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A b s t r a c t .  We study two estimators of the long-range parameter of a covariance 
stationary linear process. We show that one of the estimators achieve the optimal 
semiparametric rate of convergence, whereas the other has a rate of convergence as 
close as desired to the optimal rate. Moreover, we show that the estimators are 
asymptotically normal with a variance, which does not depend on any unknown 
parameter, smaller than others suggested in the literature. Finally, a small Monte 
Carlo study is included to illustrate the finite sample relative performance of our 
estimators compared to other suggested semiparametric estimators. More specifically, 
the Monte-Carlo experiment shows the superiority of the proposed estimators in terms 
of the Mean Squared Error. 

Key words and phrases: Long-range dependence, spectral estimation. 

1. Introduct ion 

In recent years there  has been a growing interest in the s tudy  of  covariance sta- 
t ionary  scalar processes xt,  t = 0, •  i 2 , . . . ,  which are observed at t imes t = 1 , . . . ,  n, 
and whose spectral  density function is nei ther  bounded  nor greater  t han  zero at some 
frequency A0 C [0,Tr]. Denot ing by Vq = E( (xo  - Exo)(Xq - Exo) )  the  lag-q autoco-  
variance of xt ,  the  spectral  density function of xt ,  f()~), is defined from the relat ion 
7q = f ~  f()O cos(qA)d/k, q = O, + 1 , . . . .  

Most of the research has focused, wi thout  loss of generality, on the par t icular  case 

(1.1) f(A) ~ CA -2d as A --* O+ 

where C C (0, cxD), d C ( _ 1 , � 8 9  and ",-/' means tha t  the rat io  of left- and r ight-hand 
sides tends to one. When  d -- 0, f (A) E (0, oc) and corresponds to the so-called weakly 
dependent  s ta t ionary  process. When  d > 0, f(A) diverges to infinity and we say tha t  the 
s ta t ionary  process xt exhibits long-range dependence  and when d < 0, f (A) converges 
to zero as A --~ 0+ and we say tha t  xt exhibits the phenomenon  called ant ipersis tence 
or negative dependence.  We will refer d as the long-range parameter ,  a l though this is 
normal ly  used when d > 0 only. 

When  full parameter iza t ion  of f (A) is given, tha t  is, it depends on an unknown 
finite set of parameters ,  say 0, parametr ic  est imators  of 0 for the model  f(A; 0) have 
been exhaust ively studied. See Yaj ima (1985), Fox and Taqqu (1986), Dahlhaus  (1989), 
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Giraitis and Surgailis (1990) and Hosoya (1997) among others, and Cheung and Diebold 
(1994) for a study of their small sample performance. However, one possible criticism 
is that  their statistical properties are very sensitive to a correct specification of the 
model. In particular, misspecification can lead to inconsistent estimators of the long- 
range parameter d in (1.1). 

To avoid such criticisms and when the main interest is in the estimation of d, (semi- 
parametric) estimators of d have been examined which only take into account the be- 
haviour of f(A) at frequencies around the origin. Among such estimators, we can mention 
the pioneering work by Geweke and Porter-Hudak (1983) and its modification given by 
Robinson (1995a) and Robinson (1994, 1995b). Although the estimators of d provided 
in Robinson (1994, 1995a) have a closed (explicit) form, they have the possible drawback 
that the asymptotic distribution may not be Gaussian, see Lobato and Robinson (1996), 
or of not being as efficient as the estimator G S E  given in Robinson (1995b). However, 
the latter one, compared with Robinson's (1995a) estimator, does not achieve the opti- 
mal semiparametric rate of convergence obtained by Giraitis et al. (1997), although by 
a logarithmic factor. 

Following an earlier suggestion by Parzen (1986), our aim in this paper is to provide 

statistical justification of two estimators of d, denoted d" and d'*. The latter estimator 
achieves the optimal semiparametric rate of convergence, as that of Robinson (1995a), 
whereas the former achieves a rate of convergence as close as desired to the optimal r a t e ,  

so that their rate of convergence are faster than the G S E  by a logarithm factor. That  is, 
if we denote by n e, say, the optimal semiparametric rate of convergence, d'has a rate of 
convergence (even faster than) n ~ [log log n]-~ for any arbitrarily small a > 0. However, 
contrary to Robinson (1995a) we do not need to assume that the data is Gaussian. 
Moreover, if we are concerned with the Mean Square Error (M.S.E.) ,  which in finite 
samples can be a more appropriate measure of performance of anest imator ,  we observe 
from the Monte-Carlo simulation in Section 3, that both d and d* clearly outperAforms 
the estimator in Robinson (1995a). Finally, the asymptotic variances of d and d* a r e  

smaller than those in Robinson (1995a, b). 
The remainder of the paper is organized as follows. In the next section, we describe 

the estimators of the parameter d and some results regarding the statistical properties 
of the spectral density estimator at frequencies converging to the origin. In Section 3, 
we provide a Monte Carlo experiment to assert the finite-sample performance of o u r  

estimators and we compare them with those described in Robinson (1994, 1995a, 1995b). 
In Section 4, we provide the proofs of the results given in Section 2, whereas in Section 5, 
we present some technical lemmas needed for the proofs of Section 4. 

2. Estimation of the long-range parameter 

To introduce and give an insight to our estimators of d (see Parzen (1986)), suppose 
that the spectral density f(A) of the process xt satisfies 

f(A) = CA -2d for A �9 (0, A). 

When this is the case, it follows that 

d~- hw (~-lfoAW(~-l)~)logf()~)d)~- (~-lfoAW(~-l)~)d)~) logf(~)) 
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after straightforward calculation and where w(u),  with u E (0, 1), is a positive weight 

function and hw = ( - 2  f2  w(u)log(u)du)  -1 . We can thus expect that the Riemann 
discrete approximation of the right side of the last displayed equation 

(2.1) 
1 k 

is close to d, where we abbreviate f(.,~p) by fp, with Ap = - ~ ,  p = 1 , . . . ,  n -  1, A = Ak 
and Wp = w(p/k) .  However (2.1) depends on the unknown spectral density function of 
i t ,  so that to make (2.1) feasible, we need to estimate fp. 

To that end, define the discrete Fourier transform and periodogram of xt by 

n 

(2.2) a(A) = (2~rn)-1/2 E XteitA and I(A) = la(~)l 2 
t=l 

respectively, where the correction for an unknown mean of xt will be unnecessary since 
the statistics in (2.2) are to be computed at the Fourier frequencies Ap. 

A common estimator of f(A) is the average periodogram 

1 
(2.3) f(A) - (m + 1) E I(A + Aj) 

j=--rn/2;A+XjT~O 

where m = re(n) is an even number such that m -1 + m n  -1 ~ O. 
When the spectral density f(A) of the process xt satisfies (1.1), some statistical 

properties of (2.3) are known. In particular, Robinson (1994) showed that f(O)/CXm2/d 
converges in probability to 1, whereas Hidalgo (1996) proved that, under suitable condi- 
tions, the continuous version of f ( )0  is ml/2-consistent and asymptotically normal when 
A lies in any open set outside the origin. Although some statistical properties of the 
periodogram at frequencies A = Ap ---, 0 are known, see Robinson (1995a) or Hurvich 
and Beltrao (1993), the statistical properties of the estimator given in (2.3) for those 
Ap ~ 0+ have not been studied yet. Due to the aforementioned results of Robinson 
(1994) and that the rate of convergence of the second moment of f(A) can be very slow 
for A = Ap, with p < m/2 ,  see Proposition 2.4, f(A) would have some adverse conse- 
quences for the results of Theorem 2.2, in particular for the behaviour of expressions 
(4.17) and (4.18). So, we modify the estimator given in (2.3) by 

( 2 . 4 )  = 

m/2 
1 Z m ipl~ 

m + l  E Ij+lv[ ( - 2 - <  ] 
j=-m/2  

m/2 

+ --m ~ IA+IPlZ 0 < IPl-< y 
j=l 

(2.5) 
1 k 

p=l 

where Ij -- I (Aj)  and E(.) denotes the indicator function. 
Thus, we could estimate the parameter d by 
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that is, (2.1) with fp replaced by its estimate fp given in (2.4). 

Although d i s  consistent, as can be easily shown from Propositions 2.1-2.3 below, 
it possesses the undesirable property of having a slower rate of convergence than that 
obtained by Giraitis et al. (1997). Heuristically, this is because 

?;1~ __ i = O(1) for p = O(m) ,  

where fp = CAp 2d and fp is as in (2.4) but with Ij  being replaced by f j ,  induces a 

"bias" term in the estimator d which does not converge to zero fast enough. Thus, we 
modify d as follows. Let 

p=l ~ f; ] p=l ~ f;+l ] ' 

where 

C 
m/2 
E ~-2d Z ( m  

J+lpl 2- < 
i=-m/2 

) _ 
m ~ j=l 

and define the estimator (another estimator is given in (2.7)) of d by 

(2.6) 3 =  ~ -  b(~) 

where d is a preliminary estimator of d, say that in (2.5), but with a bandwidth number 
m = k 1/2 in the definition of fp given in (2.4). 

Before we analyze the properties of (2.6) and/or (2.7), it is convenient to examine 
the properties of fp. For that purpose, introduce the following regularity assumptions: 

A.1. There exist C E (0, co), d C (- �89 �89 and 3 C (0,2] such that 

f (A)  = CA-2d(1 + O(A3)) as A ---* 0 + .  

A.2. {x t}  is a covariance stationary linear process 

(30 ~3 

j=0 j=o 
s0 = 1, 

where E[et I .fi't-1] ---- 0; E [ e ~  I -~'t--1] ~- 1; E[letl ~ I ~-t-1] = #e, ( = 3 , . . . , 2 r  and 
r _> 2, almost surely t = 0, i l , . . ,  and where ~-t is the a-algebra generated by {es; s _< t} 
and with joint fourth cumulant of etl,  et2, eta and et4 satisfying cure(%,  et2, et3, et4) = 
n~Z(tl = t2 = t3 = t4). 

A.3. o-~ I~(~)l = O(~-<1~(~)1) as ~ -~ 0+,  for r = 1 and 2 and where ~ (~)  = 
EjC~=O o~je ijA . 

1 A.4. ~ §  - - - ~ 0 a s n - - - ~ c ~  
Assumptions A.1 and A.3 are not elaborated on since they are the same as those 

employed by Robinson (1995b). Assumption A.2 is similar to that in Robinson (1995b) 
except that we allow et to have more than four finite moments. Its motivation comes 
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because the rate of convergence in Proposition 2.3 depends on the number of finite mo- 
ments of et (compare with Brillinger's (1981), Theorem 7.7.4). Assumption A.4 indicates 
that the bandwidth parameter m increases slowly with n. 

