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Abs t r ac t .  Let {Xn, n > 1} be a sequence of standard Gaussian random vectors in 
~d ,  d k 2. In this paper we derive lower and upper bounds for the tail probability 
P { X ,  > t~} with t~ G ~ d  some threshold. We improve for instance bounds on 
Mills ratio obtained by Savage (1962, J. Res. Nat. Bur. Standards Sect. B, 66, 93- 
96). Furthermore, we prove exact asymptotics under fairly general conditions on 
both X~ and in, as [It, ll -~ oo where the correlation matrix En of X~ may also 
depend on n. 

Key words and phrases: Multivariate Mills ratio, Gaussian random sequences, tail 
asymptotics, quadratic programming. 

1. Introduction 

Let X be a Gaussian random vector i n ~  d, d _> 1 with underlying covariance matr ix  
E and t C j~d some threshold. Multivariate Mills ratio (see e.g. Tong (1989)) is defined 
by 

(1.1) R(r Z) := P { X  > $}/~(r = f e x p ( - ( x  + 2t,  E - l x ) / 2 ) d x ,  
J(0 ~(X)) d 

with ~( t )  := exp( - ($ ,  E-lt)/2)(27r)-d/2[E] -1/2 the density function of X and (-,-) the 
scalar product  in ~ d .  In the univariate case the Laplace-Feller inequality reads (cf. 
Barndorff-Nielsen and Cox (1989), p. 56) 

) (1.2) R(t)  := R(t,  1) = exp 2 st ds 

�9 1 1 1 _ 1 1 " 3  ] = 7  , t > 0 ,  

whereas from Stanislaw and Werner (1999), the following inequality holds for t > - 1  

2 4 
(1.3) t + (t 2 + 4) ' /2 < R(t) < - - 3 t  + ( t  2 + 8) 1/2" 

In the multivariate setup, the covariance matr ix  E plays a crucial role. Clearly, we may  
consider wi thout  loss of generality (w.l.o.g.) s tandard  Gaussian random vectors, i.e. the 
components of the random vector X are normally dis tr ibuted with  mean 0 and unit  
s tandard  deviation. 
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By Savage (1962) (see also Tong (1989)) if 

(1.4) E - i t  > 0 

holds, then 

(1.5) 1 - (1/(E-lt),E-I(1/(E-lt))> ~_ R ( t , E )  _~ - -  
d 1-Ii=1 h~ d 

Hi=l  hi 
t �9 > 2, 

with 0 := (0 , . . .  ,0) '  E~:t d, hi := (eii, E-l t )  > 0, i = 1 , . . .  ,d and e~ the i-th unit vector 
in ~d .  

Knowing the Ganssian density function, upper and lower bounds for Mills ratio are 
easily converted to bounds for the tail probability P { X  > t}. 

One of the merit of the above inequality is that when (1.4) holds and hi ---* oc for 
all i = 1 , . . . ,  d then we obtain the exact rate of convergence to 0 of P { X  > t}. This is 
the case for example if E -1 has all entries positive and t C (0, co) d. 

Under further restrictions, assuming that ti ---* oc for some i and the matrix E -1 
has positive entries 

1 1 
(1.6) R(t, E) > t �9 (0, c~) d 

d d l + l / d  ' 
[Ii=1 h, F[i=l th 

is obtained by Gjacjauskas (1973). 
As pointed out by Steck (1979) condition (1.4) is rather restrictive. Several upper 

and lower bounds are derived in Steck (1979) and Satish (1986). They are easy to 
calculate numerically, however they do not give an explicit idea what happens for large 
thresholds in the sense of the speed of convergence to 0 for the probability of interest. 
Fang and Xu (1990) consider generalisation of Mills ratio for spherically symmetric 
distribution functions. 

Of course there exist numerous approaches including simulations to calculate the 
probability of observing a Gaussian vector above a given boundary. However, if one is 
interested in the speed of convergence to 0 letting (t, t) tend to oc, such methods do not 
provide the answer. 

The main purpose of this paper is to establish new upper and lower bounds for 
P { X  > t}, (hence for the multivariate Mills ratio) that inherit the simplicity of (1.5) 
and hold in general even if condition (1.4) is not satisfied. In a second at tempt we treat 
then the asymptotic behavior of P{Xn >_ tn} (for n ~ c~) where Xn has correlation 
matrix E,~ varying with n. The upper bound given in the three dimensional case by 
Proposition 4.2 of Raab (1999), Lemma D in Shao and Santosh (1999) as well as part 
of Lemma 2.1 of Elnaggar and Mukherjea (1999) can be obtained as special cases of our 
results. 

2. Notations and preliminaries 

Let in the sequel I C { 1 , . . . , d }  with d _> 2 denotes some non-empty index set. 
Further put J :-- {1 , . . . ,  d} \ I .  The number of elements for an index sets I is denoted by 
III := card{I}. The symbol E will be reserved for positive definite correlation matrices. 
Clearly its inverse matrix exists, denoted by B throughout. 

