) and q¢ > 1 +m{"~1/" Thus,
we conclude that the second term of (4.13) is O(k/m7/2+1/7).
Next, we examine the first term of (4.13). Because

m

= Y (D4p-m/2p(2T) e jip-m/z = 1) = bj4a-ms2p(2m) e jrsmmsz — 1))
j=0

has at most m!/" /2 terms, each of which is O,(1) uniformly in j by Chen and Hannan
(1980), that term is bounded by

k L k 1/r
X /i sup |——2pm T O 1 /i oo k
" =1 me—n/r Pp (m+1)r=D/r | = 7P mr-1 iy TP\ /24t )
= g= r— T

Thus, to conclude the proof, we are left with sup,_; lf:,“l(f;p - Ef/';,p)lz. Pro-
ceeding as with sup,_; ., |f~p‘1(fAe,p — Ef.,)|? and observing that sup, runs, in this
case, for ¢ = 1,...,m"" /T the only term which is slightly different is the one corre-
sponding to (4.14), whose expectation is bounded by

m(r=1/

Z Z (j+p+11—m/2)TE

j r
Z((27T)Ie,€+s-m/2 - 1) A
£=1

(>73)
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K m("~ /" m/2 v |
FE ((2m) -1
I I CEr sy o)) DU

=1 4=1 P

724
r

m(r——l)/r m

K
< —r/2 =0 l/rl
ST q—z_:l JZ_; (m™" logm),

using Lemmas 5.2 and 5.3 instead of Lemma 5.1 and r > 2. (Observe that Lemmas 5.1
and 5.2 coincide for p = m there.) Thus

~ . - k.l/r
1 o
S \fp (fp = Fo)l = Op <W> +0p(1)- o
4.4  Proof of Theorem 2.1
Write
-1
2 /2
4o = 1 nzl/: (fp+j) G Gy = 1 % (fp+j){fp+j _1}
= | — ) = AN .
m + 1 jm—m/2 fp p m + 1 jm—m/2 fp fP+j

Because uniformly in j = —m/2,...,m/2, f; ! fpy; — 1 by A.1, we have that when

m/p — 0, by a direct use of Toeplitz’s Lemma (see Stout (1974)) and Proposition 2.2
part (a), the limiting distribution of m!/2g, is that of m'/2g, where

1/2 m/2 I
1/2~ m { ptj }
m/“g 5 —= —17.
p = m+1 jm—m)2 fp+]’

But, by an obvious extension of Robinson’s (1995b) Theorem 2, m'/2g, 4N (0,1).0

4.5 Proof of Theorem 2.2 -
The theorem is proved if

(a) m'2(d—b(d)—d) > N(©0,8%) and (b) m2(b(d) - b(d)) 5 0.

We begin with (a). By definition d — b(d) — d = hy, (a1 + a2 + a3) where

k
@ =3 Y wp108 5,/ ;) — wllog fur / Fus)
=1
1 g < - -
az =+ > wp(log fp/F,) — W(log firr/Fis1)
p=1
1 k
as = 7 D wplog(fy/fi1) — hy'd.
p=1

So, it suffices to show that m!/2a, LA N(0,®2), az = o(m™/?) and az = o(m~1/2).
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We begin showing that az = o(m~1/2). By the definition of fp and hy,

az = —2d (%gw‘o log <E§T) - /01 w(u)(log u)du) .

By Lemma 2 of Robinson (19955), k! ZI;:I log(p/k) +1 = O(k~1log k), whereas since
A.6 implies that W (u) = (w(u) — 1)logu has an integrable derivative, k=1 E’;zl(wp —
1)log(p/k) — fo W(u)du = O(k~!) by Brillinger ((1981), p. 15). Thus, by A.5, a3 =
O(k~tlogk) = o(m™1/2).

Next, we examine as = a9 + agg, where

m/2

az = & pr(logfp/f)

k k
ago = % Z wp(logf;,/fp) - (% pr> (108f~lc+1/7k+1)-
p=1

p=m/2+1

By Al,if m/2<p<(k+1)=o0(n)

1 1 C ks 1 1 /2
17 _F 2d += -2d+8
o o=1=1p m+1 Z App | —1HESp m+1 Z Ajtp

j=—m/2 j=—m/2
L m/2
— “‘ —2d+8 B8 By B
= Kfp m+1 Z Ajip S KA p+m/2 = 0(Ay,) = O(Xy
j=—m/2
Thus, by the mean value theorem,
mg(z_p_m) Y VN I
fo fp L+&(fp, fr—1)

for some ¢ = £(p) with |¢| < 1, which implies that m!/2ags = O(m!/2)\5,) = o(1) by A.5.
For 1 < p <m/2,

L~ 1 m/2 1 m/2
7 - zmﬂ, X2 < KT, Zx;fz*" = O(\2).

