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Abstract. For the censored simple linear regression model, we establish a one-
term Edgeworth expansion for the Koul, Susarla and Van Ryzin type estimator of
the regression coefficient. Our approach is to represent the estimator of the regression
coefficient as an asymptotic U-statistic plus some ignorable terms and hence apply the
known results on the Edgeworth expansions for asymptotic U-statistic. The counting
process and martingale techniques are used to provide the proof of the main results.
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1. Introduction

Suppose that in the simple linear regression model
Yi = Xl/B + e,

Y; are not completely observable and the observations are (X;, Z;,6;), i = 1,...,n,
where ( is one-dimensional unknown parameter, X;’s are observable covariates, Z; =
min(Y;, C;), 6; = I(Y; < C;), the residual e;’s are i.i.d. r.v.’s with mean zero and finite
variance o3 and the (C;, X;)’s are i.i.d. random vectors that are independent of e;’s.

The study on censored linear regression model has received considerable attention in
the statistical literature. There are two main trends in this body of literature: one trend
is to extend the least squares method (LSE) in the complete data case to the incomplete
data case. For instances, Buckley and James (1979) introduced an adaptive approach
to estimate 3, their method has become a very influential method in biostatistics, as-
tronomy, and econometrics. Koul, Susarla and Van Ryzin (hereafter abbreviated KSV)
(1981) suggested another method. They defined a transformed data

8.2;
1-G(Z)

where G denotes the distribution of censored variable C, and noticed that E(Y;g | X;) =
X; 3. Hence, if G is known, then one can use the ordinary least square estimator to obtain

n -1 5
ﬁG = (ZX12> ZXiYiG-
i=1 i=1
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Yic = i=1,...,n,
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When G is unknown, replacing G by Kaplan-Meier estimator G,, yields

-1
N n n 61Z1
Bn = (ZX12> ZXz‘YiG,., where YiGn = m
=1 i=1

In their 1981 paper, KSV used a U-statistic representation to derive the asymptotic
distribution of the estimator. This approach to estimating 3 was subsequently refined
and extended by Leurgans (1987) and Zheng (1984). Srinivasan and Zhou (1991) and
Zhou (1992) used the martingale structure of the counting processes associated with the
underlying problem and developed a martingale representation for the estimator and
derived the asymptotic normality of the estimator. Lai et al. (1995) developed a general
asymptotic distribution theory for the estimators defined by estimating equations. This
general theory was used to establish asymptotic normality of synthetic LSE in censored
regression models. Recently Qin and Jing (2001) developed an empirical likelihood
procedure for the construction of confidence interval for the parameter § in censored
regression models. The other trend has been to extend robust estimators to incomplete
data settings. For example, Tsiatis (1990), Lai and Ying (1992), Zhou (1992), Ying
(1993), Ritov (1990), Lai and Ying (1994) among others.

It is well known that the convergence rate of the distribution n1/2(3, — 8) to nor-
mality is of order n='/2. In this paper, we shall study some higher-order approximations
to the distribution of the standardized version of 3,. In particular, we shall establish
a one-term Edgeworth expansion for the KSV type estimator 3, of § when 8 is one
dimensional and (Y;, X;, C;)’s are i.i.d. random vectors. Our approach is to approximate
Bn by a U-statistic plus some negligible term and then apply the known result of the
Edgeworth expansion for asymptotic U-statistic (e.g., Lai and Wang (1993)) to obtain
the desired expansion. In the proof, we shall use the counting process and martingales
techniques.

Another, perhaps the most popular, approach to regression problem is the Cox
model and partial likelihood analysis. Gu (1992) established the one-term Edgeworth
expansion for the parameter estimator in Cox model. For linear regression model in
complete data case, the Edgeworth expansion for the parametric estimator can be found
in monograph by Hall (1992). Finally, it should be pointed that the method in our
paper can be used to derive Edgeworth expansion for each component estimator of the
parameter vector in censored multiple regression model under similar censoring settings.

The layout of the paper is as follows. Section 2 gives the main results of the paper.
Section 3 contains the proof of the main result. In Section 4, we give the proofs of some
technical lemmas needed in Section 3.

2. Main results

2.1 Notations and preliminaries
Let
F()=P(; <t), 7rp=if{t:F(t)=1},
G(t)=P(C; <t), 7¢=inf{t:G(t) =1},
p(t) =P(Z; >t), rt=inf{t:p(t)=0}.