Abusing slightly the notations we drop the transpose sign when writing vectors, and 
also drop the subscripts for vectors in ~d .  For a given vector x C ~ d  we write xi the 
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vector obtained by deleting the components of x in J .  Similar notations AII ,  A I j ,  A j I ,  
A j j  are used for submatrices of a given matrix A E j~dxd. In our notation indexing is 
performed first so for example the notation A} -1 means (AII)  -1. The following standard 
notations will be used frequently 

1 := (1 , . . . , 1 ) '  E ~  d, 

x > y ,  if x ~ > y i ,  

x _ > y ,  if xi>_y~, 

= cr E d, 

Vi = 1 , . . . , d ,  

Vi = 1 , . . . , d ,  

Ixl 2 : = ( z , z > ,  d, 
CX : =  ( C Z I , . . . ,  CXd)' , C E J~, 

ax  := d iag(a)x  = ( a l x l , . . . ,  adXd)', a E]R d, 

with diag(a) the diagonal matrix corresponding to a. 
To this end, we provide a minor generalisation of Proposition 2.5 of Hashorva and 

Hiisler (2002) which is a crucial tool for the rest of the paper. Its proof is omitted since 
it follows easily by slightly modifying the proof of the aforementioned proposition. 

PROPOSITION 2.1. Let ~ E j~d• be a positive definite correlation matrix and x* 
the unique solution of the quadratic programming (PB,t): miniraise (x,  B x )  under x > t 
with t ~ ( - o c ,  0] d. Then there exists a unique index set It C {1 , . . . ,  d} so that 

(2.1) 1 < Iltl < d 

(2.2) x* = t s #  0 h and if  Jt 7 s 0 x* = -Bj- t l j tBJtj t t i t  > t jr I t  ' J t  - -  ' 

(2.3) Vi E I hi := (ei, E~ll~ti~) > 0 

(2.4) at  = m i n ( x , B x }  = ( x * , E - l x  *} = ( t z , , E ~ t h }  > O, 
x>_t 

with Jt := {1 , . . . ,  d} \ / t ,  and ei the i-th unit vector infftlII. 

PROOF. The claim follows along the lines of the proof of Proposition 2.5 in 
Hashorva and Hiisler (2002), therefore omitted here. [] 

The role of the index set It is very crucial for our discussion. In terms of geometry, 
IIt l is the codimension of the intersection of the tangent hyperplane at x* to the ellipsoid 
a = (x,  B x )  with the boundary of the set [t, cx~). For notation simplicity we drop the 
subscript for all t and write simply I, J instead of It,  Jr. It is very important to 
remember that the index set varies with t, and so does the unique solution of quadratic 
problem x*. In our discussion, the following index set is also important 

J* := { j  E J : x]  = tj }. 

From (2.2) we know that x~ > t j  so it may happen that J* is empty. Clearly this is the 
case when J is empty. The extreme case J* = J is also possible; it is shown in Example 
1 in the next section. If t = t l  with t some positive constant we have by Proposition 2.5 
of Hashorva and Hfisler (2002) 

(2.5) 2 ___ IZl < d, 

hence for the bivariate case (d = 2) we simply have J = J* = 0 and x* = t(1, 1) is the 
unique solution of the quadratic programming problem (PB,t(1,1))- 
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3. Upper and lower bounds 

As pointed out in the introduction, condition (1.4) is crucial to derive the Savage 
upper and lower bounds. It is of interest to treat also the less common case when the 
mentioned condition does not hold. Since the upper Savage bound becomes too large 
for [t[ close to 0, on the other side, it is asymptotically exact if t ~ c~, we construct an 
upper bound which is accurate for both cases. 

Let X be some standard Gaussian random vector on ~ d ,  d > 2, with underlying 
correlation matrix E. Define according to Proposition 2.1 at, I, J, hi, ~II ,  X* with 
respect to some threshold t r ( - co ,  0] d. Next, we have the obvious inequality 

P { X  > t} _< P { X I  > tI}, 

hence in light of (1.5) 

(3.1) P { X  > t} < exp(- t~t /2)  
(27r)lI)/21E,i[1/2 l--[ hi-l" 

iEI 

Note in passing that the right hand side above does not depend on t j .  
The upper bound in (3.1) seems to be rather crude. Actually, if J* = 0 it is exact 

asymptotically (for hi -~ oc) as will be shown in the next section. For t so that hi are 
close to 0, clearly this upper bound is far beyond 1, therefore of no use. This case will 
be dealt with, too. 

In the next proposition we derive another upper bound of the same asymptotic order 
which depends on t j .  Further, the case Itl close to 0 is also covered. To this end we put 
P { X j  > (t - x*)a}lEjal 1/2 =: 1 and I]ica('" ) =: 1 whenever J = O. 