Then, proceeding as with a2, we conclude that m!/2ag; = O(m3/2)\2 /k) = o(m1/2)\8)
by A.5, which implies that m!/2ay = o(1).

To complete the proof of part (a), we need to show that m!/2a; % N(0,82). To
this end, it suffices to show that

k
1 _ d _
(1.15) by = ml? (Eprgp —wgkﬂ) 4 N (0, h;202)
p=1
and
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(4.16) m!/%a; — by, = 0p(1).

We show (4.15) first. Write ¢ = (m!/2/k) Zp 1 Wpgp- Then,

1 m/2 m—1 k
E(cx) = Z wpE(gp) + Z wpE(gp) + Z wyE(gp)
p=1+m/2 p=m
By Proposition 2.1 part (c), the first term on the right of the last displayed equation is
122 log m log m m/2log’m
o+> <m2d V2= T(d > 0) + —5I(d < 0)) =0 <———)
k = p2d L

which is o(1) by A.5, whereas Proposition 2.1 part (b) implies that the second term is
bounded by

m1/2 m—1

logm logmZ(d > 0) ) m'/2log?m
<0 =0 ————).
- > ( - I(d <0)+

K
1—2d(9p _ )2d
o/ m (2p—m) k

Finally, the third term is O(m~'/2logm) = o(1) by Proposition 2.1 part (a) and A.5.
Next, the variance of ¢ is bounded by

m/2 1 m—1
(4.17) mK | Var prgp + Var Z Z Wpp
p=1+m/2

k
1
+ Var (E Z 'wpgp)
p=m
The third term of (4.17) is

K &, K &
m ﬁprVar(gp)—i-—kz— Z wp'quOV(gmgq)

p=m m<p<q

1 Km &
=0 ('k—:) + —k—2— Z COV(gp,gq)

m<p<q

because Proposition 2.2 part (a) implies that m Var(g,) = O(1) for p > m. The second
term is bounded in absolute value by

k k
Km
el Z Var'/?(g,) Var'/?(g,) + Z | Cov(gp, g4)| | = o(1)

m<p<q,|g—pl<m m<p<q,|g-pl>m

as we now show. By Proposition 2.2 part (a), the second term on the left is
-~ k — - R —
Ok™tmY _ (n~' +m=%?)) = o(1) because p,q > m implies p~1q~1/2 < m=3/2,

whereas the first term is also o(1) because the sum > * has at most km

m<p<q,|g—pl<m



ESTIMATION OF THE LONG-RANGE PARAMETER 727

terms and by Proposition 2.2 part (a) and by A.5, Var(g,) = O(m™!) and m/k — 0
respectively. So, we conclude that the third term of (4.17) is o(1).
Next, the second term of (4.17) is bounded by

m2 m—1
Kﬁ Z Var(g,) = o(1),
p=1+m/2

since by Proposition 2.2 part (b), it is O(k~2(m? 4+ m'+??log> m)) = o(1) if d € (-3, 1),
for d = 1/4 using that [m~! 23'”/2 log((p+m)/p)| — |f03/ log(v=!(v+1))dv| < K, and
for d € (§,3), since
23m/2  44-2 142d }, 2 2 142d 1 02
m m m log”m m° +m log“m
0 &2 = pid—1 + k2 = O< L2 ) = o(1),

using that m™1! Ep_l (p/m)'~%¢ < K. Finally, the first term of (4.17) is also o(1) using
Proposition 2.2 part (c) instead of part (b). Thus, we obtain that

k
1
(4.15) = — (z Z%») m'2g 41 + 0,(1) 5 N(0,h5%02)

p=1

since by Theorem 2.1 the first term on the right converges in distribution to a
N(0,h292).
Next we show (4.16). First, for any arbitrary €,7 > 0,

Pr{|m'/%a; — by| > e} = Pr {|m1/2a1 — bi| > €;sup|gp| > 17}
P

+Pr {}mlmal — bi| > €;suplgp| < 7)} .
P

The first term on the right converges to zero since by Proposition 2.3, with r = 2 there,
sup,, lgp = fp [fo—1] = 0p(1). To show that the first term on the right converges to zero,
since |logz — (z — 1)] < 27 1(z — 1)2 for = ~ 1, by Markov inequality it suffices to show
that

ml/2 k , ,
(418)  ——> (Eg; + Egiy,)

ml/2 k k
= (Z(Var(gp) + Var(ges1)) + (B (gp) + E2(gk+1)))

p=1 p=1

is o(1), which is the case by Propositions 2.2 and 2.1 respectively. This concludes the
proof of (a).

