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Abstract. In this paper we consider the problem of testing for a variance change
in nonstationary and nonparametric time series models. The models under consid-
eration are the unstable AR(q) model and the fixed design nonparametric regression
model with a strong mixing error process. In order to perform a test, we employ the
cusum of squares test introduced by Incldn and Tiao (1994, J. Amer. Statist. Assoc.,
89, 913-923). It is shown that the limiting distribution of the test statistic is the sup
of a standard Brownian bridge as seen in iid random samples. Simulation results are
provided for illustration.
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1. Introduction

The problem of testing for a parameter change has attracted much attention from
many researchers since the parameter change in the underlying model is occasionally
observed in actual practice. Since the paper of Page (1955), a vast amount of relevant
articles have appeared in the literature; for example, see Hinkley (1971), Brown et al.
(1975), Zacks (1983), Csorgd and Horvath (1988, 1997), Krishnaiah and Miao (1988),
Wichern et al. (1976), Picard (1985), and the articles cited therein. The problem of
testing for a variance change has became an important issue in time series analysis
since the variance is often interpreted as a risk in econometrics. Incldn and Tiao (1994)
considered the cusum of squares test for testing for a variance change. Their method has
abundant merits since it is essentially a nonparametric test (distribution free), applicable
to detecting multiple change points, and easy to understand and implement under a
variety of circumstances; for instance, their test has been extended to GARCH (1,1)
models (cf. Kim et al. (2000)) and linear processes (cf. Lee and Park (2001)).

In linear processes a variance change in the observations implies a change in one
of the errors and the converse is also true. Thus a test for a variance change can be
performed based on the errors rather than the observations themselves. Furthermore,
the test based on the errors outperforms the one based on observations since the latter
is subject to serious power losses when the data is highly correlated. Thus, if the time
series under investigation is stationary and invertible (see Brockwell and Davis (1991),
for the definition), then the former is naturally preferred (cf. Park et al. (2000)). In
fact, the ease of application of the cusum of squares test lies in the fact that the limiting
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distribution of the test statistic is the sup of a standard Brownian bridge. It has been
shown by Lee and Park (2001) that this result holds for stationary processes, but so
far no attempt has been made to investigate its extension to nonstationary processes.
The issue is intrinsically interesting and the result, if it turned out to be true, would
merit special attention. Motivated by this, we considered the variance change problem
in unstable processes (cf. Chan and Wei (1988)).

In this paper, we also deal with a nonparametric time series model taking into con-
sideration its practical importance. The nonparametric approach in time series analysis
has been advocated by many authors due to its flexibility and robust features when
no parametric models are easy to apply to data (see, for example, Truong and Stone
(1992), Neumann and Kreiss (1998) and Hafner (1998)). In fact, the nonparametric
time series approach has been well appreciated by practitioners as a preliminary search
method aimed at establishing a final parametric model. Needless to say, the task of cor-
rect modeling requires an analyst to be informed of the possibility of a variance change
when she/he speculates as to its presence in given data set. Here we particularly concen-
trate on the variance change problem in a nonparametric regression model with a strong
mixing error process.

The organization of this paper is as follows. In Section 2, we deal with the variance
change test for the errors in AR(g) models, which cover both stationary and nonstation-
ary models. In view of the result of Lee and Wei (1999), which shows that the residual
empirical process from the AR(g) model with unit root 1 has a non-Gaussian process as
its limiting process, one would likely guess that the same phenomenon might occur in
this case. However, on the contrary, the Brownian bridge result is shown to remain the
same as in Incldn and Tiao, and the cusum of squares test is still valid in this case. In
light of this result, we discuss a goodness of fit test using the empirical process based
on the squares of residuals. It is shown that the empirical process in this case converges
weakly to a standard Brownian bridge as long as the error distribution has a symmetric
density, which is immediately applicable to a Gaussian test.

In Section 3, we consider the variance change problem in a fixed design nonparamet-
ric regression model whose error process is geometrically strong mixing. We show that
under regularity conditions the cusum of squares test statistic behaves asymptotically
the same as with iid random variables.

Finally in Section 4, we report simulation results for our cusum tests introduced in
Sections 2 and 3.

2. Test in AR(q) model

In this section we consider the problem of testing for a variance change in the
unstable AR(gq) model:

(2.1) Xi~ b Xey — - — :Bth—q = €,

where ¢; are iid random variables with Ee; = 0, Eef = 02 and Eej < co. We assume
that the corresponding characteristic polynomial ¢ has a decomposition

#(z) = 1—Prz—---— 427
!
= (1-2)°%1+2)° H(l — 2cos Oz + 2%)*4h(2),
k=1
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where a,b,l, d;, are nonnegative integers, 65 belongs to (0,7) and (z) is the polynomial
of order r = ¢—(a+b+2d; +---+2d;) that has no zeros on the unit disk in the complex

plane.
Let X; = (X¢,..., X¢—q41), where X; =0 for all t < 0. Let

n -1 n
= <Z Xt_lx-;_l) Z Xt—lXta n>q,
t=1 t=1

be the least squares estimate of 8 = (f8y,...,0,)’ based on Xi,...,X,. Then the resid-

uals are v
:Xt”:Bn-Xt—la t=1,...,n.