Write gp = g(Ap)= f~-i fp _ 1. 

PROPOSITION 2.1. Assuming A.1-A.4 with r = 2 in A.2, as n ~ oo, 
(a) For m << p <_ k such that k / n  + m / k  ---, 0, E(gp) = O(m -1 logm).  
(b) For m/2  < p < m, 

E(gp) = O(m2d-l(2p -- m) -2d logmZ(d > O) + m -1 log 2 mZ(d < 0)). 

(c) For 1 <_ p <<_ m/2,  

E(gp) = O ( 1 l~ m " l~ �9 ) 
p2d ~ i - - ~  Z(d > O) + m Z(a <_ O) . 

PROPOSITION 2.2. Assuming A.1-A.4 with r = 2 in A.2, as n ---* oc, 
(a) For'm <_ p <_ q <_ k such that k / n  + m / k  ~ O, 

0(1) if I q -  Pl < m 
mCov(gp,gq) = O(n_ lm+mp_ lq_X /2+ m p_210g2q  ) if m <  Iq -Pl .  

(b) For m/2  < p <_ q < m, 

mCov(gp, gq) -- O ( Z ( d  < 1 ) + l o g  ( ~ + ~ ) Z ( d _ _  ~ ) )  

(c) For l <_ p < q <_ m/2,  

mCov(gp,gq) = O ( Z ( d < l ) §  ~p ] Z  

-'}- 0 [" m2d l~ (m) �9 

(.m2d l~ Z(d > 0)) 
+ O k, (2p - m) 2a+1 - " 

PROPOSITION 2.3. Let k = k(n) be such that k / n  -~ O. Assuming A.1-A.4, as 
n ~ (x), SUpp=l ..... k ]gP] = Op(m-1/2-1/r2kl/r) q- Op(X). 

THEOREM 2.1. Let p = p(n) be such that p-1 + p-1 m + n - l p  ~ O. Assuming 

A.1-A.4, as n ~ oc, ml/2gp d N(O, 1). 

To study the properties of (2.6), introduce the additional assumptions: 
k 1+2/3 k 

A.5. 1 _~ m _[_ ~_ ---+ 0, where/3 is as in A.1 and r as in A.2. --m -k" ~ m(~2+2) / (2r)  

Let s denote the set of continuous Lipchitz functions of order ~. 
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A.6. w(u)  is a positive weight function which belongs to s and such that  w(0) = 
1. 

THEOREM 2.2. Assuming  A.1-A.3, A.5 and A.6, as n ~ co, 

d) A ~0 
1 

~ ,  = hw w(u)du .  

From Theorem 2.2 we observe that  the asymptotic variance of d" is smaller than 
those in Robinson (1995a, b). Indeed, suppose that  w(u)  = 1 - u c. Then, when c = co, 
that  is w(u)  = 1, h 2 = 1/4, our estimator in (2.6) is as efficient as that  of Robinson 

(1995b). However for 1 _< c < co, the asymptotic variance of d'is smaller than 1/4. For 
instance, in the lower end of admissible values of c, that  is c = 1, h~ -- 2/3, so that  the 
asymptotic standard deviation is equal to 1/3, which is 33% smaller than 1/2 obtained 

by Robinson (1995b). Moreover, we observe that the asymptotic distribution of d'does 
not depend on any unknown quantity or parameter. Finally we observe that  A.5 implies 
that  the rate of convergence of d is as close as desired to the optimal semiparametric 
rate of convergence obtained by Giraitis et al. (1997) and achieved by the estimator in 
Robinson (1995a). In particular choosing, say, m = k[loglogk] -~ for any arbitrarily 

small c~ > 0, the rate of convergence of Robinson's (1995a) estimator is faster than d'by 
the factor [log log k] ~/2, which in finite samples is negligible. For instance, for k = 103"2, 
that  is n = 104 taken/3 = 2 in A.1 and c~ = .01, [loglogk] ~/2 = 1.003. This, in terms 
of the M . S . E . ,  which in finite samples gives a better and more accurate measure of the 
performance of an estimator, implies that  the M . S . E .  of d'will still be smaller than that  
of Robinson (1995a). This is confirmed in the Monte-Carlo experiment, where d'tends 
to be much better than the estimators of Robinson (1995a, b) in terms of M . S . E .  On 

the other hand, it should be mentioned that  the rate of convergence of d'is faster than 
that  of Robinson (1995b) by a logarithm factor. 

One, possibly, undesirable feature of the estimator of d given in (2.6) is that it 
depends on a preliminary estimator d. However, it is worth observing that  the choice of 
k 1/2 as the original bandwidth in d appears not to be very crucial. Indeed, this is the 
case as we can always iterate the estimator, that  is, 

d ~ i )  - d'~_ b (d~ i -1 ) ) ,  

where ~i) is the estimator of d at the i-th iteration. More specifically, from the proof of 
Theorem 2.2, in particular part (b), we observe that as long as the original choice of m 

in fp, say m*, satisfies that  m / ( m * )  '~ --+ 0 for some a e (0, 1), after a finite number of 

iterations d ~ )  will have the same asymptotic properties of d. 
A second undesirable feature, from a theoretical point of view, is that  d" does not 

achieve the semiparametric optimal rate of convergence. So, it might also be convenient 
to provide an estimator of d which avoids the need for a preliminary estimator, as well 
as achieving the optimal semiparametric rate of convergence. 

To that  end, we consider the following estimator 

m 

(2.7) = _1 
7/Z 

/)=1 
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m where vp = v ( p / m ) ,  ~ = rn -1 ~-]p=l Vp and 

) "dp=hw E wg log ?) - Wp log L + I  , 
~=1 

with h~o = ( - 2  fg  w ( u ) ( l o g u ) d u )  -1 ,  we = w ( g / p ) ,  Np = p--1 Y'~"e=lP we and L = f(Ap) as 
defined in (2.3) with m = ml there. 

R e m a r k  1. It is worth mentioning that the results of Theorem 2.3 below follow if 
instead of f(A) we use f(A)A However, the Monte-Carlo experiment indicates that the 
finite sample properties of d* are better  when f(A) is used instead of ](A). This is the 

main motivation to use f(A) instead of f(A) in the definition of d-p. 

A 

Before examining the properties of d*, we need to modify slightly the results of 
Propositions 2.1 to 2.3 for those frequencies Ap such that 2p < ml.  Define 

ml/2 
1 

fp = f ( A p ) -  m: + 1 E fJ+P" 
j=--ml/2;jr 

and write/~p =/~(Ap) = f p l  L - 1. 

PROPOSITION 2.4. A s s u m e  A.1-A.4 with  r = 2 in A.2. For 1 <_ p < ~ x ,  as 

/log(rod) O) + l~ < 0)) 
E(~,~) = 0 \ rnl_~ Z(d > "~1 - " 

rnl Var(~p) --- O (:Z (d < 4)-I-log(ml)Z (d = 1)+m4d_lz(d > 1 ) ) .  

PROOF. The proof of this proposition is omitted since it follows by an easy modi- 
fication of Propositions A.1 and A.2 of Hidalgo and Robinson (2002). [] 

PROPOSITION 2.5. A s s u m i n g  A.1-A.4, as n- -~  co, 

sup [/~p[ = Op(1). 
p=l,...,rrt 

Let us introduce the following assumptions: 
A.7. The weight functions w(u )  and v(u)  belong to /2(1/4) and s respectively 

and satisfy that w(u )  ,-~ cu r for some 1/4 < 4 < 1, and v(u)  ,-~ cu as u --* 0+. 
A.8. 1 -t- rn -I-ml+2~ rn5 ~ ~ + ~ + (~2+2)/(2~)m ---, 0, where/3 is as in A.1 and r >_ 3 in 

m 1 

A.2. 
Two comments about A.7 are in place. First, the reason to require that w(u )  ,,~ cue 

as u -~ 0+ with ( > 1/4 is due to a bias problem of our estimate of the long range 
parameter d, cf. the second term on the right of (4.19), that otherwise it would exist 
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in the limiting distribution of ml/2(d "* - d). Second, it is worth noting that  we could 
generalize the weight v(u) to v(u) ~ cuU with the requirement that  ~ < # to guarantee 
that the function x-lw(1/x)v(x) is integrable, but at the expense of strengthening the 
rates of m and ml in A.8. However, for simplicity we keep A.7 as it stands. 

THEOREM 2.3. Assuming A.1-A.3, A.7 and A.8, as n --* oo, 

rnU2(d * d) d 2 2 -- g ( 0 ,  h~(I) ) 

where �9 is 

(~1 v(x)dx) -1 ~01 ((V(U)~01 w(x)dx) - ~u 1 w(u/x)v(X) dx) du. 

Theorem 2.3 indicates that, in contrast with the estimator given in (_2.6), d'* does 
not require a preliminary estimator of d, nor to iterate (2.6) starting from d, and attains 
the optimal semiparametric rate of convergence. Moreover, its limit distribution does 
not depend on any unknown parameter and it is more efficient than those in Robinson 
(1995a, b). However, the asymptotic variance of d'* is greater than the estimator given 
in (2.6), although the difference of the asymptotic variance of d'* and d" is small. As an 
example, choose v(u) = u and w(u) = ~tl/3(1 - ~tl/6), which implies that [h~[(I) -~ 7/17 
instead of (I)~ = 1/3. 

We finish this section indicating that the results of the asymptotic distribution of 
both d'and d'* does not depend on the location of the singularity of the spectral density 
f(A). To that end, suppose that model (1.1) is modified to 

f(A) ~ C]A- A~ -2~ 

where C E (0, oc) and d E ( -1 /2 ,  1/2). 
Write 

m/2 1 (m 
~ = f ' ( A P ) - m ~ _  1 E Ij+p+sZ 3 < 

j=--rn/2 
and 

ml/2 1 
?;---- ?'()~P)- ml -b i E Ij+p+s 

j=--ml/2;j+p~O 

with A~ the closest Fourier frequency to A ~ and define 

with 

as A ~  A ~ 

2 m/2 trt 

j=l 

) d(As) = ? E wplog(fpf_p) - Nlog(~+ , f ' - k -1 )  -- b(d) 
p=l 

m 

d*()~s) = v - i ~ m  Evpdp 
p=l 

d'p _= ~ E wtl~ - @plog(j?p+lJ~-p_,) , 
e=l 
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and fp and fp defined as above. Let us introduce 
A.I'. There exist C C (0, oc), d C (- �89 1) and/3 E (0,2] such that as A --* Ao 

CIA - A~ + o(1  - if /3 _< 1 

f(A) = C I A -  A~ + CIA - A~ + o(1 - if 1 </3  _< 2. 