Throughout thig_ paper, we suppose that ' and G are continuous and 7 < T7¢. For any
K(t), we write K(t) =1 — K(t). Clearly, since p(t) = F(t)G(t), it follows that 7 = 7.
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Furthermore, let
wz(s) = I(Zz > 3) - p(S), Li(s) = I(Zl 2 S),

L(s) = ZLi(S) = sz’(s) + np(s),

A = [ a-ca) o,

M) =1z <56 =0) - [ 1€ >tY > 0dA0),

N(s)=> I(Z; < 5,6, =0).
i=1

It is well known that {M;(s),—00 < s < oo} is a square integrable martingale with
respect to the filtration 7y = o {Z3I1(Zy < s),6,1(Z) < s),1 < k < n} and its predictable
variation process is (M;)(s) = [°_I(C; > t,Y; > t)dA(t). The Kaplan-Meier estimator
of G is given by

Ga(t) =1-[](1 - AN(s))/L(s).

s<t
Some further notation will be needed before we introduce the main results. Denote
ai A a = min(a, az2), a1 V az = max(a;,as). Also we define

W, =n"") X}
=1
Bl(t) = XzKGI(Zz > t), (t) = EB(t)

Bio(t) = Bi(t) — B(t), Bo(t)=n""! ZBzO(t)

pi(s) = P(Zi < 5,6:=0), g(s) = / p2(t)dpa (2),

pi(s) = —g(Z; As) + p~ 1 (Z)I(Z; < 5,6, = 0),

&i(s) =1 -G())ui(s), i=1,...,n,
G = B((t))dM(t)+X(Yzc X.B),

~ L |
B = / T3 BaAMi(E) + B0 (o)

T _‘%‘ | | | |
i /—oo p(t)(G(t) — 1) €5 () dM;(t) + & (t)dM;(2)]

[ BQ((g[ w; (£)dM;(t) + wi(t)dM;(t)]

T[T Bvs) .- (s
* 2/ oo P(O)p(s) O )

Finally we define
(2.1) o® = E[al],
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ks = E[63] + 3E[G162812),
4 [T B2(t) dG(t)
b=0 /_oo p(t) 1-G()’

and also define 02 and k3, to the corresponding ¢2 and k3 except that the upper limit
7T in the integrals of @; and f;; are replaced by uy,.

2.2 Main results

In this section, we are interested in obtaining Edgeworth expansions for the distri-
bution of the standardized slope estimator 3,,. First problem here is how to choose the
normalizing factor. From (2.1), it follows that

T B3(t) dG(t)
2.2 = E[X1(Yic - X 2—/ —
( ) g [ 1( 1G 1/6)] - p(t) 1— G(t)
See Theorem 2 of Lai et al. (1995). As in Lai et al. (1995), for technical reasons, we
need to truncate the domain of the integral in 02 (and other quantities involving such
integrals) to a fixed sequence u, with u, < 7. To be more specific, let us define

un P2
02 = E[X1(Yie — X10))? _/_Oon_(g.)lci—GC(v't()t-)‘

Then in this paper, we are interested in deriving Edgeworth expansions for the following
standardized slope estimator 3,,,

"W (By ~ B)

On

T, =

Before stating our main results, we shall make the following assumptions:
(Al): |ka| < oo.
(A2): For every € > 0, there exists a u,, < 7 such that for all large n,

// n|my|dey)
1/2 <6
R Ju,

where J(:c y) = P(X; <Y <y).

. dG(t)

Assumption (A2) imposing condition on the distributions J and F near the tail of
F' is similar to but stronger than the condition (C3) of Lai et al. (1995). Assumption
(A3) is used to control the behavior of Kaplan-Meier estimator G,, of G near the tail of
the distribution, similar conditions (see the conditions (1.8) and (2.2) in Chen and Lo
(1997)) have been assumed to obtain the weak and strong convergence of Kaplan-Meier
estimator in Gu and Lai (1990), and Chen and Lo (1997). Therefore, it should come at
no surprise to us that conditions required for Edgeworth expansions in this paper are
stronger than those for the asymptotic normality as was done in Lai et al. (1995).
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THEOREM 2.1. Assume that (A1)-(A3) hold. Then we have
P(Ty, < 2) = ®(2) — n~Y2(2) Py (2) + o(n~'/?)
uniformly in z, where Py(z) = tk3o~3(2% — 1) +b.

Remark 1. Notice that the form of the Edgeworth expansion in Theorem 2.1 looks
similar to that in the case of the smooth function of independent sample means. The
term k3/03 in Py(z) corrects for the skewness of the distribution. On the other hand,
the term b in P;(z) corrects for the bias in variance o2 due to the presence of censoring;
when there is no censoring in observations (i.e., G(¢t) = 0 for all t < 7), b = 0, this bias
effect will disappear.