Part (b). By mean value theorem m!/2(b(d) — b(d)) = Op(m!/?(d ~ d)b'(d)) + 0,(1).
But ¥'(d), except the constant h,, is

K172 /9 k1/2 9 K K22
4 Z / Yi.p Zj:_kl/z/g Pi.p

2
VT > wp k1/2/2 - >

wP K1/2/9
p=1 Zj:l (j+p)—2 p=kl/2/241 Zj=_21/2/2(J+P) —2d
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k1/2

1 k 2ZJ__k1/2/2<PJ,
+ EZ“’P SR/

p=1 j=—k1/2/2('7 +k)—

=O(k~Y21ogk),
where ;o = (j + £)~2¢(log((j + £)/¢) — 1) uniformly in d € (—1/2,1/2). So
m'/2(b(d) — b(d)) = O, (k~%/*m % log k) = 0,(1)

by A.5, because (d—d) = (d—d—b(d)) +b(d) = Op(k~1/44+k~'/?log k) from the proof of
part (a) with m = k'/2 there and that by straightforward algebra b(d) = O,(k~'/?log k).
This concludes the proof of part (b) and the theorem. O

4.6  Proof of Proposition 2.4
Let

my/2
f;a,p = f"e()‘p) = (m1 + 1)_1 Z fii+plLe,lj+nl-
j=—m1/25#—p
Proceeding as in the proof of Proposition 2.3, it suffices  to gxamine
SUPp_1, . m, |fp ' (fep— Efep)|. Proceeding as with sup,_14m, .k 1fp ' (fep — Efep)l* in
Proposition 2.3 and observing that sup, runs, in this case, for ¢ =1, ... ,mgr DT with

s = qm}/ ", the only term which is slightly different is the one corresponding to (4.14),
whose expectation is bounded by

(T 1)/r

Z Z b <J+P+1> ¥

(r 1)/r

j r
(27{')[6,(.}_3 - 1) A
1

<)

i~/ = O(m; r log m),

using Lemma 5.6 part (b) instead of Lemmas 5.3 and 5.5 and that r > 2. Thus,

ml/r

sup |fy (o= fo)l = O <_172+—1/r7> + 0p(1). a
my

p=1,....m

4.7 Proof of Theorem 2.3
Denoting w, = p~! >5_, wy, by definition,

(4.19) 1/2( —-d) = um1/2 va { Zwe log in — Wp log = fon1 }

=1 £ fp+1

m 1 " f
+ —= v, d = we lo —w,lo p+1
”mw; p{p; g P p+1

T— P
_— v wglog —h, 1d

S =
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The third term on the right of (4.19) is

1/4

m P
S0 5 (o5 (i)

p=1 p-l—i—ml/“ =1 p+1

whose first term is o(1) since |w(u)logu| < K and Z 1 lvpl = o(1) by A.7, whereas
the second term is also o(1), because by Brillinger (( 1981) p. 15) the term in parenthesis
is O(p~"|vp|) and A.7 implies that 337*,  1/4p~ |vp| = O(1).

Denoting m; = [m; logm;], the second term on the right of {4.19) is

il P35 ) ()