A.3'. o--~-~ la(A)l = O(I), - as -~ ~0, for = 1 , 2 ,  and where a(A) = 

Remark 2. Assumption A.Y indicates that as the spectral density function does 
not need to be symmetric around ,k ~ r 0 as is the case when A ~ = 0, so that  the 
approximation of f(A) by CIA - A~ cannot be better than O(I)~ - A~ see also 
Hidalgo (2002). 

COROLLARY 2.1. Under the same conditions of Theorem 2.2 with A.11 and A.3 I 
replacing A.1 and A.3 respectively 

(a)  m1/2(3(~s) -- d) d.~ N(O, 4 2) 

and under the same conditions of Theorem 2.3 with A.Y and A.31 replacing A.1 and 
A.3 

(b) ml/2(g*(As) - d) ~ N(O, hw 2). 

PROOF. The proof follows by identical arguments to those of Theorems 2.2 and 
2.3, and thus it is omitted. [] 

3. Monte Carlo simulation 

In this section we shall perform a Monte Carlo experiment to shed some light on 
the finite sample behaviour of our estimators (2.6) and (2.7) of the long range parameter 
d introduced in the previous section. Also, we will examine their relative performance 
compared with some previous sem~parametric estimators of d. 

In particular, the estimators d and d* are compared with three other semiparametric 
estimators. Consider the estimator of the spectral distribution F(A), 

27c [n;V~l 

Tt 
j = l  

Thus, we can obtain an estimator of d by 

1 {  log{F(qAm)/F(Am)}} 
dAVE = ~ 1 - log q 

where q E (0, 1). See Robinson (1994) and Lobato and Robinson (1996) for the asymp- 
A 

totic properties of dAV E. The second semiparametric estimator of d to be considered is 
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the simple closed-form estimator 

d L O G  - -  

1 E j = I  loglj  logj 1 ~ - ] e = l  logg 
m 

( ) ~T~ 1 m 
2 ~-~j~--I logj logj - -  ~ ~ g = l  logg 

This estimator is a slight modification of that of Geweke and Porter-Hudak (1983). 
Although, to provide asymptotic theory for dLoG, as suggested by Kfinsch (1986) and 
Robinson (1995a), requires that an increasing number of frequencies A1,. . . ,  Ae should 
be deleted, we have decided to keep them, on the grounds of easier comparability of 
dLoG with our estimators and the estimator proposed by Kfinsch (1987) and studied by 
Robinson (1995b), which we now introduce. 

T a b l e  1. B i a s  o f  t h e  e s t i m a t o r s .  

S a m p l e  s ize  n : 64 n : 128 n ~- 256 

B a n d w i d t h  m :  4 m = 8  m =  16 m :  8 rn = 16 m : 3 2  m =  16 m ~ - - 3 2  m = 6 4  

d = --0.4 AVE -- .015 - . 1 2 0  - . 1 7 0  -- .023 - . 1 1 0  - . 1 9 0  - . 0 4 0  - . 1 0 0  - . 2 0 0  

L O G  - . 0 1 1  - . 0 8 0  - . 1 3 0  - . 0 0 8  - . 0 7 0  - . 1 2 8  - . 0 1 0  - . 0 6 0  - . 1 2 0  

G A U  .132 .018 - . 0 4 8  - . 0 4 8  - . 0 2 2  - . 0 7 1  - . 0 0 6  - . 0 4 4  - . 0 8 1  

d l  .164 .091 .053 .121 .061 .035 .097 .047 .026 
d2 .196 .122 .080 .150 .089 .059 .123 .072 .048 

d3 .003 .019 -- .003 .053 .047 .011 .108 .056 .004 

d4 .002 .014 -- .010 .048 .039 .001 .100 .045 -- .009 

d = - 0 . 2  AVE - . 0 4 2  -- .032 .047 --.011 - . 0 2 5  -- .043 - . 0 0 3  - . 0 2 1  - . 0 4 9  

L O G  .002 - . 0 1 8  - . 0 3 6  .003 - . 0 1 3  - . 0 3 2  .000 - . 0 0 9  - . 0 3 0  
G A U  .041 - . 0 1 1  .050 - . 0 0 6  - . 0 2 8  - . 0 4 4  - . 0 1 6  - . 0 2 6  - . 0 3 7  

d l  .065 .041 .022 .053 .035 .018 .048 .034 .016 

d2 .083 .058 .037 .068 .049 .032 .061 .046 .028 
d3 - . 0 7 5  -- .010 - . 0 0 8  .004 .025 .014 .052 .037 .015 
d4 - . 0 7 6  - . 0 1 4  -- .013 .001 .021 .008 .048 .031 .009 

d = 0 . 0  AVE - . 1 0 2  -- .052 - . 0 2 3  - . 0 4 6  - . 0 2 6  .010 -- .020 - . 0 1 2  -- .005 

L O G  .004 - . 0 0 4  - . 0 0 1  .002 - . 0 0 1  .000 .001 .002 .000 

G A U  - , 0 3 1  - . 0 2 6  - . 0 2 0  - . 0 2 2  - . 0 2 0  - . 0 1 1  - . 0 2 2  - . 0 1 3  - . 0 0 5  
d l  - . 0 4 7  - . 0 3 1  - . 0 1 8  - . 0 3 0  - . 0 1 8  - . 0 0 9  - . 0 1 7  - . 0 0 9  - . 0 0 5  

d2 -- .042 -- .028 - . 0 1 7  - . 0 2 8  - . 0 1 7  - . 0 0 9  -- .016 - . 0 0 8  -- .004 

d3 - . 1 3 3  - . 0 5 5  - . 0 3 0  - . 0 5 4  - . 0 2 6  - . 0 1 3  - . 0 2 2  - . 0 1 3  - . 0 0 7  
d4 - . 1 3 4  - . 0 5 6  - . 0 3 0  - . 0 5 4  - . 0 2 7  - . 0 1 3  - . 0 2 3  - . 0 1 4  - . 0 0 7  

d = 0 . 2  AVE -- .180 - . 1 1 0  - . 0 5 0  - . 1 0 0  - . 0 5 9  -- .023 -- .060 - . 0 3 6  -- .010 

L O G  .010 .006 .017 .008 .008 .017 .005 .009 .015 

G A U  - . 0 9 9  - . 0 4 4  - . 0 0 4  - . 0 4 1  - . 0 1 7  .004 - . 0 2 0  - . 0 0 1  .009 
d l  - . 1 5 6  - . 0 9 9  - . 0 4 9  - . 1 0 4  - . 0 6 1  - . 0 2 2  - . 0 6 6  - . 0 3 5  - . 0 0 6  

d2 -- .164 - . 1 1 2  - . 0 6 3  - . 1 1 6  - . 0 7 4  -- .036 - . 0 7 9  - . 0 4 8  - . 0 2 0  

d3 - . 1 7 6  - . 0 9 9  - . 0 5 1  - . 1 0 3  - . 0 7 2  - . 0 3 4  - . 0 8 6  - . 0 5 1  - . 0 2 0  

d4 - . 1 7 5  - . 0 9 7  - . 0 4 7  - . 1 0 1  - . 0 6 8  - . 0 2 8  - . 0 8 2  - . 0 4 5  - . 0 1 2  

d = 0 . 4  AVE - . 2 7 0  - . 1 7 7  - . 1 2 0  - . 1 8 0  - . 1 2 5  - . 0 8 0  - . 1 3 0  - . 1 0 0  - . 0 6 0  

L O G  .021 .019 .034 .021 .019 .032 .014 .017 .027 

C A U  - . 1 8 1  - . 0 8 4  - . 0 1 9  - . 0 8 8  - . 0 3 0  .005 - . 0 3 4  - . 0 0 7  .016 

d l  - . 2 5 8  - - .157 - . 0 6 6  - . 1 6 3  -- .084 -- .010 - . 0 9 0  - . 0 2 9  .029 

d2 - . 2 8 1  -- .185 - . 0 9 5  - . 1 9 1  - - . I 12  - . 0 3 9  - . 1 1 8  - . 0 5 7  .002 
d3 -- .222 - . 1 4 3  - . 0 6 9  - . 1 4 8  - . 1 0 4  - . 0 3 8  - . 1 3 2  - . 0 6 4  -- .006 

d4 - . 2 2 1  -- .138 - . 0 6 1  - . 1 4 4  - . 0 9 5  - . 0 2 6  - . 1 2 2  --.051 .008 



ESTIMATION OF THE LONG-RANGE PARAMETER 715 

Consider the objective function 

m 

Q(C,d) 1 Z { l o g C / ~ ; 2 d _ { _ c _ l  2d : - b } -  
m j= t  

Then, Robinson's (1995b) est imator is defined as 

• a u  = a rgmin  log ,kj I j  - 2d 1 E l o g ) ~ j  . 
d~(-1/2,1/2) j=l m j=l 

Using an algorithm of Davies and Harte  (1987) and the random generator G 0 5 D D F  
from the NAG library, Gaussian t ime series were generated with  mean zero, variance 
uni ty and lag-j autocovariance 

1 1124+1 21jt2d+l 112d+l). 7j = ~(IJ + -- + ]J -- 

T a b l e  2. S t a n d a r d  d e v i a t i o n  o f  t h e  e s t i m a t o r s .  