Remark 2. From Theorem 2.1, we can easily obtain the following Edgeworth ex-
pansion:

P (nlﬂW"(Sﬁ" =6) < z) = ®(2) — n"V2¢(2) Pa(z) + o(n~/?),

where Py(2) = Pi(z) +n'/%(c, — 0)/0.
3. The proof of Theorem 2.1

First we introduce two lemmas that are needed to prove the theorem, whose proof
will be deferred to the Appendix. Let

B(t) = n~! ZB 0, M) =3 M(s)
D(t) = %ﬁ)" w(H) =0~ Y wilt)
Au(t) = BOD(®),  Aualt,s) = B(t v s)DE)D(s).

LeMMA 3.1. Under the conditions of Theorem 2.1, we have
1/2W (En - ,6) =Up+ Y+ Ry,

where yp, =n~4/2 f* E;Q(S) ldcgg)’ U, is a U-statistic defined by

U, = "_1/2Z< " B(t )dM )+ X.(Yic — Xzﬂ))

=\ p(?)
oo 3 | (S + Slano)
* / - Wﬁgi_—n(@ (t)dM;(t) + & (t)dM;(t))
- [ B((t)) (w; (t)dM; () + w; (t)dM;(t))

Un [Un B(tV s)
+ 2/_00 o P0p(e) PM D4 ‘3)}
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and R, is the error term given by

R, =Ry + Ry+ R3+ R4+ Rs,
D(#)
-1/2
Ri=n /ZZ/ XYoo g M)

j=11i=1
an a0t ()
* Z;U / ef /> AT L)
12 Gn(Z:) - G(Z:) - {GnlZ:) — G(Z;
y e e g—)G(Zi() )

i=1

(where Q(z) = 2%/(1 - 1)),

2
n-1/ ®) ,
Bz = 22/ (p(t Tr i (t)w( M ()

_ 32 An(t) , where
> [ S uenn e 0<60,0)<0),

Rs = n—1/22/u" Bo_(t)%_—_l_]dMi(t)

“'I’L—3/2Z/ An 2(t)B(t) ,(t)de(t),

i£j
_ ,—3/2 By (t) n_1/2 B(t)'l“n .
= Z/ ) MOF Z [ see <

_3/2 Un B(t)E,(t)sz(t)
o Z Ol COE

(where a(t) = Ga(t) — G(t) = &(t)),

(31) Ry —=n3/2 J; [ / e /_ 1; _Ilj((tt);’(z)) dM;(t)dM;(s)

([ o)

n-3/2 Sy ng(ts — B(tVs)
¥ ZkZ/ Ly s e

LY ii / / - "2“ s T"(t Analt, a6 8) gur oy ang ()
(w’w?“e Tn(t, 8) = (t)p(s)/(( (t) + () (p(s) + w(s))) — 1).

LEMMA 3.2. P(|R;] > o(n~1/2)) = o(n1/2) for j = 1,2,3,4,5.
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PrOOF OF THEOREM 2.1. From Lemma 3.2, it follows that
(3.2) P(|R,| > o(n™/?)) = o(n™1/?).

By Lemma 3.1, n/?W, (Bn — ) can be expressed as a U-statistic U, plus a constant term
v and a negligible remainder term R,,, therefore we can apply the results on Edgeworth
expansion for asymptotic U-statistic in Lai and Wang (1993) to derive the Edgeworth
expansion for T1,. Now we shall modify the arguments in the proof of Theorem 1 in
Lai and Wang (1993), where their condition (C) can be verified by using the arguments
similar to those on pp. 523-pp. 524 of that paper to show that

(3.3) P(MSZ) :P<g2§z—7—n> =K, (z—h)+o(n“1/2),
o o

n

uniformly for 2z, where
1 -
Kp(z) = ®(z) — an_1/2¢(m)n3nan3(x2 —1),

K3n 18 k3 defined in Theorem 2.1 except for 7 being replaced by u,. In fact, tracing
the proof of Theorem 1 of Lai and Wang (1993) (hereafter abbreviated LW), and taking
T = n(=1/7 (logn)~! for 4 > r > 2in (4.1) of LW and Fy,(2) = P(Up/0n < 2—"n/0n),
Gn(2) = Ky(z — Y /0n) in (4.2) of LW, it can be shown that the rates of the right side
of (4.4) and (4.5) in LW are o(n~/2). Then combining (4.3) and (4.1) of LW imply (3.3)
above. Also noticing u, = 7+ o(1), o, — 7, \/nyn, — bo and k3, — k3, then from (3.2)
above and the following inequlity (see Serfling (1980))

sup |P(X +Y <z)— Kpi1(2)| <sup |[P(X < z) — Kni1(2)| + ba+ P(|Y]| > a),

where X, Y arer.v.’s, a, b are constants, and K,;(2) = ®(2) —n~/2¢(2) P, (2), it follows
that

sup
z

R <n1/2Wn(Bn - 0) < z) — K (2)

Un + T
<sup|P (ﬂ < z) — Kn1(2)| +o(n™'/?)