(3.2) 

where 

PROPOSITION 3.1. Under the previous assumptions and notations we have 

exp(-c~t/2) 
P { X  > t} < (27r)jtl/21Ei1/2 min(co( t ) ,o( t ) ,c2( t ) ) ,  

co(t) := H h g - l v / l ~ l / l ~ H I  , 
i c I  

el( t )  := H R(hix/~v)Adv/2 H P { X i  > (ti - x ; ) / V ~ v } ,  
iGI iCJ 

c2( t )  :=  H h ~ I p { x j  > ( t  -- X*) j}]~ja]  1/2, 
icI 

with Av > 0 the maximal eigenvalue of E and t - x* < O. 

PROOF. The first bound with co(t) follows immediately from (3.1). 
For sake of simplicity we assume that J ~ 0; the case J = 0 is simpler and its proof 

is therefore omitted. Now recall that  both square matrices B/ / ,  B j j  are positive definite 
and moreover 

-1 (3.3) : B H -  B I j B j j B j , ,  E j J  = B j j -  B j z B I / B I j .  
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By Proposition 2.1 we have 

<x + x*,B(x + x*)> = 

(3.4) 

* = t i ,  * = - B j I B j j t I  > t j ,  hence we obtain *I  * J  

<.j + .~ + B j J B j I ( . I  + t,), 

B j j ( . j  + .~ + B2JBj I ( . ,  + t,))> 
+ (xI + ti, (BII - B , jB2JB j t ) (* I  + t,)) 

= <*j + (*j + Bj l t~JI t I )  + B2~BjIXI, 
B j j ( * j  -t- (*) + B j ~ B j ,  tI) + Bj1BjI*I)> 

-~- <*I,~iI*I> n L 2<*I, EI}tI)  + <t,,Z?}t,) 
= (,a + B j J B j I * * , B j j ( * j  + B2JBjIX,)> + (xI, EII*,}  

A- 2(*I, E7il tI) -4- Ctt 
= < . , B . >  + 2 < . , , r ; / t . >  + ~ 

Since the correlation matrix E is positive definite, there exists an orthogonal matrix D 
such that E = DAD with A := diag(A,, A2,..., Ad) is the diagonal matrix of the positive 
eigenvalues of E. So we may write 

B = DA-1D = D diag(A~ -1, ~21,. . . ,  A~I)D. 

Let Av, AA be the largest and the smallest eigenvalue of E respectively. 
Av _> AA > 0 and moreover for all x E ~d  

1 < . , . >  < < . , B . >  < ~<., .>, 
(3.5) ~-7 - - 

hence (3.4) implies 

<* + **,B(*  + x*)> >_ ~ < x ,  *} + 2<*i,E;]tI} + 

In light of Proposition 2.1 

Clearly d > 

( t  - -  X * ) J  ~__ O J ,  ( t  - -  X * ) I  = 0 I 

hi := (ei ,ETlti)  > O, Vi c I, 

with ei the unit vector in ~lII, hence transforming the variables yields using (3.4) and 
(3.5) 

P { X  > t} = [ ~(x)dx  
J x  >t  

= / ~(x + x*)dz 
J x  > t - x *  

exp(-at /2)  j f  9s exp(-<x,x)/(2Av) - <xi, E l l t i } l dx  
< (2~)d/2[~1 */2 . > ( t - = * ) .  ,oo),', 

= exp(-at /2)  f~ exp( - (x j ,  x j) / (2Av))dxj  
(2~)d/~lr ,  rl/~ , > (~_ ~.), 
• / exp(-(xi ,  xi)/(2Av) - (x,, Ei~tl))dxi  

J(o ,c~)l*l 
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exp(-atl2)Adv/2 
(27r)d/21Ei1/2 L~>(t_=.)j/,/x_~exp(-(Xa, xj)/2)dxy 

5 • H 
iEI  

exp(-ast/2) YIi~t R(vr-~vhi) (Ad/2 H P{Xi > ( t i -  x~<)/V/~v}) 
(2~)d/21Z11/2 \ ic.s 

Next, using now (3.3) and the fact that the square matrix BH is positive definite 

(3.4) = ( x j , ( B a j -  BylBIff BIj)xj} + (xi + BI /BI jx j ,  BH(XI + Blff BlyXj)) 

=- (gCJ,~jlxJ} + (T,I + BI1BIjxj,BII(XI + BI1BIjxj)} + 2(xi, Ei / t i  ) +olt 

Proceeding similarly we may write 

P { X  > t} < exp ( - a t / 2 )  L S(o 
- (2r)<s/21EI1/2 .,>(t-,,*)., ,oo)i,I exp(-(xj, EjJxj)12 - (x i ,  E i ] t i ) ) d x  