S a m p l e  size n = 64  n = 128 n = 256  

B a n d w i d t h  m = 4 m =  16 m = 3 2  m =  8 m =  16 m - - - - 3 2  m =  16 m = 3 2  m =  64 

d = - 0 . 4  A V E  .560 .407 .303 .382 .297 .216 .277  .209 .155 

L O G  .627  .350 .216  .350 .216 .139  .217  .140 .089 

G A U  .307  .173 .084  .190 .104 .051 .121 .071 .034 

d l  .141 .113 .086 .115 .086 .062 .084 .060 .043 

d2 .125 .104 .081 .104  .080 .058 .077  .056 .040 

d3 .149 .115 ,086 .124  ,091 ,066 .084 .064  .046 

d4 .148 .114 .085 .123  .091 .066 .085 .065 .047  

d = - 0 . 2  A V E  .493 .340 .239  .325 ,239 .168 .230  .164 -119 

L O G  .628 .341 .207  .350  .212 .135 .212 .134 .089 

G A U  .345 .239 .159 .244 .161 .109 .166 .109 .073  

d l  .139 .114 .088  .113 .085 .060  . 08 t  .058  .041 

d2 .119 .101 .080  .100 .077 .056 .074 .053 .038 

d3 .209 .142 .106 .140 .094 .068 .080 .062 .046 

d4 .209 .143 .108  .141 .095 .070  .081 .063 .047  

d = 0 . 0  A V E  .436  .284 .188  .276 .193  .128 .187  .130  .091 

L O G  .628 .340  .208  .348 .214 .135 .210  .134 .089 

G A U  .366 .270  .175 .268 .175 .111 .173  .110 .071 

d l  .141 .119 .094  .117  .088 .063 .084  .060 .043 

d2 .120  .105 .084  .103 .080 .058  .077  .056  .040 

d3 ,247  .150 . i i i  .146 .096 ,071 .081 ,064 .048 

d4 .248 .152 .113  .148 .098 .073 .083 .066 .049 

d = 0 . 2  A V E  .383 .232 .144  .228 .150 .094 .146 .099 .066 

L O G  .631 .342 .209  .348 .213 .135 .209 .134  .089 

G A U  .362 .266 .173 .264  .175 .111 .172 .109 .073  

d l  .151 .131 .104 .129 .100 .073 .086 .070  .051 

d2 .128 .116 .094 .114 .090 .067  .095 .065 .047  

d3 .268 .160 .121 .155 .105 .079 .089 .072 .054 

d4 .270  .163  .124  .158 .108 .081 .091 .075  .056  

d = 0 . 4  A V E  .333 .183 .105 .178 .109 .065 .109 .065 .050  

L O G  .625 .343 .213 .350 .216 .135 .213 .137  .090  

G A U  .333 .222 .134 .221 .138 .091 .142 .094 .065  

d l  .162  .144  .114  .143  .112 .083  .110  .084  .059  

d2 ,140  .131 .108  .129  .105 ,081 .103 .081 .061 

d3 .262 .164 .124  .162 .117 .089 .105 .088 .066 

d4 .263  .165 .125 .164  .119 .090 .108 .089 .066 
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The corresponding spectral density function satisfies A.1 with /3 -- 2. Five different 
values of d were employed, d = -0.4, -0.2,  0, 0.2 and 0.4. The sample sizes chosen 
were n = 64, 128 and 256. When the estimator d given in (2.6) was employed, for each 
sample size, three different values of k were chosen: n/16, n/8 and n/4, while m was 
chosen as k /max{ l ;  [log logk]} where [z] means the integer part of z. Meanwhile for 

the estimator d'* in (2.7), for each sample size three different values of m were chosen: 
n/16, n/8 and n/4, while ml = m~176 log m]. Observe that this choice of ml satisfies 
A.8 with r -- 3. For each (d, n, k) and (d, n, m) combination, 5000 replications were 
generated. In Tables 1-3, we have reported the bias, standard deviation and M.S.E. of 
the estimators used in the Monte Carlo experiment. 

We should point out that  although no asymptotic theoryis  available for dAVE when 
d = -0 .4  or -0.2,  or that the asymptotic distribution of dAVE when d = 0.4 is not 
Gaussian, see Lobato and Robinson (1996), (it follows a Rosenblatt distribution, see 
Taqqu (1975) for a definition), we have included it to gain some insight about its finite 

T a b l e  3 .  M S E  o f  t h e  e s t i m a t o r s .  

S a m p l e  size n = 64  n = 128 n = 256  

B a n d w i d t h  m = 4  m = 8  r n =  16 m = 8  m = 16 m = 3 2  m =  16 rrt = 3 2  r n = 6 4  

d = - 0 . 4  A V E  .314 .180 .121 .147  .100 .083  .078  .054 .064 

L O G  .393 .130  .064 .122 .051 .036 .047  .023  .022 

G A U  .117 .030 .009 .040 .011 .008 .015  .007  .007 

d l  .047 .021 .010 .028 .011 .005 .016 .006 .002 

d2 .054 .026 .013 .033 .014 .007  .021 .008 .004 

d3 .022 .013 .007  .018 .010 .004 .019 .007  .002 

d4 .022 .013  .007 .018 .010 .004 .017  .006 .002 
d = - -0 .2  A V E  .245 .117  .059 .106 .058 .030 .053  .027  .017  

L O G  .394 .117  .044 .123 .045 .019 .045 .018 .008 

G A U  .121 .070 .028 .060 .027  .014 .028 .013 .007 

E 1 .023 .015 .008 .016 .008 .004 .009  .004  .002 

d~ .021 .014 .008 .015 .008 .004 .009 .005 .002 

d3 .049 .020 .011 .020 .009 .005 .009  .005 .002 

d4 .049 .021 .012 .020 .009 .005 .009  .005 .002 
d = 0 . 0  A V E  .200 .083 .036 .080 .038 .016 .035  .017  .008 

L O G  .394 .116 .043 .121 .046 .018 .044  .018 .008 

G A U  .135 .074  .031 .072 .031 .012 .030  .012 .005 

d l  .022 .015 .009 .015 .008 .004 .007  .004 .002 

d2 .016 .012 .007  .011 .007  .003 .006  .003 .002 

d3 .079 .026 .013 .024 .010 .005 .007  .004 .002 

d4 .080 .026 .014 .025 .010  .005 .007  .005 .002 

d = 0 . 2  A V E  .180 .065 .023 .062 .026 .010 .025 .011 .004 

L O G  .398 .117  .044  .121 .045 .018 .044  .018 .008 

G A U  .141 .073 .030 .071 .031 .012 .030  .012 .005 

d l  .047 .027  .013 .027  .014 .006 .013 .006 .003 

d2 .043 .026 .013 .026 .014 .006 .014  .007  .003 

d3 .103 .035 .017  .035 .016 .007  .015 .008 .003 

da  .103 .036 .018 .035 .016 .007 .015  .008 .003 
d =  0.4  A V E  .183 .065 .025 .064  .028 .010 .029  .014  .006 

L O G  .391 .118 .046 .123 .047  .020 .050  .019 .008 

G A U  .176 .056 .018 .057  .020 .008 .021 .009 .004 

d l  .093 .045 .017  .047  .020 .007 .020  .008 .004 

d2 .099 .051 .021 .053 .024 .008 .024  .010 .004 

d3 .118 .047  .020 .048 .024  .009 .028 .012 .004 

d4 .118 .046 .019 .047  .023 .009 .027  .011 .004 
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sample statistical properties. For our estimator d, two different weights Wp have been 
used. Namely, wp = 1 - p / k  and wp = 1 - (p/k) ~/2. These would be denoted as 

and ~ respectively in Tables 1-3, while for d"*, we have chosen the weights we = 
( e / p )  1/a - ( e / p )  1/4 and we = ( e / p )  1/a - ( e / p )  1/2 and Vp = p/m. These estimators are 

denoted by d'3 and d'4 in the aforementioned tables. A word of caution is needed at this 
stage. Since the purpose of this Monte Carlo experiment is toAgain some insight with 
regard to the finite sampleperformance of our estimators, for da and d'2 we have used 
the "unfeasible" estimator d - b(d), that  is, (2.6) but with b(.) evaluated at d instead of 
d. Finally , in Tables 1-3, AVE, LOG and GAU will refer to the estimators dAVE, dLoa 
and daAg, respectively. 

From Table 1, we observe that for ~ ( i  = 1, . . .  ,4), there is a negative bias if d > 0 
while that bias turnsposi t ive for d < 0. It seems that dl and ~ have a bias bigger 
than that for d'3 and d4 and dAVE, dLoa and daAu. The standard deviations in Table 2 

A A 

decrease as both n and m or k increase, being the performance of dl and d2 better 
than that of d'3 and d'4 as the results of Theorems 2.2 and 2.3 suggest. In almost all 
cases, ~ ( i  = 1 , . . . , 4 )  are better than dAVE, dLoa and dGAU- The M.S.E. in Table 3 
shows similar results, being the overall picture from the Tables, that our estimators 
qualitatively tend to outperform dAVE, dLoa and dcAu, not only asymptotically but in 
small samples too. In many cases, the reduction of the M.S.E. of di(i = 1 , . . . ,  4) is very 
substantial compared to the M.S.E. of dAVE, dLoa and daAu. 

4. Proofs 

4.1 Proof of Proposition 2.1 
(a) By Robinson's (1995a) Theorem 2(a), and noting that we have f i  instead of its 

approximation C )~ 2d, 

K ypl m/2 
log(j § P) fi+p = O( m-1 logm), 

E(9,,) - (m + 1) i = - m / 2  J + p 

since (j §  log(j +p)  < Km -1 log m for m < p where henceforth K denotes a generic 
positive finite constant. 

(b) By Robinson's (1995a) Theorem 2(a), E(gp) is bounded by 

m/2 (log2 mz (  d m2dlog m ) K log(j + p + 1) fi+p = O < 0) + Z(d > 0) 
Z j+p L (2p- ' j=-m/2 

2d by Lemma 5.2 with r = 1 and a = 1 there and since by Lemma 5.4 K -1 <_ fp~m <- K. 
(c) Let e be a f in i te  number 0 < g <_ m/2. Because p < m/2, E(9p) is 

(4.1) | Z  fi+p (Eli+p- fi+p)+ E (EIi+p- fi+p) �9 
j = e + l  

By Theorems 1 and 2 of Robinson (1995a), the first term of (4.1) is bounded by 

K fj+. ~ fj+p = 0 m 2 a - ~ p - 2 d e Z ( d  > 0) + Z(d < 0) 
\j=l j=l 
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2d because fj+p < Kn2d(p-2dZ(d > O)+m-2dZ(d < 0)) and by Lemma 5.5, K -1 < fP)~m <- 
K. The second term of (4.1) is, by Theorem 2(a) of Robinson (1995a), 

K m/2 )--1 m/2 l___o____mmf. = 0 (p2~Og~lm_2d~f.(d > 0) + l~ mZ(d <- 0)),  

using Lemma 5.3 with r -- 1 and a = 1 for the second factor on the left of the last 
N 2d displayed equation and that  Lemma 5.5 implies K -1 <_ fpAm <- K. Now conclude since 

is finite. [] 

4.2 Proof of Proposition 2.2 
We begin estimating the covariance of the spectral density estimator. Writing Cj,p = 

(,~ + 1)-lZ(m/2 < p) + 2/mZ(p <_ m/2)Z(j > 0), 

(4 .2 )  C o v  ~)j,pXjTp, E Cj,qijwq 
\j=--m/2 j=--rn/2 

m/2 
= E CJ,PCk,q47r12n 2 

j ,k=-m/2 
n 

X E {~/( t l  - -  t 2 ) ~ ( S l  - -  S2) ~- ~/( t l  - -  82)"/(81 --  t2 )  
t 1 ,t2,81,82 = 1 

-~- e u m ( x t l ,  xt2, xs 1 , Xs2)}  

x exp ( - i ( t l  - Sl)Aj+p + i(t2 - s2)Ak+q). 