1 pemil P fotr
z e E p+
42y m1/2 =1 P (wé log( ) "Wl g( ;+1)) ‘

First, (4.21) = o(1) proceedmg as with the proof of as in Theorem 2.2. Next, since by
Lemma 5.6, K~ < b fy < K for ]g{ < mj and log|f; f;:“/zl = O(log my), the first

term of (4.20) is O(m_l/2 log(mi1) -0 [vp]) = O(mim=/%log(my)) = o(1) by A.7 and
A 8. Finally, the second term of (4. 20) is

hy [k
=12 Z nglog( >+— Z wﬂog( )—w,,log(iii)

p=m’{+1 f=mi+1

which is o(1) as we now show. The last term is bounded in absolute value by
m3/mt/? P S luplp=2 = O(m~=3/2m?log(m/m,)) = o(1) by A.8 and because, for
[¢] > m}, Lemma 5.6 part (a) implies that K1 < ml"zpzlfp‘lfp — 1| < K, so that by
the mean value theorem, log f,” 1f, = O(m2p~2). Similarly, because A.7 implies that
lwe| < K(£/p)¢, the second term is O(m=¢~1/2m1t¢) = o(1) by A.8 since ¢ > 1/3.
Finally, the first term of the last displayed expression is bounded in absolute value by

m
Dm~2mite Z vpp 1 Clogm = O(m~"Y2m] ¢ logm) = o(1)
p=m;+1
proceeding as with the first term of (4.20) by A.7 and A.8 in view that ( > 1/3 by A.7.
So, the second term on the right of (4.19) is o(1).
To complete the proof we need to show that the first term on the right of (4.19)

converges in distribution to N(0,h2®?%). Proceeding as with the proof of (4.16), but
using Proposition 2.5 instead of Proposition 2.3 when needed, it suffices to show that

, 1 & 1 fo— fo | for1 = for
4.22 —_— E E — -
k @ omi/2 P:1Up ( =1 ( ff ) o ( fo+1 ))

4 N(0,8%)
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K [ & 1 & (f=F\ (- Fn)
(4.23) (b) m1/2{ + Y }v,, ng (—;—> + W, _P_E_v_
P

£ 1

We begin with part (b). By Proposition 2.4 and Propos1t10n 2.2 part (b) the first moment
of the first term on the left of (4.23) is o(m /2 Dol vp) = o(m=3?m}) = o(1) by A.7
and A.8, whereas the second term of (4.23) is

m . - 2
(420) o 3w {Z+ 3 }M (fe fe) +(fp+1~—fp+1) |
m p=mi+1 =1 {=mi+1 ff fo1

By Proposition 2.2 part (a) and A.8 the second term of (4.24) is O,(m'm!/?) = 0,(1),
whereas Proposition 2.2 part (b), Proposition 2.4 and A.7 imply that the first term of

(4.24) is
Op | —rg— Z vyt ) = 0, my Z p¢
m1/2log my ”p1+C m3/2 logmy log m

p=mi1+1

= 0p(m /27 ¢mi* ¢ log™! m)

which is 0,(1) by A.8 and since { > 1/4 by A.7.
So, to complete the proof we need to show part (a). The left side of (4.22) is

1 my 1 p m 1 p
(4.25) —] I:Z Up (1—) Z’umﬂe - EP19P> + Z Up (1—7 Z’w[ﬂg — Wp¥p
p=1 =1 =1

p=m—m;+1

m—my m-—-my
v 3 g (S - e S e,

p=mitl p—m1+1
1 " 1
+ Tmi/2 va (wp - /0 w(u)du) (Fp — Fp+1)
w(u)du

vm1/2 va — Up+1),

where 9, = ]Tb_l( fo — fb). The last term of (4.25) is except constants
1 m
mi/2 Z(’UP+1 - vp)ﬂp + m—1/21}1191 + m_l/2vm"9p+1 = 0;0(1)
p=2

by Propositions 2.2 and 2.4 and that by A.7, |v,41 — vp| < K/m. Because Proposition
2.4 and Proposition 2.2 part (b) imply that F|9,| = o(1) for b < m;, by A.7 and A.8
the first term of (4.25) is 0p,(m~32?m?) = 0,(1). Since by Brillinger ((1981), p. 15),
Wy — fol w(u)du = O(p™!) and Esup, |9| = o(1), the fifth term is 0,(m~/2logm) =
0p(1). The second term of (4.25) is

1 m 1m1 m 1 p
DI D SR L S )
p=m-m;+1 pe=1 p=m—-—mi1+1 p€=m1+l

= bl,m + b2,m-
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Proceeding as with the first term of (4.24) b;,, = 0,(1) and by, = OP(mi/2/m1/2)
since 33° . 41U = O(my) by A.7 and because by Proposition 2.2 part (a) E[d,| =

O(m| 1/2) for p > my.
The third term of (4.25), after rearranging subindexes and standard calculations, is

m—mi m—m; m—mi
(4.26) 1/2 Zz?e Z P lwevar Z Uy Z p L wevy,
=1 p=mai+l E my+1

whose first term is 0,(1) by A.8 and similar arguments to those for the first term of
(4.25).