+ o(n_1/2)

< sup K, (z - 3’3) — Kn(2)

< sup | Kn, (z L Kn(2) + 072 (2)b

Kn(2) - ((I>(z) - n—1/2¢(z)6’%(z2 - 1))! +o(n~1/2)

-+ sup
z
= o(n~1/?).
Hence the proof is completed.
Appendix

In order to prove Lemmas 3.1 and 3.2, we need the following lemma.
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LEMMA A.l. Let £(u) = 230 | &(u), we have for allu <7
(1) Gn(uw) = G(u) + &(u) + ro(u),

(ii) Elpi(u)] =0, Cov(ui(u), pi(v)) = glu Av),

(iii) E|r,(w)|* = O((n"'p~3(u)logn)¥) for k> 1.

PrROOF OF LEMMA A.1l. (i) and (ii) can be found in Lo et al. (1989). We shall
only prove (iii) for the case k = 1. From the proof of Lemma 2.1 in Lo et al. (1989), we

have
Elrn(u)| < (1 — G(w))E|Rn(u)| + 2E(£(u))? + 2E(Ra(u))?,

where

Rn (U) = Rnl(u) + Rn2(u) + Rn3(u),
Rp1(u), Rp2(u), Ry3(u) are defined in Lo et al. (1989).
Tracing the proof of Theorem 1 in Lo and Singh (1986), it can be shown that for
any b > 0,
P(|Ru1(uw)| > Con~p~2(u) logn) = O(n~?),
P(|Rpa(u)| > Con~p~3(u)logn) = O(n™?),

where C}, is a constant depending only on b. An application of the lemma in Burke et
al. (1988) leads to

P(|Rp3(u)| > Con™'p~2(u) logn) = O(n™?%),

SO
E|Rn(u)] = O(n~'p~3(u)logn).
Similarly
E|R,(u)* = O(n"2p~%(u)log? n) = O(n~'p~3(u) log n).
Now that

EE(u) = n"'sup(l — G(u))2Ep?(u)

u<lu

< 2n"YEg*(Zy Au) + E(p~2(2))1(Z) < u, 6, = 0))]

Sl cw), [ s
O( K/—w?(t)) +/—oo FQ@D

= O(n™),

i

hence E|r,(u)| = O(n"1p~3(u) logn).
Proor oF LEMMA 3.1. Let
SuGn = ) Xi(Yig, = XiB),  Snc =Y Xi(Yic — Xif).
=1 i=1

Then

(Al) n1/2Wn(Bn - ﬂ) = n—1/2SnGn = n_l/zsnG + n_1/2(SnGn - nG)-
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From Equation (3.2.13) of Gill (1980):

Gn(Z)) - G(Zi) _ (% D) D(t)
o L= [ ) - / T 12 > nan (o),
Also we have
_ Yo _ Gn(Z) -~ C(Z)\™'
v = g =¥ (12 gy )
Gn(Z:) - G(Z) Gn(Z:) - G(Z)
= vio 1+ 2 o (B )|
where Q(z) = 22/(1 — z). Therefore,
(A'2) n_1/2(SnGn - SnG)
-1 = Gn Zz -G Z1,
—n) XY, i—)G(Zig )
e Gn(Z;) — G(Z; Gn(Z:) - G(Z;
= ;X"Y"G ey (1 ) )>
_1/2;)( YzGG (Z) (g()Z )Q (Gniz_z)c;(g()zz))

— n—1/2]§=_‘; /_ O:o (; XY,eI(Z; > t)) 12((:)) dM;(t)
+n—1/zzn:zn:/°° /oo (ixiyml(zi >tvS))

j=lk=1"Y"
D(#)D(s)
LL(e) M (1M (s)
Gol2) 612  (GlZ) - 612)
1Y XY YeTVA Q( 1-G(Z) )

i=1

-1 nl(t)
=-n /22/ = t) t)

_32 dMJth S
e Sy [ A S+ R

j=1k=1
= n1+Jn2+R1a

where u,, is a sequence of real numbers chosen as in Assumption (A2).
Note that

n” L(t) = p(t) + W(2),

(A.3) An1(t) = (B(t) + Bo(t))(1 + (D(t) - 1))
= B(t) + Bo(t) + B(t)(D(¢) — 1) + Bo(t)(D(t) — 1),
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D(t) 1= (G(t) — 1)~ (é(u) + rp(u)), (from Lemma A.1)
n2(t,s) = B(t V s)D(t)D(s)
= B(tVs)+ Ra(t,s).