Because ~/(t) = f~-r eit~f(w) dw, by an obvious change of variables, the first term on the 
right of (4.2) is 

m/2 
(4.3) 1 

47r2n 2 E 
j,k=--m/2 

Cj,pCk,q { ( f  H(O1)H(Ak+q_j_p-O1)f(Ol +,~j+p)d01) 

x ( /  H(-O2)H(O2 +,\j+p-k-q)f(O2 -, k+q)d02) } , 

the first factor 
and subtracting 

n where H(O) = ~e=l eie~ is the Dirichlet's kernel. We examine 
inside the braces of (4.3), the second being identical. Adding 
fj+p f H(O1)H()~k+q-j-p - O1)d01, that  factor is 

. i  H(O1)H(Ak+q_j_p - 01)(f(01 + Aj+p) - fj+p)dO1 (4.4) 

-t- fj+p / H(O1)H(Ak+q_j_p - O1 )dO1. 

By Theorem 2 part  (e) of Robinson (1995a), the absolute value of the first term of (4.4) 
is bounded by 

max(log(k + q), log(j + p)) 
Knfj+p min(( j  + p), (k + q)) ' 
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whereas the second term of (4.4) is zero unless (k+q) = (j +p), in which case is 2~rufj+p. 
Hence, as n ~ ec, (4.3) and thus the first term on the right of (4.2) is bounded in absolute 
value by 

(4.5) 
m/2 (max(log(k + q),log(2 _+ p))~2 

K E Cj,pCk,qfj+pfk+q 
j,k=-m/2 \ min((j  + p), (k + q)) ] 

( log( j  + p) 
+ K F ,  Cj, r \ + Z(q-  < m), 

j+p=k+q 

X-,m~2 where ~j+p=k+q means the terms in z--~j,k=-,~/2 such that j + p = k + q. 
By the same arguments, the second term on the right of (4.2) is in absolute value 

bounded by 

(4.6) 
m/2 

K E Cj,pCk,qfj+pfk+q (max(log(k + q),log(j +_ p))~2 
j,t~=-m/2 ~. min((j  + p), (k + q)) ] 

+ K E Cj,pCk,qfj+pSk+q ( log!j_+ p) + 1) Z(q + p < m), 
j+p=-(k+q) ~" 2 + p - 

where Y:~j+p=-(k+q) denotes the terms in the double sum such that j + p = - ( k  + q). 
Next, we examine the contribution from the third term on the right of (4.2). Apply- 

ing formulae of Brillinger (1981, (2.6.3) page 26, and (2.10.3) page 39), the contribution 
is bounded in absolute value by 

(4.7) K 
n 2 

~/2 

j , k=-m/2  J[--Ir'lr]a 

x H(A + Ay+p)H(p - Aj+p)H((~ - ha+q) 

x H(Ak+q - (A + # + r162 

K m/2 
= re-- ~ ~ r I~(~J+p)~(--AJ+p)~(~k+q)~ (-- ~k+q) I 

j,k=-m/2 

• f ( ~ ( - - A ) a ( - # ) a ( - ~ ) a ( ~ +  # + ~) 
J,_ 

• H(A + ~j+p)H(tt - Aj+p)g(fi - Ak+q) 

H(Ak+q - (A + # + i ) ) )  dAdttd~ , X 

where we note that since f(A) > 0 for A > 0, it implies that la(Aj+p)l and la(Ak+q)l > 0 
since (j + p) and (k + q) > 0. Because 

~[_ H(A + Aj+p)H(# - Aj+p)H(~ - Ak+q)H(Ak+q - (A + + ())dAd#d( # 
7r)T(]3 
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is equal to (2~r)an, using the identity 

2 4 

CLC2C3C4 = (CIC2 - -  1)(c3c4 - 1) + E ( c 2 e _ l  - 1)(c2~-  1) + ~--~(ci-  1) + 1, 
g = l  i=1  

and proceeding as in the proof of (4.31) in Robinson (1995b), the right side of (4.7) is 
bounded by 

(4.8) 

Thus, 

m/2 

K ~ Cj,pCk,qla(Aj+p)Ol(--Aj+p)O~(Ak+q)O~(--Ak+q)l 
j ,k=-m/2 

x + +.+P.-1/2.k+q.-11J I I I 

+ [j + pl - l lk  + q]-1/2 + n-1/2lj + p[-1/2lk + q[-1/2). 

(4.9) (4.2) ---- (4.8) + (4.5) + (4.6). 

With  these preliminaries, let us examine the covariance of the spectral  density esti- 
mator.  

We begin with part  (a). The  first te rm on the right of (4.9) is O((n-1 + 
p-lq-1/2)fpfq) by Lemma 5.1 with r = 0, a = 1 and b = 0 there and observing 
tha t  (j + p) > p/2 for p _> m. Next the second te rm on the right of (4.9), tha t  is (4.5). 
Proceeding as with (4.8), the first t e rm of (4.5) is O(fpfqp -2 log 2 q), whereas the second 
te rm of (4.5) is zero unless q - p  < m,  in which case is bounded by 

K m/2 

(m + l)2 
j=--m/2 

f]+pZ(q - p < m) = O ( m - l  f2Z(q - p <_ m)) 

since (j + p ) - I  log(j  + p) < K and by Lemma 5.1 with r = 0, a = b = 1 and p = q 
there. Finally, proceeding as with the second te rm of (4.9), the third te rm on the right 
of (4.9) is O(fpfqp -2 log 2 q) after observing that  because p + q > m,  the contribution of 
the second te rm of (4.6) is zero. 

Thus, because for q,p > m, K -1 < fpl"fp _ 1 < K by Lemma 5.1, when q - p  > m, 

Cov(gp, gq) = O(p -2 log 2 q + n -1 + p-1q-1/2) = O(n-1 -t- p- lq-1/2 + p-2 logs q), 

whereas if q :t: p _< m 

Cov(gp, gq) = O(p -2 log 2 q -+- Tt -1 + p-1q-1/2 _}_ m - l )  = O(m-1) .  

This concludes the proof of par t  (a). 
Next (b). The first t e rm on the right of (4.9) has three typical components,  namely, 

~/2 ~12 m12 

F_, }2  r +p1-1/2 and  j,,fj+ lJ + ;1-1. 
j=-m/2 j=--m/2 j=--m/2 
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So by Lemma 5.2 with a = 1, for d > 1/4, the first term on the right of (4.9) is A~ 4d 
times 

O(n -1 § n-1/2rnad-2(2p _ m) 1-4d 4- rn4d-2(2p _ m) -4d 4- m4d-2(2p _ m)l/2-4d). 

When d = 1/4, it is A~ 4d times 

( 1  1 ( 2 _ ~ + m )  1 ( ( 2 p p ~ m )  1 1 ) )  
0 + ~ l o g  2 - - - -  + - -  log 

m + (2p m) 

whereas for d < 1/4, it is o(m-lA~4d). So, the first term on the right of (4.9) is 

(4.10) 0 ?'t 4- ~4-~_4d (2p -- m )  1-4d Z ( d  > 1/4) + o Z(d < 1/4) 

4- O ( )~m4n d )~m 4d ( 2~pp 4- m ) ) + log -- (2 v - m) -1/2 1-(d ~- 1/4). 
Tn m 

Next, the second term on the right of (4.9), that  is (4.5), whose first term, by Lemma 
5.2 with ~b = 2 and a = 1 there, is A~ 4d times 

[l~ d l~ m.T,( d ) 
0 l, m 2 < O) 4- - - r r t 2  = O) 4- O(m4d-2(2p -- m)-4dj[(d > 0)) 

+ O(m2d-l(2p -- m) -2d-1 log 2 mZ(d > 0)) 
= O(m4d-2(2p -- m)-4dZ(d > 1/4)) + o(m -1) 

+ o(m2d- (2p _ log2  Z(d >_ o)) 

using for the second term on the left that  x-blogx < K for x > 1 and b > 0. The second 
term of (4.5) is bounded by K ~-]m/2 2 2 Am4d j=--m/2 Cj,Pf)+P which is times 

(4.11) O (  z(d < + log \2~-{2p+ m )  Z(d= ,l_4dI(d > 1 /4 ) )  + (2:0-  . 

Finally, the third term on the right of (4.9), proceeding as with the second term, is ~n  4d 
times 

(4.12) O(7Ft2d--l(2p -- m) -2d-1 log 2/Yt~(d > 0)) 4- (4.11) 

2d~ Then, gathering (4.10)-(4.12) and that  by Lemma 5.4, K -1 ~ Amf p ~ K, 

which concludes the proof of part  (b). 
Finally, part (c) follows by identical arguments to those of part  (b) but using Lemmas 

5.3 and 5.5 instead of Lemmas 5.2 and 5.4 respectively. [] 
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4.3 Proof  of  Proposit ion 2.3 
From Hidalgo and Robinson's (2002) Proposition A.1 and Proposition 2.1, it suffices 

to examine fp-l(fp _ Efp). On the other hand, Hidalgo and Robinson's (2002) Proposi- 

tion A.3 part (a,b) implies that it suffices to examine the behaviour of ]'pl ( fe ,p-  Ere,v), 
where 

m/2 1 m 2 m/2 ( ) ( m) 
" f ~ , p = ~ ( A p ) -  m - + l  E f j+pI~,j+pZ ~ < p  + - - m E f j + p I ~ , j + p Z  O < p < _ - ~  

j=--m/2 j = l  

and Ie,p = Ie(Ap) denotes the periodogram of et. We only examine SUpp=l+m ..... k • 

[fp-l(fe,p- Es 2, being SUpp=l ..... m I ] 'p l ( fe ,p-  E s  2 similarly handled. 