Thus, gathering the second term of (4.26) and the fourth term of (4.25), we conclude
that

N hw m—m
mY2(3 — d) = =35 Y Oche+0p(1),
=mq1+1

where hy = Wevy — 3207, p~lwyevp. Because U — fol v(z)dz, the proof is completed if

Mm—INy

1

d
by = m Z Pehy — N(O»q’Q)-
=mi+1
Denoting n; = fj_llj —1, by, is
1 m—my 1 m1/2 -
(4.27) pys) Z hgm 1 Z (Mewj + (F ' five = Dmeas)
f=m;i+1 b j=—1m1/2
1 J 1
m—mgy my /2
Z he— > ners +0p(1),
l'—m +1 ]——m1/2

as we now show. Denoting 77 = o %(27)I.; — 1 and o ire = 1= oo,

1 mi1/2 1 m1/2
p— Z Ci+eeNet+; = Z Giree(Me+s — Moy j)
my +
J~—m1/2 3=-m1/2
1 m1/2
R~ D Greaniyy
j=—ma/2

Because Robinson’s (19956) Theorems 1 and 2 imply that Elne; — n7 ;] <

(¢ + 5)"21og"?(£ + j) and Lemma 5.6 part (a) implies that |¢j4e| < K(m2/62),
the first absolute moment of the first term on the right is bounded by K m3 20-2logm,

whereas using the Schwarz inequality, the first moment of the second term on the right
is bounded by Kﬁ_gmf/z because | Cov(n? ,n},)| < KZ(j1 = j2) + Kn~'Z(j1 # ja). So,

1 m—my m1/2
= h ¢
172 Z £ Z j-+£,£7e 45
m!/ £=my+1 my +1 J=-my/2
Km}/ log!?my "2 hy Km}/2 """ hy my\ 1/2
S FRE Y He e > B -o((2)  iogm)

£=my+1 f=mi+1
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which is o(1) A.7 and A.8. So, it suffices to examine the first term on the right of (4.27)
which, after rearranging subindexes, is

m—3/2m; my/2 3/2ma p—my/2

1 Mp 1 Tlp
ml/2 Z my + 1 Z b5 + mi/2 Z my + 1 Z hjm,
p=3/2my+1 j=—my/2 p=1+m1/2 Jj=1
m—mi /2 m—my /2

1 p
Ry Z my+1 Z hjmma /2
p=m—3/2m;+1 j=p

The last two terms are Op(m‘l/ 2m%/ 2), because they involve at most m; number
of terms and by routine extension of Robinson’s (1995b) Theorem 2, m~1/23>>_ 7, =

Op(a'/?m=1/2), for any 1 < a < m. On the other hand, the first term is

m—3/2m1 m—3/2m1 m1/2

1 1 1
Y S ot Yo Ry w1 Do heri| -1
p=3/2m1+1 p=3/2m1+1 P 1 j=—m1/2
1 m—3/2my
= —% Z hpnp(1 + (1))
37:3/2'{1’21—{—1

by continuity of n(u) = v(u) fol w(a:)dx—ful z™ 'w(u/z)v(x)dz and Toeplitz Lemma. But,
since’A.7 implies the squared integrability of n(u), by routine modification of Robinson’s
(1995b) Theorem 2 m™1/2 Y 7" | 5,7, < N(0,92). O

5. Technical lemmas

LEMMA 5.1. Assuming A.1 and A3, form <p<q <k, k/n— 0,9 €]0,1] and
a,b=0,1,

6.1) B SR L e gy = 06
' mA1 e (Gap) e T el T '

PrOOF. The proof is quite straightforward. By A.3 and mean value theorem,
2mj <
o= bt (22) 1/ 030.))
where A(p, 7) € [Ap, Aj+p]- But also by A.3, f'(\) < KA~1f()\), so

\fiap = Fol SENA (0,0)F (NP, 7)) = O mf,),

because )\jx—l(p,j) = O(p~'m) and f;'f(A(p,j)) = O(1) for p > m by A.l. The
conclusion is now immediate since p¥/(p + j)¥ < K. O