Then we can apply Taylor expansion to (p(t) + )~} around 0 to further decompose Jy1
and J,2 as

(Ad4) Jp = n“l/QZ/ An1(2)c t)dM._ )

~ P(t)+w(t)
i/ nltht
o /Z/ () (

32 E / 2(t [w; (£)dM;(£) + w;(£)dM;(t)] + Re

= n-l/?:: OOB((tt))dM () + —1/22/ B‘zS)dM (t)
2 Z [ BP0
_n—3/21<§<n / - 32((’3 £)dM; (t) + w; (t)dM;(8)] + Ry + R
”zﬁﬁmm
4 n3/2 1<§<n / o [Bo®dM; () + Bio(t)aMi()

n=3/? B
' Z / oop(t)(G(t 7y (€ (AMi() + &:()dM; (1))

+ Ry + R3+ Ry
and
— -3/ Ana(t, 9) . s
(A5) s Z,CE/ / o0+ 50) o) w0 O 4MC)
172 Un “"BtVs) s
b (/ o plyp(s) MM ))

+on%? > / " / - tvs)dM (t)dMy(s) + Rs

1<5<ksn p(t)p(s)
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DY / B ”3 dM ()dMi(s) + Rs.
1<j<k<n

Therefore, Lemma 3.1 follows from (A.1), (A.2), (A.4) and (A.5), with

(A.6) Rn = n**W, (8, - B) — Vn
= R1+R2+R3+R4+R5.

ProoFr oF LEMMA 3.2. (I) We first give the proof of
(A7) P(|R1| 2 o(n™'/%)) = o(n"1/?).

Note that
R1 = Ry1 + Ria + 2Ry3 + Raa,

where

Ry = n_l/2§n:XiYiG ( D((t)) dM(t)>

=1

Ry = —1/22)( Yic (/ D: dM(t))
o= ([ o0 (e [0

1 2
= R§3) X R§3),

Ny GalZ) - G(Z) , (GalZi) - G(Z)
Riyy=n 1/2;X1Y;G = (7)) Q( 1= G(Z) )

607

Note that fZ D) dM (t) is a martingale. By Assumption (A2), (2.35) in Lai et al.

L®
(1995) and martingale inequality, for every ¢ > 0, we have

(A.8) P(|Ry| > /2n~1/?)

n

< Coe™'2E [Z X:Yic|(n™ V2T (Z)F
i=1

< 0061/272—1/2,

2(z)1(Z; > un))}

and
P(|R12| > 61/2n_1/2)

% D(t) % D(t)
/u T MO

70 ——=dM(t)

<P (max
1

n~2 3" X Yigl
i=1

> el/Qn“1/2)

Z D)

T M©

> ¢l ‘ln_1/2)

n
P <n—1/22 | X,Yiq|
i=1
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' D(t)

tr (mf“‘ v L )
< Coe2n "2 4 Com " V2EG (2 F A (Zin) H(Zimy > un),

T M ()] >

where m > 0 and Cp > 0 are generic constants, and Z(,) = max;{Z;}. Since

T_dE@E)”

1/2 — 0, as n — 00,
(t)

EC N Z)VE (2o (Zi > un)) =
(@ (2 F (2 (Zmy > ) = /unG(t)F

so P(|Ryia| > €/?rn=1/?) = o(n='/2). For R,3, we have
P(|Rys| > €1/?n7/2) < P(|Rys| > €'/207 /2 |RY| < m) + P(RY| > m)

and
“» D(t)

P(IRY| > m) < m—2E </ 0. dM(t)>

=m2n~1 /_oo E (,Tl—)%) dA(t)

<m %! _: E(nL™'(t)) a dACEv?t))2

=0 (n-l /_ Too p‘l(t)éG(t))

=0 (n-l /_ ; F—l(t)dG(t)> = o(n~1/2).