/. 5 = exp(-o~t/2) exp(-(x.s, ~.jJx.s)/2)dx.s 1--[ exp(-h~s)ds 
(2~)d/2lZI 1/2 j>(t-x*)~ is-, 

exp(- U ) 1-L , ' : ,  
= (2r)ISlI2IEIll2IEajI-112 Lj~>(,__,.) J exp(--(~l~y, ~SJx.s)/2) d~ 

hence the proof. [] 

Let us briefly consider the role of co(t), cl(t), c2(t) for the upper bound above. Since 

P{Xi > (t - x*)lV~v} > 1/2, Vi E J 

and recalling that hi, i E I are positive we get applying (1.3) 

1 
0 < Ad/22 I' l-lyl H hiv/X~v + (h2Av + 4)112 -< c l ( t )  

i c I  

1 
< Ad/24111H 3hix/~Tv + (hTAv + 8) 112' 

iEI  

and since t - x* < 0 

P{Xj > 0.s}E.sjI 1/2 H h7 -1 -< c2(t) < 12J.sl '/2 H hT" 
iEI  iEI  

holds. It is obvious that for hi close to 0, co(t), c2(t) become large, whereas cl (t) remains 
unaffected, implying min (co (t), Cl (t), c2 (t) ) = Cl (t). On the other side, if hi --+ co then 
all three constants co(t), cl(t) ,  c2(t) capture the speed of convergence to 0 of the tail 
probability, see discussion in the next section. The merit of both co(t), c2(t) is that they 
do not depend on the maximal eigenvalue of E. 
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Let in the following/ti = h i / ~  a n d / )  the matrix B with main diagonal entries 0; 
recall that also the minimal eigenvalue AA of the correlation matrix E is positive. Now 
we formulate the result concerning the lower bound: 

PROPOSITION 3.2. With the same conditions and notations as in Proposition 3.1 
we have 

(3.7) exp( -a t /2 )  max(ca(t), ca(t)) 
P { X  > t} >_ (27r)lli/2iEi1/2 

where 

ca(t) := n R(hix/~A)Ad/2 n P{X ,  > (t, - x~)/X/~A} 
iEI iCJ 

> n R(hiv/-~A)Ad/22-1JI > O, 
iEI 

R(hi) P{Xi  > ( t -  / [ ) ~ }  
c4(t) :=exp( - (V ' [~  V}/2) n ~ n 

icI iEJ 
1 >-exp(-{V,[~V)/2)2-JJIHR(hd n ~ > o ,  

iGI i=l,...,d 

with 

{ [1/R(hi) - lti]b~ 1/2, for i C I, 

V/ := R((ti - x*)x/~ii)-lb~ 1/2, for i E J. 

PROOF. As in the proof of the previous proposition we assume for simplicity again 
J ~ 0. In light of (3.4) and (3.5) we get 

(~ + ~*,B(x + ~*)) _< ~ ( ~ ,  ~> +2(~,r~i~t~) + ~ ,  X E / R  d, 

thus analogously to the proof above 

P { X  > t} >_ 
exp( -a t /2 )  

(27r)llI/2[E[l/2 n R(hiV/~A)Ad/2H P{Xi  > ( t i -  x * ) / C } .  
iEI iEd 

Since further x~ > ti, i C J the bound for c3(t) follows easily. 
The other bound is obtained based on Jensen's inequality following closely the proof 

of Steck (1979). By (3.3) we have as in the proof of Proposition 3.1 

P { X  > t} -- 
exp( -a t /2 )  f 

.L exp(- (x ,  Bx) /2  - (xt, Elll tI) )dx (27r)d/2IE]1/2 _ _>t-~* 

exp(--at/2) 
(27r)d/2[Z]1/2 

�9 ~f>~-=* exp(-(~, B~)/2 - (~V~, ~ ) / 2  - (~i, wxtI))d~, 
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with b = (b l l , . . .  ,bdd)', the main diagonal of the matrix B. Clearly by the positive 
definiteness of B we have b > 0. Further/t i  are positive for all i E I implying R([ti) > O. 
Next, since 

x>t-x* exp(-(xv~- ,  x v / b ) / 2  - (xi ,  E ~ l t i ) ) d x  

-- __ ~ j> ( t -x* ) j  exp( - ( (xv /b )s '  ( x x / b ) j ) / 2 ) d x j  

x f exp(-((xx/b)x,  (xv/-b)i)/2 - ix/, E l l t i ) ) d X l  
Y(0 ,oo)irt 

_ (21r)lJJ/2a 1-I P { X i  > (t - x * ) ~ }  1-[ R(h,) 

(27r)lal/i2-lgl 
=: P~ > ~ H R(~)  > o 

-- Hi=I ~ i E I  

Jensen's inequality implies 

(27r)d/2[EI1/2 e x p ( a t / 2 ) P { X  > t} = p t E { e x p ( - (  U,  [~ U)/2)} 

> p~ exp(-(E{ U}, t?E{ U})/2), 

with U = (U1 , . . . ,  Ud) a random vector in/R a with independent components and density 
function 

p t  1 exp(- (xv/b ,  xv /b} /2  - (xi ,  E i l t l ) ) l { x i>o l , z j>( t - x . ) s } .  