As mentioned earlier, our goal is to test the following hypotheses:

Hy: the €; have the same variance o2 vs.

H;: not Hy.

In order to perform a test, we employ the cusum of squares test statistic T, based
on the residuals:

k
22) T = i (A L2
where 22 =n~130 & — (n71 307, €2)2. Then we have the following result.
THEOREM 2.1. Under Hg, as n — o0,
(2.3) T, = sup |W°(u)],
0<u<l

where W° denotes a standard Brownian bridge. We reject Hq if Ty, 1s large.

ProoOF OoF THEOREM 2.1. Since

1 (& k& 1 (& E&
~2 ~2 _ 2 2
%(Z;et_ﬁgft) —ﬁ<zet_ﬁ ft)

t=1 t=1 t=1 t=1
and .
1 k
mex —=———c |y - =) |5 sup [Wo(u),
1<ksn /nvar(e]) | n 0<u<l1
it suffices to show that
R k
2.4 max — 62—-262 =op(1
(2.4) 1<k<n /1 t t (1)
- t=1 t=1
and

(2.5) #2 5 var(e2).
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Note that
k k k
2\ _ L NEPRY .
where
k 1 n 1 n
_ _ - _ — 2 i 2
I, 1<k<n get €:)? n;ft &) = ﬁ;{(ﬁn B) Xi_1}°,
k k
a /
T = g, (36— e = max =508~ ) Xicae|

As in Lee and Wei (1999), in order to show the negligibility of I, and II,, we
decompose the time series into several components so that each component has its own

distinct characteristic roots.
Let

= ¢(B)(1 - B)™*X,,
=¢(B)(L+ B)"*X,,

z(k) = ¢(B)(1 —2cos 0B+ B)~%*X,, k=1,...,1,
— 6(BYyL(B)X,,

where B denotes the back-shift operator. For convenience, set

Uy = (uta--~,ut—a+l),7 Ve = (Ut;~")vt—b+l)/a
:Bt(k) = (xt(k), ce ,.'Ift_Qdk+1(k))/, zZ = (Zt7 RN Zt_r+1)/.
Since Xg = 0, we have ug = vog = xo(l) = --- = x(I) = % = 0.

According to Chan and Wei (1988), there exists a ¢ x ¢ nonsingular matrix @Q such
that
X, = (’U,;, ’v;’ .’Ei(l), SRR :’4(1)’ zé)l
and there exist block diagonal matrices S, = diag(J,, Kn, Ln(1),...,Lp(l), My) such
that

(2.6) $aQY  Xi 1 X, ,Q'S,
t=1
~p diag (Jan_lu;_lJ,;, . .,MnZzt-lz/t_lM;)
t=1 t=1
= OP(1)7

where Jp, K, L,(1),...,L,(l), M, are a X a,b x b,2d; X 2dy,...,2d; x 2d; and r x r
matrices. Moreover, it holds that

n -1 5
(Jyll)—l (Z ut_1ué_1> Z'u't—lft
t=1 t=1

(2.7) (@'Sh)"Y (B, — B) ~p

(b~ (Z zt_lz/t_l> 3 216

t=1



CUSUM OF SQUARES TEST FOR VARIANCE CHANGE 471

= Op(l).

Here, for any sequences of r.v.’s {X,, } and {Y,,}, X,, ~p Y;, means that X,,—Y,, = op(1).
First, note that I,, = Op(1//n), since

(2.8) > (B, — BY Xi-1}* = Op(1),

which is due to (2.6) and (2.7).
In order to deal with I1,,, note that

k
Jn Z Up—-1€¢
t=1

k
(2.9) SaQY  Xi16; =
t=1

k
M, Z Zt—1€¢
t=1

Then, in view of (2.7) and (2.9), we have that
-1 5 ! k
II, ~p 131/?22\/_ {(J) (Zut ) 1) ;ut—lft} Jn;u’t—lft
n -1 p5 ! k
e d (zzt_lzt_l) S GV S
t=1 t=1 t=1

which is no more than

(J)7t (2 %—1%—1) Z U164

JIn Z’U't 1€¢
t=1
+ - +—

k
\/— (M' (th 12— 1) Zzt—lft anzt—lft
t=1 t=1

where || - || denotes the Euclidean norm. Since the first term in each summand in (2.10)
is Op(1) by Chan and Wei (1988), we only have to deal with the second terms.
Now, we show that

l<k<

(2.10) :/l_ﬁ

max

1<k<n ’