Note that R%) = Ri1. A similar argument to (A.8) leads to
P(|Rig| > €'/*n7/2,|R{)| < m) < P(IRZ)| > //*m~1n"1/2) < Coe'/?n~1/2,

Therefore, P(|Ry3| > o(n~1/2)) = o(n~1/2).
Finally, let us investigate Ry4. Fixing a u < 7, we can decompose R4 into

- ~G(Z) (Z) - G(Z:)

Rig=n12%" (X Yie1 n(z,)) (Gnl AN )3

=1

n 3
- n~1/2; ( chl - g((ZZ))) < / D dM(t) [ 12((:)) dM(t))

e ~G(2) \ (Guw -G _ [* D)
;(”’G (Z))( i-Gw ', L(t)dM(t)>

RY +no2Y (X’y"c" = i(é))) (Gnl(ii) o (f)(“))

=1

IM

Gn(u) - Gw)\*
= R} + B+l B(Yig) (S E0)

_ p 2 3
= R§4) + Rg4) + R§4),
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where

n

1-G(z;
A =y (xe =g 75
i=1

A
1-Gu) L= G(“)

3 n
R — p1/? (gilﬁ’i)_ég)(i)) (E(ch) -n7! ZXYGTI_—_-E%%)

Gnlu) - G(u))a‘

3

Using Lemma A.l and noticing that E(|r,(u)|¥) = O((n~'p~3(u)logn)*) =
O((n~'logn)¥) for fixed u < 7, we can get P(|R{Y| > o(n=1/2)) = o(n=1/2). Since
Zny S TF < 7g a.s. and

Gu(Z:) - Galt) = G(O)| _ 5P, G =GOl |
- G(Zz) T t<rr 1- G(t) - 1- G(Tp) ’
we have
-G(Z;
n~1 ZX ch: ((Z)) E(X1Yig) — 0 as.,
then making use of E[(%ﬁ@):ﬂ = O(n~%/?), it can be shown that
P(IRY| > o(n™!/%)) = o(n™1/%).
For the term Rﬁ), we have
(1) 2% ' D(t)
|Ri{| < Con™"/ ;lXin'Gl [m?x‘ 0 dM(t)
% D(t) % D)
+ max IO dM(t) 70 dM(t)
< Cont/? [max / L((:)) dM(t)
2 3
7 D(t) 7 D(t)
+max /u T M| +max /u TeaMo| | as

For every € > 0 and £ = 1,2, 3, when n is large enough, we have

Enl/ka‘—l Z. F—I/Q Ze) I (Zem > u)) = nl/* T dpE)" e,
(G Z P Z U (Ziy > ) = [ i S
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then applying martingale inequality and (2.35) in Lai et al. (1995), we get
% D()

k
P <n1/2 max i70) > en"1/2)
g u

D) (k-1

< Coe ™V *n V2RE(YG ™ (Zw))F " (i) 12y > w))
S 0062—1/16”—1/2’

i dM(t)

therefore,
P(IR&)I > (nlogn)~?) = o(n"/?),

and P(|Ry4| > o(n™1/2)) = o(n=1/2). (A.7) is thus proved.
(IT) In this part we show that

(A.9) P(|Ry| > o(n~'/?)) = o(n™1/?).

From (A.3), R, can be written as

=iy [T AT n3/ Bo(t)
" ;/w W) + 6 m 0 “Zf gy WM (0

sz~ [* BO) 32y [ BODEH 1)
"3 [ Bgeenne -y [ EOZE D ga

= R + Rg? + RSy + Ry,
For the term Rg), we have

n

u, R/ w2
P(E| > (nlogn)™'/%) < n~(logn)E [Z [ %(—t—)&(t)dA(t)]

n~1(logn) / (0 sup B(Bo(t)dA(1)
=0 (n“2(logn)/— F (t)dG(t)) = o(n"1/?).

Similarly, we can show that P(JRS)| > (nlogn)~1/2) = o(n~1/2), i = 3,4.
Now let us investigate the term RSQ) . Note that for any t < 7p,

I/\

S 1 XYicl E|X1Y1q|
n1-Glre))  1-Glre) ~ o0 2%

and sup;<, ElAn1(t)|* < 0o. So, we have

P(|Rgl2)} > (nlog n)—1/2) < (logn)E [Z /_: (p(t;l:-l (Ht:zl;)g()t))ﬁ L;(t)dA(t)
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< Con(logn) / 6() E(AZ, () (£))dA(t)
~0 <n- (log n) /_ ’ (t)dG(t)) = o(n-1/2).