For i ff I partial integration yields 

~ R ( ~ d E { U d  = s e x p ( - s 2 / 2  - ~ ,s)d~ = 1 - ~ , /~(h , ) ,  

and for i C J (recall P { X i  > (t - x*)} >_ 1/2, i ff J)  

s_. 2 f(t-x* ),/~. s exp( -  exp(-b i i (  ti - x;)2/2) 

1 

R(( t  - x ; ) v ~ . ) '  

hence the proof is complete. [] 

Remarks.  a) In light of Proposition 2.1 if [J*[ > 0 then ti = x~ for all i C J* hence 

P { X i  > ti - x~} = 1/2, 17/= l /R(0)  = v / ~ / 2 .  

Further 
~ ( ~ , )  = exp(-~, /2)  

(27r)d/21EI1/2 " 

b) Clearly If/tends to e~ if hi --* co for i E I, making the term c4(t) much smaller 
than ca(t). 
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c) For the asymptot ic  theory it is of great  interest (cf. Bischoff et al. (2000, 2001)) to 
investigate the  rate of convergence to 0 of P { X  > t} if one of the components  ti ~ oc. 
Both  upper  and lower bounds  derived above capture  very well the rate of convergence 
to 0 if all hi --4 oo. We note that  

(3.8) 
P { X  > t )  

e xp ( -a t /2 )  H ~ z  R(h,) 

is bounded  away from 0 and ec when t r ( - o c ,  0] d. 

Next,  we demonst ra te  the implications of the obta ined upper  and lower bounds  by 
two examples. 

Example 1. Let ~, ~? be two Gaussian random variables with mean zero and unit 
s tandard deviat ion with correlation Corr{~,~j} = p C ( - 1 ,  1). Fur ther  fix threshold 
t = t(bl,b2) with constants  bl > b2 > 0, t > 0. In view of (1.5) three cases have two be 
dealt with separately. 

i) Case p < b2/bl. Simple calculations show tha t  I = {1,2}, J = J* = 0 and 

bl - pb2 b2 - pbx 
[ E [ = l - p 2 ,  h i -  h 2 -  

1 _ p 2  , 1 _ p 2  , 

A1 = l - p ,  A 2 = I + p ,  bu  = b 2 2 = ( 1 - p 2 ) - l ,  

a t  = ((bl, b2), r - l ( b l ,  b2))  = (b~ + b~ - 2 p b l b 2 ) / ( 1  - p2)  >_ (52 - b~)2/(1 - p2) > 0 

where E is the underlying correlation matr ix of (~, 7/). Hence by the previous results we 
obtain  

( 1  - p2)3/2 exp(_t2(b~ + b~ - 2pblb2)/(1 - p2)/2) 
P { ~ > tbl,~ > tb2} <_ 

2~(b~ - p h 2 ) ( b 2  - p h i )  

and 
P{~ > tbl, 71 > tb2} > max(r l  (bl, b2)rl (b2, bl) max(1 - p, 1 + p), (1 - p2) 

• r2(bl, b2)r2(b2, b,) 
• exp(p/ (2(1  - p2))(r3(b,, h2) + r3(b2, bl)))) ,  

with 

r l (x ,y)  := R ( ( x -  p y ) v / m a x ( l -  p , l  + P))  
-f-_-~ , ~, y c ~ 

~ 2 ( x , ~ )  : =  R ( ~-2 PY ~ [ - ] \ 1~4-:7-p~] ' r3(x,y) := ~ r~(x,y)-' Xl yP~ , x,y e~ .  

ii) Case p = b2/bl. Solving the quadrat ic  programming problem ~B,(tbl,tb2) w e  

obtain 
I = {1}, J = J* = {2}, E u  = 1, at = t2b~, hi = tb,. 

Since p > 0 we get further 

AA = l - p ,  A v = l + p .  
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So we have 

exp(_t2b~/2) ( v/1 _ p2 
P{~ > tbl, ~ > tb2 } ~ ~ - ~  ~ - ~  rain \ ~ 

P{~ > tbl,~ > tb2} 

> exp(-t2b2/2) 
- - 

(1 + p ) R ( t b l ~ )  1 
' 2 ' 2tbl ) 

m a x ( ( 1  - p)R(tba V /~  - p)) (1 - p2)R(tbl X / ' - i -  p2) 
\ 2 ' 2 

x exp(p/(2V/1 - p2) 

• [ V ~ / 2  + 1/R(tbl  V/1 - p2) _ tbl l ~ / i - ~ -  p2])) �9 

iii) Case p c (b2/bl, 1). The only difference with the previous case is that  J* = 0. 
It can be easily seen that  m* = t(bl,pbl), and further a t , h l , I , J  are the same as in 
the previous case. To obtain an explicit expression for the upper and lower bounds 
instead of 1/2 corresponding to P{X1 > 0} we should put now in the above inequalities 
P{X1 > t(b2 - pbl)} > 1/2 if t > 0. Observe that  in the above example we have 
0 < co(t) < c2(t) for t large. 