Because supj ]aj] 2 = (supj laj]r) 2/r, (SUpp=l+m ..... k Ifpl  (fe,p -- Efe,p)12) r/2 is 
r 

sup Cj+p,p( (27r)I~,j+p - 1) 
p=l+rn,...,k m ~- 1 

j = - m l 2  

where Cj,p = f p - l f j .  The last displayed expression is bounded by 

(4.13) 2~-1 supsup ( 1 q p m-+ 1 (r - 1) 
j=--m/2 

\ r 

- Cj+~,p((27r)Ie,j+s - 1))) 
/ 

+ 2 ~- 1 sup sup 1 q p m +------1 E Cj+s,p((27r)Iej+s - 1) , 
j=-rn /2  

where SUpq and SUpp mean SUpq=l+m(r-1)/r,...,k/ml/r and SUpp=l+s_rnt/r,...,s respectively, 
and s = qm U~. 

The second term of (4.13) is bounded by 

q p m + 1 Cj+s_ra/2,p((27r)Ie,j+s_m/2 -- 1) 
j=0 

m - - 1  

< K sup sup 1 
_ 

j=O 

1) r m 

1 E ( ( 2 7 r ) I e , j + s _ m / 2  _ , +KsupSUpq P ICJ+s+m/2'Plr ~ j=o 

by Abel summation by parts. Now by A.1 and A.3 and that Lemma 5.1 implies that  
K -1 < If~lfp] < K,  we have that 

ICj+s-m/2,p - Cj+s+l-m/2,p] <-- K fp - l ( j  + s - m / 2 ) - l - 2 d n 2 d  
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( )2d P (j + s -  m/2)  - t .  
< K j + s - m / 2  

So, using that supe a~ < ~-~4 a~ the right side of (4.14) is bounded by 

sup (j + s - m / 2 )  -~  
rn + 1 j + s - m / 2  ] q=l+m(r-1)/~ j=0 

+ K  
k/m '/~ ~ m 1) ~ 

E 1 E ( ( 2 7 r ) i e , j + s _ m / 2 _  
q=l +rnO'- a )/," j = 0  

whose expectation, proceeding as in the proof of Brillinger's (1981) Theorem 7.4.4, is 
bounded by 

K 
L s - m / 2  m (j + s - m /2 )  ~ q=l+m(~-l)/r "= 

k / m x / ~ ( (  s i , , / /  ) (k)rrt r/~+l/r < K Y ~  - : - ' 2 "  + ~ - ~ / ~  = O 
q=l+rn (  ~ D/r  

because d < 1/2 and s < 2(s - m/2)  since s < 2(s - rn/2) and q > 1 + m (~-1)/~ 
we conclude that the second term of (4.13) is O(k/mr /2+l / r ) .  

Next, we examine the first term of (4.13). Because 

Thus, 

m 

ap,m = E(OJ+v-m/2,p((2r)I~, j+v_m/2 - 1) - Oj+,_ra/2,v((2~r)Ie,j+8_m/2 - 1)) 
j=O 

has at most rex~r~2 terms, each of which is Op(1) uniformly in j by Chen and Hannan 
(1980), that term is bounded by 

klmlJr ( kl llr) __ ap,m r 1 
mK E SUpp (m + 1)(r-l)/r  = Op mr_------ ~ E 1 

q=l+ra(~-l)/*" q=l+m(,'-l)/,- 

k 
= O P ( m r / T + l / r  ) " 

Thus, to conclude the proof, we are left with SUpp:l ..... m I f ipl(~,p - Ef'e,p)] 2" Pro- 

ceeding as with SUpp=l+ m ..... k [ fp l (~ ,p  _ E•,p)12 and observing that SUpq runs, in this 
case, for q = 1 , . . . ,  m(~-l)/r ,  the only term which is slightly different is the one corre- 
sponding to (4.14), whose expectation is bounded by 

m +  1 E E s u p  E ((27C)Ie,~+8_m/2 - Z p > -~ ) 
q=l j=l p J + p + l - m / 2  = 
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< - -  

rn ( ' - i ) / ~  m/2 r 
+ - -  Z Zsu  

m + l  q=l j=i  p j + p + l  

m ( ' ' -  D/~ m 
K j-,V2 

Z Z 
q = l  j = l  

r 

e=~l((27r)I~,e+~ - 2- p < E 

using Lemmas 5.2 and 5.3 instead of Lemma 5.1 and r _ 2. (Observe that  Lemmas 5.1 
and 5.2 coincide for p = m there.) Thus 

( k 1/r ) 
~up I?;'(L-L)I=O~\mX/-~/,~ +oAO. p=l,...,k 

F1 

4.4 Proof of Theorem 2.1 
Write 

( m/2 ( ~ p + ~ ) ) - l [ ? p ;  gp-- m/2 ( f p + j ~ { I p + j  1} 
1 1 Z \--f-p-p ] ~ " gp 

j=--m/2 

Because uniformly in j = - m / 2 , . . . ,  m/2, fplfp+j __~ 1 by A.1, we have that  when 
m/p --+ O, by a direct use of Toeplitz's Lemma (see Stout (1974)) and Proposition 2.2 
part (a), the limiting distribution of ml/2gp is that  o f  ml/2Op where 

m l / 2 m / 2 {  } 
ml/~p = ~ I,,+j 1 

m + l  ~ " j=-m/~ 

But, by an obvious extension of Robinson's (1995b) Theorem 2, ml/20p d N(O, 1). [] 

4.5 Proof of Theorem 2.2 
The theorem is proved if 

(a) ml/2(d - b(d) - d) d N(O, @2) and (b) ml/2(b(d) - b(-d)) p O. 

We begin with (a). By definition d--  b(d) - d = h,o(al + a2 + a3) where 

k 

al = E wp(log /5)-  (log 
p = l  

k 
1 

a2 = ~ ~ w,(log L/7~)-  ~(log L + l / f k + l )  

p = l  

k 
1 

a3 = -k Z wplog(fp//;+l) - h; l  a. 
p=l 

So, it suffices to show t h a t  ml/2al d N(0, @~),2 a2 = o(m -1/2) and a3 = 0(m-1/2). 
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We begin showing that a3 = o(m-1/2). By the definition of fp and hw, 

( lp_~ 1 ( > ]~1 ) P w(u)(logu)du a 3 = - 2 d  ~ wplog ~ - 

By Lemma 2 of Robinson (1995b), k -1 k ~-]p=l log(p/k) + 1 = O(k -1 log k), whereas since 

A.6 implies that W(u) = (w(u) - 1) log u has an integrable derivative, k -1 y]p=l(w p k  _ 
1) log(p/k) - f3 W(u)du = O(k -1) by Brillinger ((1981), p. 15). Thus, by A.5, a3 = 
O(~ -1 log k) ~- O(/Ft-1/2). 

Next, we examine a2 -- a21 + a22, where 

1 m/2 
a21 = ~ E wp(log fp/fp) 

p=l 

1 ~ wp(logfp/- fp)-(k  ~Wp)(logfk+l/ fk+l) .  a22 ~-- 
p=rn/2+l p=l 

By A.1, if m/2 < p <_ (k + 1) = o(n) 

----1 C Aj+p - 

~ l ~ p _  1 -- fp m+ 1 
j = - - m / 2  

m/2 
1 + KT;1 1 ) -2d+f~ 

m + 1 "---" 
. , j+p  

j = - m / 2  

m/2 
Kfp-1 1 m + 1 E " -2d+Z < KAZ. m'2 = O(A2~p) = O(A~k)- ----- Aj+p __ P~- / 

j=--ra/2 

Thus, by the mean value theorem, 

1 
f P - 1  I ~(7; 1L - [l~ (~-p - 1 + 1) I ~- [~pp 1 +  1) 

for some ~ = ~(p) with ]El < 1, which implies that rnl/2a22 = O(ml/2A~2k ) = o(1) by A.5. 
For 1 < p <_ ra/2, 

,~/2 1 ,~/2 
--1 1 E( f j+p  -2d 7;15 l = f p  m - - CAj+p) _< K T ; l m  ~ ..j+px -2d+'  = O(A~). 

j=l j=l 

Then, proceeding as with a22, we conclude that rn'/2a21 = O(m 3/2A~/k) = o(ml/2A~) 
by A.5, which implies that m1/2a2 = o(1). 

To complete the proof of part (a), we need to show that rnl/2al d 2 N(0, To 
this end, it suffices to show that 

,415,  bk 2 2  = - hw ~w) 
p=-I 

and 
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(4.16) mU2al - bk = %(1). 

We show (4.15) first. Write ck ( m l / 2 / k )  k = ~p=l Wpgp. Then, 

. 1/2 {m/2 m-1 } 
E(ck) -- k E wpE(gp) + E wpE(gp) + E wpE(gp) . 

p=l p=lWrn/2 p=m 

By Proposition 2.1 part (c), the first term on the right of the last displayed equation is 

o(l~-~(m2d_U21ogm . l o g 2 m -  ) )  

which is o(i) by A.5, whereas Proposition 2.1 part (b) implies that the second term is 
bounded by 

K~---ml/2 rn--IE ( l~ mS(d < 0 ) +  logmZ(d > 0) 
\ - 

= o (mU2kg2 m)  . 

Finally, the third term is O(m -1/2 logm) = o(1) by Proposition 2.1 part (a) and A.5. 
Next, the variance of Ck is bounded by 

(4.17) m K  Var E Wpgp + Var 
p=l 

The third term of (4.17) is 

E Wpgp 
p=l+m/2 

+ Var E Wpgp . 
p=m 

K k 2K k 
m ,  ~-~ E w2Var(gp)+ ~ -  E 

p=m rn < p< q 
wvw ~ Cov(gp, gq) 

= 0  + k'--T E Cov(gp,gq) 
m<_p<q 

because Proposition 2.2 part (a) implies that mVar(gp) = O(1) for p > m. The second 
term is bounded in absolute value by 

, ) k2 Varl/2(gP) Varl/2(gq) + E [ Cov(gp, g.)l 
m<_p<q,]q-pl<_m m<p<q,]q-pl>m 

= o(1) 

as we now show. By Proposition 2.2 part (a), the second term on the left is 
O i k - l m V - . k  / -1 t L p = m [ n  + m - 3 / 2 ) )  = 0(1) because p,q  > m implies p-1q-1/2 < m-3/2, 

k whereas the first term is also o(1) because the sum ~-~m<_p<q,lq-pr<m has at most km 
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terms and by Proposition 2.2 part (a) and by A.5, Var(gp) = 0(?7% -1) and m/k  ~ 0 
respectively. So, we conclude that the third term of (4.17) is o(1). 