(A.9) is thus proved.
(III) In this part we will prove that

(A.10) P(|R3| > o(n"Y?)) = o(n~1/?).
From (A.3), we can write

—n‘”Z / Bo(t>[D(t) Uanti) - 92 Y / Bo<t> wi(t)dM; (t)

i#j

ey [T —B(t DO =1, yansy o

p?
vy (t)
= R3; + R3z + Ras.
First we investigate the term R3;. By Lemma A.1, we have
P(|Ra1| > (nlogn)~1/2)

<P ( n”1/2 /_1: %dﬂlm‘ > 2_1(nlogn)_1/2)

n-1/2 U Bo(t)ra(t) ~1(nlog n)~1/2
([ [ S M| > 2 ol )
= H1 + H2,
where, by using the following facts
(A.11) sup E(Bo(t))* = O(n™?), sup EE@®)* = 0(n™?),
we get
“n  Bo(t)E(t)
s < ogmps (|~ ooty
~ atogm) [ B [(_BWED Y’
= atosn) [ 8 | (a0 ey L(t)] A

dA(t)
(p(t)(1 - G(1)))?

-0 (n_l(logn) /_Too F_2(t)dG(t)> = o(n~1/?),

< 4n(iogn) [ T EBo() B E®)?

. Bo(t)ra(t)
= ilogr) [ (p(txl 5) L“)} Ao
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< snfogn) [ BB By s D

— 00

=0 (n‘Q(log n) /T F‘__s(t)dG(t)) =o(n"Y?),  (from Lemma A.1).

For the term Rgo, we have

P(|R32| > (nlog n)‘l/z)

< p( ~3/2 Z Z / BO wi(t)dM; ()] >

(nlog n) 1/2)

j=1li=j+1
oz n)~1/2
+P< -3/2 321;1 / Bf((:)) wy(t)ang(y)| > LB g2") )

=V + V.

Using (A.11) and the following fact sup, E(n™ /237 w;(t))* = O(1), (1 < j <n—1),
we get

2
Vi < ‘“"g”Z gf” ( 20 2, m) L (t)dA(t)

4
4logn e[ 1 z 1/2 dA(t)
5[ (Gagman) 2 (G 55 m0) 4
=0 (n‘l(logn)/_ 7—4(t)dG(t)) =o(n"Y?).

l/\

Similarly, we can get V2 = o(n"'/2). So P(|Raz| > (nlogn)~1/2) = o(n=1/2).

Similar to Rss, we can show that P(|Ras] > (nlogn)~1/2) = o(n~1/2). (A.10) is
thus proved.

(IV) In this part we will show that

(A.12) P(|R4] > o(n"Y2)) = o(n~1/?).

We can write

e [ S S [ e e

- B(t)&(t
ey | mpu)((c:)é)() A

= Ry + Rys + Rys.

Since R4 is a martingale, we have

P(lR41| > (nlogn)_l/z)
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2(log n) E <z JaCEC <t>>

logn)ZE / (0)BL(OI(Z: > 1)dA(2)
< ™ (logn) / N (sng(Bl (1)~ BOY) (A0
=0 (n‘l(logn) /_T 7_2(t)dG(t)) =o(n"?)

and
P(JR42| > (nlog n)”1/2)

<teens |35 [ i i)
o 32(t)E(7"2 ®))
< (nlogn)/ DGO - 1)2dA(t)

B2(t)
< Con~ (logn)/oo B8(t)(G(t) — 1)2

=0 (n"l(logn) /_OOF (t)dG(t)) =o(n~?),  (by Lemma A.1)

dA(t)

and
P(|Ry3| > (nlog n)_1/2)

“ B(t)& (1)dM()
~logm)B <Z/ ~ POCEH -1 >

~ (U B2(8)EX(t)Li(t)
; —oo P2()(G(t) — 1)2 dA(t)]

=0 (n‘l(logn) /_Too _F—_z(t)dG(t)) = o(n"/?).

=n"?(logn)E

(A.12) is thus proved.
(V) Finally, we will show that

(A-13) P(|Rs| > o(n™1/?)) = o(n™*7?).