Example 2. Proposition 4.2 of Raab (1999) estimate the tail probability of Gaus- 
sian random vectors needed for a compound Poisson approximation problem related 
to m-dependent stationary Gaussian random sequences. Our example gives a stronger 
result: let t~, n > 1 be such that  

t n =  lbn +o(1)/bn,  

with bn defined as the solution of b~ = n~(bn) where ~ denotes the standard normal 
density function and o(1) a sequence of vectors in ~ d  vanishing to 0 as n --* c~. It is 
well known (see e.g. Reiss (1989) or Falk et al. (1994)) that  we may define for large n 

b~ := ~ - ln(4~r In n) 

2 ~ "  

Further it follows In = I for n large and at. = b2n( l / ,E~- l l l )+  o(1) as n ---* c~, hence 
we obtain by the previous results 

P { X  > lbn + o(1)/b~} 
0 < K1 ~ bnli [ exp( -b2( l I ,  E I~ l I ) /2 )  ~_ K2 < oo, 

with K1, K2 two constants depending on E but not on n. 

fo r  n - -~  O0 

4.  A s y m p t o t i c  r e s u l t s  

Let {Xn, n _> 1} be a sequence of d-dimensional standard Gaussian random vectors 
with positive definite correlation matrix En. In this short section we treat the asymptotic 
behaviour of P { X n  >_ t ,} ,  with t~ so that  at least one of its components tends to c~. 
Again we rely on Proposition 2.1 considering now the quadratic programming problem 
(T'Sn,tn), with B n the inverse matrix of En and let ate, In, Jn, J~, x,~ as in the afore- 
mentioned proposition. In the following we use a simplified notation; for example we 
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write tn,In instead of (tn)rn and similarly for other cases. It does not lead to ambiguous 
interpretations. We may state now the main result of this section. 

THEOREM 4.1. Under the above setup suppose that for  all large n we have In = I 
and 

(4.1) lim ( t  n Xn) J t j ,  and Vi E I :  lim (e/, - 1  - * = * E n , i i t , , , 1 ) = c ~ .  
n -----> o 0  n - - - -~  o 0  

Suppose further that the sequence of matrices Bn, n C J~-V, is bounded for all n and 

l i r n  _=~-1 (4.2) lim Bn,gg = B j j ,  E n l j  j j ,  
n - - - - +  ( X )  

with B j j ,  E j j  positive definite matrices. Then as n ~ co 

(4.3) P { X ~  > tn} --- (1 + o(1)) e x p ( - a t n / 2 ) P { X n , j  >_ t j  I Xn,1 = 01} 
(27r)lzl/2 IZn,ii 11/2 I-[i~z (e/, E~,lz t~,1) 

with t j  < OJ and 
atn = min (x, Bnx)  ---* oo, n --+ (x). 

x > t .  

PROOF. Assume in the following w.l.o.g, that  /n = 1 holds for all n E PC. Define 
5~ for given x by (5:n)i :=- (e4, Z~,11tn,t)-1x~, i E / and (5~)j  :-- xy. Using (3.4) we get 

exp(--~,n/2) 
qo(han + x*) = (27r)d/2[En[1/2 exp(--(~.n, B~hz~)/2 - (x, 1i)), 

and changing the variables yields (recall (ei, ES,~itn,l) > 0 for all i E I) 

(H --1 --1) e x p ( - - a t , / 2 ) f i n ,  
P { X n  > tn} = (e i ,~n , i l tn , I )  (2~)a/2lp~nll/2 

\ iCI  

with / *  

Jn  := / exp(-(5~n, B,~hzn)/2 - (x, l I ) )dx .  
dx > t,~ - x *  

Since Bn is bounded and by (4.1) and (4.2), for every x 

lim (5~, Bnh~) = (x j ,  B j j x j )  > 0 
n - - - ~  ( ~ 3  

and similarly to (3.6) by condition (4.2) 

exp(- (Sh,  BnScn) /2 - (x, lz)) _< e x p ( - ( x j ,  E ; , 1 j x j )  /2) ---* e x p ( - ( x j ,  E j l  xg) /2) 

for n ~ e~. Applying Lebesgue dominated convergence theorem (cf. Theorem 1.21 in 
Kallenberg (1997)) implies 

lim ,Tn = f e x p ( - ( x  j ,  B j j x j ) / 2 ) d x j ,  
n - ~  j~j) t~ 
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hence as n -+ oc using (4.2) 

,7~ = (1 + o(1))(2rr)lJl/21Bo, al-1/2 ~ e x p ( - ( x a ,  B j j x j ) / 2 )  
,>t~ (21r)lJi/2[Bjj[_l/2 dxa 