Next, the second term of (4.17) is bounded by 

m 2  r n - 1  

K - ~ -  E Var(gp) = o(1), 
p~-l-t-rn/2 

since by Proposition 2.2 part (b), it is O(k-2(m 2 +m 1+2d log 2 m)) = o(1) if d �9 (_15, �88 
3rn/2  for d = 1/4 using that Im -1 ~p=l l~ ~ If:/2 l~  v +  1))dv] <_ K, and 

for d �9 (�88 �89 since 

( m23~2rn4d-2m1+2dl~ (m2+ml+2dl~  
0 - ~  ] k2 , p4d-1 q- k2 = O = O(1) 

using that m -1 y'~.p=~l(p/rn)l-4d <_ K. Finally, the first term of (4.17) is also o(1) using 
Proposition 2.2 part (c) instead of part (b). Thus, we obtain that 

= -  h~  ( ~ )  
p = l  

since by Theorem 2.1 the first term on the right converges in distribution to a 
N ( 0 ,  - 2  2 

Next we show (4.16). First, for any arbitrary e, 77 > 0, 

Pr{,ml/2 al -bk,  > e} = Pr { ,ml/2 al -bk,  > e; sup ,gp, 

+ Pr ~ frnl/2a I - bkl > e;sup Igpl < r]~. 
L P ) 

The first term on the right converges to zero since by Proposition 2.3, with r = 2 there, A 
SUpp Igp = fp/fp - 11 = Op(1). To show that the first term on the right converges to zero, 
since [ l o g x  - (x - 1)1 _< 2 - 1 ( x  - 1) 2 for x ~_ 1, by Markov inequality it suffices to show 
that 

mU2 k 2 (4.18) k E ( E g 2  + Egk+l) 
p = l  

- -  k (Var(gp) + Var(yk+])) + E(E2(gp)  + E2(gk+,)) 
= p = l  

is o(1), which is the case by Propositions 2.2 and 2.1 respectively. This concludes the 
proof of (a). 

Part  (b). By mean value theorem m 1/2 (b(d) - b(-d)) = Op(m 1/2 (d--d)b'(d)) + on(l). 
But b'(d), except the constant h~, is 

kl/2/2 X-'~kl/2/2 k x-"kl/2/2 ) 
2 A.~j= 1 ~gj,p 2..,,j=_k1/2/2 ~9j,p 

p = l  ~--Jj =1  ( J  -}- p ) - 2 d  P=kl/2/2+ 1 Z"~J=-kl/2/2~'J 1-'1 
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2 2_,j=_kl12/2 ~j,k 
+ -k wp ~k~/~12 , .  k)_2d 

2...,j=_kl/2/2~. ] -}- 
= O(k -1/2 log k), 

where ~j,e = (j + g)-~d(log((j + ~)/~) -- 1) uniformly in d E (-1/2,  1/2). So, 

ml/2(b(d) -- b(-d)) = Op(k-3/nm 1/2 log k) = Op(1) 

by A.5, because (d -d )  = (-d-d-b(d))+b(d) = Op(k-1/4+k -1/2 logk) from the proof of 
part (a) with m = k 1/2 there and that by straightforward algebra b(d) = Op(k -W2 log k). 
This concludes the proof of part (b) and the theorem. [] 

4.6 Proof of Proposition 2.4 
Let ml/2 

L,p  = L( '~p)  = (?Ttl -'[- 1) -1 E flJ+PlIe,lj+Pl" 
j=-mt/2;j#--p 

Proceeding as in the proof of Proposition 2.3, it suffices to examine 
supp=l ..... I r a ' ( L , , -  EL,,)I. Proceeding as with SUpp=l+m ..... k I?pl(?e ,p  - EL ,p ) I  2 in 

Proposition 2.3 and observing that SUpq runs, in this case, for q = 1,. . . ,  rrt~ r-1)/r with 

s = qrnl/~, the only term which is slightly different is the one corresponding to (4.14), 
whose expectation is bounded by 

(r--1)/r ml/2 r j r 
K 7721 ( 1 ) e=~(( (p _~_L) 

r n l + l  p j + p + l  = " =  

K m~ r-1)/r ml 
< - -  E E j-~/2 = O(rn;X/rl~ 
- r n l + l  q=l j = l  

using Lemma 5.6 part (b) instead of Lemmas 5.3 and 5.5 and that r _> 2. Thus, 

[ rnl/~ 
sup Ifp-l(j~; - ~)1 = Op \ r n ~ / ~ , )  + %(1). [] 

p=l,...>m 

4.7 

(4.19) 

Proof of Theorem 2.3 
Denoting ~p p-1 v = Y~4=l we, by definition, 

~ml/2 E Vp E we log - % log 

m { p  ~ }  
hw 1 E w e l o g  fe _ Nplog fp+l 

q-vml/-----~EVp P -~e g + l  
p=l e=l 

_ _  t h ~ l d  . + ~ml/2 Vp P we log fp+l 
p=l e=l 
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The third term on the right of (4.19) is 

I( " 1)) h.. 
v __  we log - h w d ~ml---/' + PP fp*+l ' 

= p=l+ml/4 J g = l  

rnl/4 
whose first term is o(1) since [w(u)logu I < K and Y~p 1 IVpl = o(1) by A.7, whereas 
the second term is also o(1), because by Brfllinger ((19817, p. 15) the term in parenthesis 

m --1 is O(p -11v~l) and 1.7 implies that ~p=l+m~/4 p IVpl = 0(1). 
Denoting m~ = [ml logrnl], the second term on the right of (4.19) is 

-Y N -  'l~ \ 7 +l ] ] 
p = l  p =  * 1 e = l  

(4.21) + vml  l-----7 = P e=l we log \ f l  ) - 7 p  log \ f - ~ ~ + l ) )  " 

First, (4.21) = o(1) proceeding as with the proof of a2 in Theorem 2.2. Next, since by 
* - 1  ~ , - -1  , Lemma 5.6, K -1 < f ~ / 2 f J  < K for IJt -< rnl and loglf  ) f~ /2]  = O(logml) ,  the first 

term of (4.20) is O(rn -1/2 log(m1) ~-]p[1 IVpl) = o(  rn2rn-a/2 log(m1)) = o(1) by A.7 and 
A.8. Finally, the second term of (4.20) is 

hw 

~ml/2 
( ; ~ i  ( r e )  1 p ( ~ )  - ~p log ( L + I ' ~ )  

p=rn~+l e = l  e = r n [ + l  

which is o(1) as we now show. The last term is bounded in absolute value by 
732 rn~/ml/2 >-~p=m~+l [Vp[p -2 = O(m-3/2m~ log(re~m1)) = o(1) by A.8 and because, for 

[gl > rn~, Lemma 5.6 part (a) implies that K -1 < m~p2[ fp l fp  - 11 < K, so that by 

the mean value theorem, log fp l fp  = O(m21p-2). Similarly, because A.7 implies that 
[we[ <_ K(g/p)r the second term is O(m-r162 = o(1) by A.8 since ( > 1/3. 
Finally, the first term of the last displayed expression is bounded in absolute value by 

Dm-1/2ml+r 
m 

Z Vpp-I-r logm = O(m-r +r logm) = o(1) 
p = m ~ + l  

proceeding as with the first term of (4.20) by A.7 and A.8 in view that ~ > 1/3 by A.7. 
So, the second term on the right of (4.19) is o(1). 

To complete the proof we need to show that the first term on the right of (4.19) 
converges in distribution to Af(0, 2 2 h~(I) ). Proceeding as with the proof of (4.16), but 
using Proposition 2.5 instead of Proposition 2.3 when needed, it suffices to show that 

(4.22) (a) ~mll 2 ~ Vp We - Np 
.:1 f, \ 

d 
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/ / (4.23) (b) ~ + E vv +NP 
p = r n l + l  = ft k ]p+ l 

P 
--'*0. 

We begin with part (b). By Proposition 2.4 and Proposition 2.2 part (b) the first moment  
of the first term on the left of (4.23) is o(rn -1/2 "~ ~ p = l  Vp) = o(m-3/2m~) = o(1) by A.7 
and A.8, whereas the second term of (4.23) is 

- + I~1  ( ~ §  - ]~+ ,  
.~1/~ ~ ~p ~ + 

p = r n l + l  g = m l + l  ~k ]p+l 

By Proposition 2.2 part (a) and A.8 the second term of (4.24) is Op(m~lm 1/2) = Op(1), 
whereas Proposition 2.2 part (b), Proposit ion 2.4 and A.7 imply that  the first term of 
(4.24) is 

Op rrtl/2 log m l  p 
p=ml-t-1 ~ / 1 p -  

= Op(rn-1/2-r +~ log -1 m) 

which is Op(1) by A.8 and since ~ > 1/4 by A.7. 
So, to complete the proof we need to show part (a). The left side of (4.22) is 

g=l p=m--mlA-1 •=1 

m--m1 p 1 
1 1 weO• E VpWp~p + Vml/2 p=ml+l~ V,p vml/2 p=m~+i 

/o ) + hrnl/2 Vp Wp-  w(u)du (~)p - t~p+l) 
p = l  

ra 
fo ~ w(u)d~ ~ vp(~p - ~p+l), 

+ ~ 7 ~  
p = l  

where V~b = fb-1 ( f b -  fb). The last term of (4.25) is except constants 
m 

1 E ( V p + I  -- Vp)~)p + m-1/2Vl~)l + m-1/2Vmt~p+l = Op(1) ml/2 
p=2  

by Propositions 2.2 and 2.4 and that  by A.7, ]Vp+l - Vp[ < K/m.  Because Proposition 
2.4 and Proposition 2.2 part  (b) imply that  E]~)b[ = o(1) for b < ml ,  by A.7 and A.8 
the first term of (4.25) is Op(m-3/2m2) = %(1). Since by Brillinger ((1981), p. 15), 

- f 3  w(u)du = O(p -1) and ESUPb [0b[ = O(1), the fifth term is Op(m-1/21ogm) = 
Op(1). The second term of (4.25) is 

p=m--rnl +1 s p=rn--ml +1 g=rnl  -t-1 

= bl,m + b2,m. 
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Proceeding as with the first term of (4.24) bl,ra = op(1) and bz,m = Ov(rnl/2/m 1/2) 
m since ~p= ,~ -ml+ l  Vv = O(ml)  by A.7 and because by Proposition 2.2 part (a) Eiv~pl = 

O(ml 1/z) for p > rnl. 
The thi rd  term of (4.25), after rearranging subindexes and s tandard  calculations, is 

(4.26) 1 ral m--ml 1 m--ml m--rnl 
~ml/2 E Oe E p-lwevp + ~rnl/-----2 E Oe E p-lwevp, 

e = l  p = m l + l  t = m l + l  p=t 

whose first term is Op(1) by A.8 and similar arguments to those for the first term of 
(4.25). 