Write Rs = Rs1 + Rsz + Rss, where Rs; represents the i-th term in (3.1), 1 =1,2,3. It
can be shown that

Elra(t,s)|™ = O(n™™/2p~™2(t)p™™2(s)),  (m21),

which in turn implies that P(|Rs3| > o(n~1/?)) = o(n~1/2). It is also easy to see that
P(|Rs1| > o(n~1/2)) = o(n=1/2). So in the following, we shall try to show that

(A.14) P(|Rs2| 2 o(n™1/?)) = o(n"1/?).
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Note that we can further decompose Rsy into

L = o~ 3/22 Z / / tvst)plj)(tvs)de(t)de(s)

Jj=1 k—J+1

+2n—3/2z Z / /“" B(tV s)(D(t) — )de(t)de(S)

=5 p(t)p(s)
_ “n B(tV s)D(t 1
o 3/2; k;ﬂ/ / )p(t)pES)( = )de ($)aMi(o)
n_3/2 Un Ang(t 8 B(t\/ S) ] (s
e e anas

= 2R{) + 2R(2) +2R%) + RY).
Denote My;(s) = 3¢ _; 1 Mk(s), then we can write

RY — —3/22/ [/u" B(tvs) - B(tVS)dMnj(s)} dM;(t).

p(t)p(s)

Therefore,
P(|R(1)[ > (n logn) 1/2)

“n B(tVs)— B(tVs)
p(t)p(s)

[ (U2
:k;zgzn / p( [ a9 ) ant)
v

log n
n2

<

2

U (B(tV s) B(tV s))?
o0 p*(t)p*(s)

_ logn

Lj (t)d < Mnj (8) >) dA(t)

logn un (B(t V s) — B(tV s))? | n . )
Z/ oo p2(t)p(s) L](t) k;ﬂ Ly (s)dA( )) dA (%)

<logn// E(B(tVs) - (tVS))2Ede;%))—;%

=0 (n‘l(logn) (/_oo 7_2(t)dG(t)>2> = o(n~1/?).

Here we have used the following fact

n 2
sup E(m'*(B(t) - B(t)))* = sup I (n‘1/2 Z(Bj(t) - B(t))) = O(1).

Similarly, we can show, along with Lemma A.1, that

P(IRS)| > (nlogn) ™) = o(n"11?), i=2,3.
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For the term Réé) , we have the following decompositions:

@ _ . -3/2 Sl A &) oy M (8)dM; (s)
RY = -3 ;/_oo/_oo(B(tv )= Bty ) L

dM;(t)dM;(s)

n=3/? ST AN A s) — s -
+ Z/ / (B vs) = BtV ) (D) - )L

n—3/2 _ dM;(t)dM;(s)
+2 Z/ [ B D=0

n-3/2 s s _ dM;(t)dM;(s)
+ Z / / (Bev s) - B(ev ) DO(D(s) - DL

dM;(t)dM;(s)

-3/2 s _ ) —
+n ij [ [ Bev o - nwe - n T

=Ly +Lo+2L3+ Ly + Ls.
We have
P(|L1| > (nlogn)~'/?)

L g S5 M ()M (s) )’
<n” ‘lognF <~/—oo/—oo(B(tVS)_B(tV3)) OO )

=0 (n‘l(logn) </_; F_2(t)dG(t))2> = o(n~/?%),

Similarly, using Lemma A.1, it can be shown that

P(|L;| > (nlogn)"Y2) = o(n"1/2) for i=24,5.

Now we further decompose L3 into

o B(tV s)¢;(t) VM (o
" Z/ [ 0O

_5/2 B(t V s)&i(t) ‘ |
+n im1 j= 1]7‘:2/ /oo (G 1)p(t)p( )dMJ(t)dMJ(S)

n-3/2 B(tV s)ra(t) . (s
¥ E/ [ - = Do O
= L3 + L32 + L3s,

we have

P(|L32| > (nlogn)_1/2) n(logn)EL3,

(S5 5

i=1 j= 1]#1,]6 1i=1,l#k
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< B(t2 \ 32)
(G(t2) - 1)P(t2)P(82)

(S8 > [T e

=1 j=1,j#4 l=1,l#i
y B(tg \% 82)
(G(t2) — 1)p(t2)p(s2)

Hrp( >y / / / I. o (G tlB(tl)V ftll)m(sl)

i=1 j=1,j#i k=1,k#i
B(tg \ 32)
* (Glt2) — Dp(t2)p(s2)

=0 | n"(logn) (/_Too F-_2(t)dG(t)>2 (/_Too _—l(t)dG(t))2

= o(n‘1/2).

fi(tl)ﬁk (tg)de (tl)de (S])dM[ (tz)dMl(Sz))

&(tl)éi(tg)de (t})de (Sl)dM[(tQ)dMl(82)>

&(tl)dMi(tg)sz-(sg)&(tz,)de(tl)de(sn)

It is easy to prove that P(|Ls;| > (nlogn)~'/2) = o(n=1/2) for i = 1,3. We proved
(A.13), and thus Lemma 3.2.
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