= (1 + o(1))(2rr)tJI/2lBn,ja[-1/2p{x~,+ > t j  [ Xn,I = 0z} 

= (1 + o(1))(2rr)lJI/2lEn,iil-1/2lrnll/2P{Xn,a > t5 I Xn,! = 01}, 

and the fact tha t  

y] --1 I nl = I n,HIl  ,aJ - -   ,JZ n,ii  ,zal = I n,IIIIBn3Jl> 0 

completes the proof. [] 

Remarks. a) In the above theorem for J* not empty  we have t~. = 0 j .  and 
tS \ j .  c [_cc,0]la\J*l .  

b) For the term in the asymptot ic  result above we may write  further for n > 2 

exp(-at,~/2) 
(27r) [I[/2[En,lI[1/2 

e x p ( - ( t ~ , / ,  E~,~s t~ , i ) /2  ) 

(2zr)lll/2 IE~,1I[1/2 : ~I(x~) = qai(ti), 

with ~r  the densi ty function of Xn,i. 

Simple thresholds are t reated in the next corollary. 

COROLLARY 4.1. Let X be a standard Gaussian random vec to r  o n J ~  d, d > 2, with 
correlation matrix E and t~ = tnC, tn > 0, c ~ ( - c o ,  0] d. Then as n ~ oc 

(4.4) P { X  > tn} = (1 + o(1))exp(-t2n(Ct, E i / c i ) / 2 ) P { X a .  > 02. [ i l  - ~ -  01} 

(27r) llJ/2]P, uJ1/2t~l I-[~, h~ 

holds as n -+ oo, with I , J* ,h i  := ( e i ,E i l  cr) > O, i ~ I defined with respect to solution 
of quadratic programming problem 7)B,c. 

PROOF. Let In, Jn and I,  J* be  the index set related to the quadrat ic  programming 
problems 7)B,t~ and 7)B,e respectively. It follows that  In = I,  J*  = J* and the unique 
solution of PB,t~ is x* = tnC* with c* the unique solution of PB,e. ~ r t h e r  for all i ~ I 
we have as n -+ oc 

= 1 I> -+ 

Next,  by Proposi t ion 2.1 
c j .  = ca . ,  c~ \ j .  > ca\j .  

(whenever the index sets above are not empty) ,  hence as n --+ oo 

x~,j \ j .  = tn(c - c*) j \ j .  -+ ( - o o , . . . , - o o ) ,  and 

Since for all n E 
2 * 

= = tnic , ;/cl) > o 

the proof  follows immediately  from the previous theorem. [] 

x n , j .  : O j .  . 
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Finally, we discuss a particular situation, where the asymptotic expression does not 
depend on the solution of the quadratic programming problem (/)B~,t~). 

Consider Xn as above and threshold 

(4.5) tn = a n x  + b~ l ,  x E Kt d, 

with an, bn positive constants. Assuming that 

a2nBn 2 -1 , = a n E  ~ -+ E a  I n "-'+ OO, 

with Ea some positive definite matrix, and for all i = 1 , . . . ,  d 

lim anbn(e i ,  B n l }  = hi 
n - -+ o 0  

we get 

P { X n  > t~}  = a d exp(-(tn,(2~)d/2[Enll/2Bntn>/2) ~ >x exp ( - a~  (y, B n y } / 2  - a n b n ( y ,  B n l > ) d y  

(1 + o(1))a d exp( - ( tn ,  B n t n } / 2 )  

x[_ exp dy, 
d y > x  

which leads to another proof of Theorem 2 of Hiisler and Reiss (1989). 

5. Comments and examples 

The asymptotic results obtained in the previous section open the way for treatment 
of more difficult situations when Gaussian random processes are involved. These ideas 
are successfully developed in Bischoff et al. (2000, 2001). 

Our results are of certain important for the extreme value theory and rare events 
for Gaussian triangular arrays. In extreme value theory usually threshold of the form 
a~x + bn are considered. 

Our last comment is in connection with the speed of convergence in (4.3). Clearly 
when (~t. goes to infinity, the speed of convergence to 0 is exponential fast. Now if 
hi = ( e i , E ~ , ~ t n , s )  -~  oo then at least for one i we have tni --~ c~. It is easy to see 
(splitting the scalar product as in (3.5)) that 

a t .  = m i n ( x ,  B n x }  >_ An 1 m a x  t~i , 
x > t ~  i= l , . . . ,d  

with An 1 the maximal eigenvalue of B~ 1. So under conditions of the Theorem 4.1 the 
speed of convergence is exponentially fast since 

l i m  c~t~ = 

follows easily by the above arguments. 
It is clear that there is an intrinsic relation between the asymptotic behaviour of 

the components of tn and the index set In. If one of the components say for instance 
the first dominates all the others, i.e. 

lim t n i / t n l  = O, 
n- - -~  OO 
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with tnl --+ 00, it follows tha t  In = {1} for all n large, so at. = t21 + 0(1) and hi  = 
tnl, hence the cont r ibut ion  of the other  components  is negligible for the asympto t ic  
expansion. 