Thus, gathering the second te rm of (4.26) and the fourth term of (4.25), we conclude 
tha t  

ml /2 (d  "* - d) - h~ rr~-ml 
Oehe + or(l) ,  ~ml/2 

g = r n l + l  

m--rrt  1 where he = Were - ~p=e p-~WeVp. Because ~ --+ f l  v(x)dx, the proof is completed if 

I m--ml 
b m -  rnl/2 E Oehe d A f ( 0 , ~ 2 ) .  

e = r n i + l  

- 1  Denoting ~j = f j Ij  -- l ,  bm i s  

1 
(4.27) ml/2 

m--m1 1 ral/2 

E heml  q_-~-~ E (~]e+j q - ( ~ - l f j + e -  1 ) r / t + j )  
e=rn l  +1 j = - m l / 2  

m - - m l  ml/2 
1 1 

- rnl/2 E h e - -  E ~e+j+ov(1), r n l + l  
e = m l  +1 j = - - r n l / 2  

as we now show. Denoting r/~ = ag2(2rc)Ie,j - 1 a n d  ~ - l f j + e  - 1 = (j+e,e, 
~'t 1/2 m l / 2  

1 1 X--" 
(j+e,me+j Q+e,e@e+y 

* \  
ml + 1 Z_., - -  7ytl _[_ 1 Z..., - - r l e + j )  

j=--ml/2 j=--ml/2 
ml/2 

1 . 
+ - -  E Q+e,O7e+j. m 1 + 1  j=-ml/2 

Because Robinson's (1995b) Theorems 1 and 2 imply that  El~?e+j- Ye*+j <- 

(e + j)-1/2 log*/2(t + j)  and Lemma 5.6 part (a) implies that  Kj+e,e[ < 
the first absolute moment  of the first term on the right is bounded by Kmall2s -2 log ml  
whereas using the Schwarz inequality, the first moment  of the second term on the right 
is bounded by Kg-2m 3/2 because [ Cov(r/~,, ~j*~)l <- KZ( j l  = j2) + Kn- l f ( j l  # j2). So, 

E ,,~-,~, ml/2 (j+e,e~e+j 1 1 
ml/2 E h t - -  E 

s  m l  -~- 1 j=--rnl/2 

T.- 1/2 , 1/2 
< /XT/11 lOg m 1 
- -  m l / 2  

e = m l + l  

hg /xm,  - -  = 0  ~ - ) l / 2 1 o g m  
E T -1- ~ e=ml-F1 
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which is o(1) A.7 and A.8. So, it suffices to examine the first term on the right of (4.27) 
which, after rearranging subindexes, is 

1 
ml/2 

m-- 3/2ml m l / 2  3 / 2 m l  p--m1/2 
1 lip 

Tip ~ hp+j §  ~ m l + l  TI~ 1 + 1 ml/2 ~ hJ+'m 
p=3/2ml + 1 j=--ml/2 p=l +ml/2 j----1 

m-rol l2 nz-ml/2 
1 ~-,  ~lp ~-, 

.4- h3-m~/2. m l /~ A... m l -4- 1 
p=rn--3/2ml+l j=p 

The last two terms are Op(m-1/2m~/2), because they involve at most ml  number 
a 

of terms and by routine extension of Robinson's (1995b) Theorem 2, m -1/2 )-]p=l ~/p = 
Op(a1/2m-1/2), for any 1 < a < m. On the other hand, the first term is 

1 1 1 hp+j - 1 
ml/2 ml l 

p=3/2ml A-1 p=3/2ml +1 j=--ml /2 

m-3/2m~ 
_ 1 

.:/2 h: (l + o(1)) 
p=3/2m~ +1 

by continuity of ~/(u) = v(u) f l  w ( x ) d x - f :  x - lw (u / x ) v ( x )dx  and Woeplitz Lemma. But, 
since'A.7 implies the squared integrability of 7/(u), by routine modification of Robinson's 

- 1 / 2  x-~rn-ml d N(O, ,,~, )z'2\. (1995b) Theorem 2 m " ~---.,p=rnl+x VWp?~p [] 

5. Technical lemmas 

LEMMA 5.1. Assuming A.1 and A.3, for m <_ p < q <_ k, k / n  ~ 0, r E [0, 1] and 
a ,b - -  0,1, 

(5.1) 
.~/2 

f pa fqb  ~ 1 (fj b a b 
_ _  _ f;fq) = O(p-W-lm). 
m + 1 (j + p)r  - - + p  -+q 

j=-rn/2 

PROOF. The proof is quite straightforward. By A.3 and mean value theorem, 

where A(p,j) C lap, Aj+p]. But also by A.3, f '(A) _< KA- l f (A) ,  so 

tfj+p - fpl <- KAjA (p,3)f(A(p,j))  = O(p- lmfp) ,  

because AjA (p,j) = O(p- lm)  and f p l f ( ~ ( p , j ) )  = O(1) for p _> m by A.1. The 
conclusion is now immediate since pr + j ) r  < K. [] 

LEMMA 5.2. Assuming A.1 and A.4, for m/2  < p < m, 

(5.2) A,~m+l.,,t ~ (j +p)r - O log ~p--  2-(0 = 1) 
j = - m / 2  
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4 -  O((2p - -  m)l-~)f(~ > 1)) 
4- O((2p 4- m)l-O.,T("O < 1)), 

where # = 2da + ~p, r E [0,2] and a = 1, 2. 

PROOF. Because Aj+p -+ 0 as m/2  < p < m, the left side of (5.2) is 

p+m/2 
K E J-r176 

j=p--rn/2 

by A.1 and A.4. From here the conclusion is immediate since j > 1. [] 

LEMMA 5.3. Assuming A.1 and A.4, for 1 <_ p <_ m/2  

2da--l-2da rn/2 a ( (2p4-TYt)~(?~ ~_ 1)) 
(5.3) Am "~ E fJ+P -- O log 

m (j + p ) r  \ -~p j=l 

+ O(pX-~Z(v ~ > 1)) + O((2p + m)l-'O_'~('O ,~ 1)), 

where ~, r and a are as in Lemma 5.2. 

PROOF. 
bounded by 

733 

Because fj+p -2d = Aj+p(1 4- o(1)) by A.1 and A.4, the left side of (5.3) is 

m/2 p+rn/2 
K E (  j + p)-r  + O(1)) < K E J-V~-2da(1 + O(1)). 

j=l j=p+l 

From here, the conclusion is standard. [] 

LEMMA 5.4. Assuming A.1 and A.4, for m/2  < p < m 

.~/2 
K -I < A2md ~ fj+p<K. 

- m + l  j=--m/2 

PROOF. From Lemma 5.2, we only need to show the inequality on the left. Because 
-2d 1 fj+p = Aj§ + o(1)) by A.1 and A.4, the middle term is bounded from below by 

} ml-2d E j-2d > m 1-2----------~ j -2df(d  > O) 4- E j-2dZ(d < O) 
j=p-m/2 j=p-m/2 j=p 

which is greater than or equal to (re~p) 2d > K -1 since m > p > m/2. [] 

LEMMA 5.5. Assuming A.1 and A.4, for 1 < p < m/2  

.~ /2  

K ' I  <- A~d E fJ+P <- K. 
m j=t 
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PROOF. From Lemma 5.3, we only need to show the inequality on the left. Because 
f j+p -2d = Aj+p(1 + o(1)) by A.1 and A.4, the middle term is bounded from below by 

m l-2dK- 1 m/2 m I-2~K -I I ~  ((171,2)-2d ~'(d< 0)) } j 2 d  y ] ( j  + p)-2~ >_ + p Z(d >_ o) + 
j=l  ~,j=l 

which is greater than or equal to K -1 since 1 < p <_ m/2. [] 

LEMMA 5.6. Under A.1 and A.3, for p = 1 and 2 

ml/2 
K-1<(ml+1)-1 E f}~+-------gP < K  

j=ml/2 f~ 
(a) For ml <__ p, ml/2 I f;+ p ) O t m ~ P - 2 )  �9 

(ml -l- 1) -1 E k fp" 1 = 
j=ml/2;jT~p 

ml/2 
K -1 < a X2(2k, + 1)-1 . f~+p < K - -  / 

j=ml/2;j#p 
(b) For p < ml ,  ,~,/2 

n-2a'ml(ml  q- 1)-1 E t~ f}+p _< K 
j=ml/2;j#p 

1 
if d~ < ~ 

1 
if d# > ~. 

v'm~/2 ~ - . f .  PROOF. (a) We first show that K -1 < (ml + 1) -1 z-~j=mxl2 p j+p < K. Sup- 
pose first that d > 0. By A.1, 

m~/2 t~ 
1 f~+p <_ 

(m1+1) E f; 
j=ml/2 

K ml/2 ~ 2dtt 

(ml -F 1) E ~_K 
j = m l / 2  

because for p > rnl and [j[ < ml /2 ,  2 -1 < [(j + p)/p[. On the other hand, 

(ml + 1) 

mi/2 _ 1 [-~i/41~ ~ P  2a, 
E fJ~+P > K-1 > - K-1 

j=ml/2-- f# ml ~ j + p J=[-~l/sl 

because for p > ml and [j] < ml/2, I(J +P)/P[ < 3/2. The case d < 0 follows by similar 
arguments. Next, we show the second part of (a). By Taylor expansion of fj+p, the left 
side is 

1 ~m~/2 I #(27r)j ]p 

(ml + 1) --'~11 n fp j /2~ 

+ ~ n~ k f~ + (~ - 1) f# 

(1 o(1)) + 

j=rnl/2 
< K  
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where ~ = &(p + 5j) �9 (&p, &p+j) and 5 = 5(j)  �9 (0, 1), by A.1, A.3 and t h a t  ] ; I f ( K )  is 
bounded.  The conclusion is now s tandard  since IP + 5Jl >- P - 15Jl > p/2. 

(b) It is immediate  since by A.1, P f~j+p)Z(j+pr = KAIj~p~+ (1 +o(1) ) ,  where Iql+ = 
max(q, 1). [] 
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