LEmMMA 5.2. Assuming A.l and A4, for m/2 <p <m,

\2da,,1—2da m/2 a 20 +m
5.2 Om 9t 0 (log [ 22 IW=1
(52) m+1 j:gnm (G +p)¥ C\p-m ( )
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+0((2p — m)!?Z(9 > 1))
+0((2p+m)?I(W < 1)),
where ¥ = 2da + 9, ¥ € [0,2] and a = 1,2.
PROOF. Because Ajy, — 0 as m/2 < p < m, the left side of (5.2) is

p+m/2

K Y V(14 0(1)

j=p-m/2

by A.1 and A.4. From here the conclusion is immediate since § > 1. O

LEMMA 5.3. Assuming A.1 and A4, for L <p<m/2

A2dam1—2da m/2 a 2]7 +m
5.3 m “Itp :O(lo ( )Iﬂ:l)
53) m ; (U +p)? "\ =1

+ 0@ I > 1)) + O((2p + m)} T°I(¥ < 1)),
where ¥, ¥ and a are as in Lemma 5.2.

PROOF. Because fj1, = A772(1+ 0(1)) by A.1 and A4, the left side of (5.3) is
bounded by

m/2 pt+m/2
KY (G+p) V(1 +0(1)) <K Y j7¥72(1+0(1)).
Jj=1 Jj=p+l1

From here, the conclusion is standard. O

LEMMA 5.4. Assuming A.l and A4, form/2<p<m

. \2d m/2
K- Smjrll Z fip s K.
j=—m/2

PrROOF. From Lemma 5.2, we only need to show the inequality on the left. Because
fi4p = /\j’fg(l +0(1)) by A.1 and A 4, the middle term is bounded from below by

ptm/2

K_l 17+m/2 4 K_l P
= QL Mz mmy 2L ITMIW2 0+ Y NI <0)
Jj=p-m/2 Jj=p-m/2 Jj=p

which is greater than or equal to (m/p)2¢ > K~! since m > p > m/2. 00

LeEMMA 5.5. Assuming A.l1 and A4, for 1 <p<m/2

. /\2d m/2
K< fip <K
j=t
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ProoOF. From Lemma 5.3, we only need to show the inequality on the left. Because
fivp = A724(1 4+ 0(1)) by A.1 and A.4, the middle term is bounded from below by

Jj+p
_1 m/2 K_l m/2 _
—2d m I(d < O)
ml-2d Z(]-HD zml—Qd ;((54‘?) I(d>0)+——] 7d

which is greater than or equal to K~1 since 1 < p < m/2.0

LEMMA 5.6. Under Al and A.3, for p =1 and 2

m1/2 H
K< (mi+1)70 ) }“’ <K
o P
(a) For m; <p, ml/QJ I/QH
(my+ 1)1 Z <}—,+‘p - 1> = O(m?2p~2).
\ g=ma/2ij#p \ P
( my/2 1
KN SXNW,Ch+ )™ Y A, <K i dp<j
(b) For p < my, m1'72m1/2;j9ép .
nMmymy + )70 Y fE <K if dp> .
\ J=m1/2;j#p
Proor. (a) We first show that K—! < (m; +1)7! Z;’L’T/rim fotfiyp < K. Sup-

pose first that d > 0. By A.1,

%2 u+ K my/2 2du
2 I’ Z S S K
(m1+1)Jm/2 (m1+1):1/23+10
because for p > my and [j| < m1/2, 271 < |(j + p)/p|. On the other hand,
m1/2 P‘»+ 1 [ /4] 2ds
3 p > Kt — —_— >K1
(m1 D, Z my j=[%;/8] j+pl T

because for p > m; and |j| < m1/2, |(§ +p)/p| < 3/2. The case d < 0 follows by similar
arguments. Next, we show the second part of (a). By Taylor expansion of f;,, the left
side is

my/2 .
1 p(2m)j f,
(m1 +1) 2 { n ff

j=m1/2

N il N

2 n? I3

2042 (%)
R )}

722 mi1/2 j 2
<K—t —J
<KD j=;1/2 (p_ 3+5j> (1+0(1))
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where X = A(p+ 67) € (Ap, Ap+;) and § = 6(j) € (0,1), by A.1, A.3 and that fp”lf(‘)\_) is
bounded. The conclusion is now standard since |p + 65| > p — |65] > p/2.

Al (140(1)), where |q|4 =

(b) It is immediate since by A.1, fG+p)I(j+p¢o) =K\

max(g,1). O
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