Finally we consider three examples i l lustrat ing the results for the asympto t ic  anal- 
ysis. 

Example 3. Let  (~1,7]1) , . . . ,  (~n,?]n) lid r andom vectors with s t andard  Gaussian 
random components .  Assume tha t  

Corr{~k, ~k}=Pk ~ P E ( -  1, 1), k ~ c~ 

and take t .  = tn(bl, b2) as in Example  1. By the above results if p < min(b~/b2, b2/bl), 
we have as n -~ oc 

( 1  - p2)3/2 e x p ( - t ~ a / 2 )  
P{~,  > tnbl,77n > t ,  b2} = (1 + 0 ( 1 ) ) ~ 7 7 - - - - 7 - 7 w - ,  --_ - 7 - ~ .  ~ ( o l p o 2 ) ( o 2 p o l ) ~ n  

with 
a -~ [b 2 - -  2pb lb  2 -~- b22]/(1 - p2). 

If p ,  = b2/bl for all n large, we get Jn = Jn  = {2}, hence in view of T h e o r e m  4.1 

P{~n > tnbl, ~ln > t.b2} = (1 + o(1)) exp(-t$b2/2) 
2t.bl v f ~  , n --~ oc. 

It is easy to see tha t  if limsuPn__.oopn > b2/bl > 0 we get J .  = {2}, IJnl = 0, thus  we 
obta in  by the same theorem 

. . . .  exp( - t~b~)  
P{~.  > tnbl,?Tn > tnb2}  = (1 + o~,l)) ~ , n ----* cx:). 

Note  tha t  in bo th  last cases the asympto t ic  does not  depend on p . .  
Alternatively,  since 

P{~.  > t.bl, ~. > t.b2} 

- v ' ~  ~ (x  + bltn)(1 - q~(([b2 - p n b i l t .  - x p . ) / V ' ~ f  - p~))dx 

Watson  L e m m a  establishes the asymptot ics  if p~ = p, n E ~V, which is also given in 
L e m m a  2.1 of Elnaggar  and Mukher jea  (1999). For the  case p = b2/bl the asympto t ic  
expression is obta ined therein  up to some constant .  

Example 4. Let  us consider the case En E j~d• d >_ 2, is pe rmuta t ion  symmetr ic ,  
i.e. 

(5.1) En = (1 - pn)Id +pn l l ' ,  

with - 1 / ( d -  1) < pn < 1, n E~W and Zd the ident i ty  matr ix.  The  inverse mat r ix  is then  

Bn-  --L-1 zd-  u ' ,  
1 - p ,  (1 - p~)(1 + (d = 1)pn) 
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hence as n -~ cx~ 

iff 

1 1 
(ei, Bn l}  = 1 + ( d -  1)p~ ~ 1 + ( d -  1)p > 0, 

lim Pn --- P ~ ( - 1 / ( d -  1), 1]. 
n - - -~OO 

In order to make sure tha t  the inverse matr ix  B~ remains bounded for all n large (required 
in Theorem 4.1) we need to exclude p = 1. 

If t~ = (1 + o(1))t~1 then [I~[ -- d, hence we have 

(5.2) P { X ~  > t~} = ~(t~l)[(1 + (d - 1)p)/tn] d, as n -~ oc, 

which reduces for p = 0 to Lemma D in Shao and Santosh (1999), whereas for tn = 
bn + o(1/bn) and bn as in Example 2 the above results is stronger than  the claim of 
Proposit ion 4.2 of Raab (1999) dealing only with the case d = 3. 

Example 5. Consider now the correlation matr ix  similar to the example of Gnedin 
(1998) 

1 Pn Pn ) 
p~ 1 0 , 

Pn 0 1 

1 - P n  / -Pn 1 

_p~ p2 1 - p2 n ] 

so tha t  
lira p~ = p E ( - 1 / v ~ ,  1 /v~) .  

n - - ' ~  OO 

Take threshold t~ = tn(1, 1, 1)' with l im~_.~ tn -- c~. The interesting cases when our 
results can be applied are Pn = 1/2 for large n or limsup,~__.~ Pn E (1/2, 1 /v~) ,  since 
the first row of the matr ix  Bn sums to some nonpositive constant ,  implying tha t  (1.4) 
does not hold. 

It is easily seen tha t  Y~ = {1} and EI ;  is the ident i ty matr ix  i n ~  2. In the first case 
Y~ = Y~ hence 

P { X n  > tn(1, 1, 1)'} = (1 + O(1)) exp(--t2/2)/(4~t~),  as n --* c~ 

and for the second case 

P { X n  > tn(1, 1, 1)'} = (1 + O(1)) exp(--t2/2)/(27rt~), 

since we have further J,~ = O. 

as n --~ oo,  
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