(2.11) max
1<k<n

k
Jn Y wre|| = Op(1).
t=1
Recall that (1 — B)%u; = €; and ug = 0. Set u;(j) = (1 - B)*Juy, j=0,...,a—1,
and Uy = (us(a),...,u(1))". By (3.13) of Chan and Wei (1988), there exists an a x a
matrix M such that Muw, = Uy and J, = N,;'M where N,, = diag(n?,...,n). In this
case, we have

k k k !
JnZut_let = (Zn“ut_l(a)et,. ..,Zn‘lut_1(1)€t> y
t=1 t=1 t=1
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so that

(2.12)

JIn Z'u't 1€

Since {Zle ur—1(j)es, Fr = o(ex : t < k)} forms a martingale, by using the first sub-
martingale inequality of Theorem 3.8 in Karatzas and Shreve (1988), p. 13, we have that
for any 6 > 0,

1<k<n

k 2
25 :
< Zn J lglk?%(n (; Ut—l(])5t> .

th—*

1Sh2n (Zut ](J)Et> (Zut 1(J)€t>

Note that for all ¢ and 7, ‘
EU?(.]) < t2J-10,2’

and
E (Z ut_l(j)et) = Z:Eu?_l(j)a2 < E(t - 127152 < n%ol.
t=1 t=1 t=1

Hence,

A 2
n~% max (Zut_l(j)et> =0p(l) forall j,
t=1

1<k<n

and the right hand side of (2.12) is Op(1). This proves (2.11).
Meanwhile, in a similar fashion, we can show that

k

(2.13) max. KnZ'vt_let = Op(1);
) k

(2.14) max Ln(i);mt_l(i)et =0p(1), i=1,...,1
k

(2.15) max. M, z_1e = O0p(1),

the proofs of which are omitted for brevity. Combining (2.11), (2.13)-(2.15), we obtain
the argument in (2.10) is Op(1), which entails I, = op(1). This proves (2.4). Since
(2.5) follows from (2.4) and the fact I, = Op(1/+/n), we establish the theorem. O

So far, we have seen that the test for the variance change can be performed based
on the least squares residuals. Since the approach based on the squares of residuals
works adequately, it is natural to ask if an analogous phenomenon happens in the SREP
(empirical process based on the squares of residuals). Recall that the REP (residual
empirical process) converges to a non-Gaussian process in the presence of unit root 1 (cf.
Lee and Wei (1999)). Also, it was shown that the residual based Bickel-Rosenblatt test
using a smoothing technique can fail contrary to intuition (cf. Lee and Na (2002)). In
short, the following derivation shows us that the SREP can be used as a basic process
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for a goodness of fit test so long as the underlying density is symmetric and satisfies the
regularity conditions in Lee and Wei, Section 3.2. The result is directly applicable to a

Gaussian test.
Let F be the distribution of €; with symmetric density f, and let G be the distri-
bution of €2, namely, G(z%) = F(z) — F(—z) for z > 0. Define

fale) = = tz:;u(ef <i)-GEY), 20,

o) = = gu(é? <2 -G}, =20
Then,

Eulo) = % ‘Z?{I(—x <é<z) - (Pla) - F(—z)
\/_ Z{I(q < z) — F(z) Z{I(et < —z)— F(-z)}.
Since in view of Lee and Wei (1999),
- g{f(et <o)~ F@) = o g{f(et < 2) - F(@))
+ g@ — ) Xi-1£ (@) + Tn(2)

with sup, [n,(z)| = op(1), and f(z) = f(—zx), we can see that

sup |<‘:'n(:c) — &n(z)] = op(1).

Therefore, 3 R
En(w) = E (G )V B W), 0<u<l.

The above result suggests that a goodness of fit test for a symmetric density, includ-
ing a Gaussian test, can be accomplished based on &,. In fact, the Gaussian test (when
the variance is known) is converted into a chi-square distribution test. In actual practice,
one should keep in mind that, if an estimate of variance is plugged into the empirical
process, the limiting distribution is no longer a Brownian bridge, but a Gaussian process
as we usually observe in the empirical process context (cf. Lee and Wei (1999), Section
3.2). Besides the goodness of fit test, we can reason that the sequential SREP (cf. Bai
(1994)) can be employed to detect a distributional change in autoregressive models un-
der the same conditions; it is well-known that this result does not hold when using the
sequential REP (cf. Ling (1998)). All these facts support the usefulness of the method
employing the squares of residuals in autoregressive models.
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3. Test in nonparametric regression model

In this section, we develop the variance change test procedure in a fixed design
nonparametric regression model with a strong mixing error process. The nonparametric
regression model under consideration is as follows:

(3.1) Yi=g(ze)+e, t=1,...,n,

where n denotes the sample size, x; = t/n, t = 1,...,n, are the equally-spaced design
points, g is the regression function, and {e;} is a statlonary strong mixing process with
zero mean and finite variance. The model in (3.1) has been studied by several authors:
see Hall and Hart (1990), Hart (1991) and Wu and Chu (1994). Their concern was the
estimation of the regression function g rather than the change detection problem itself.

Our goal is to test the following hypotheses:

Hy: E& =c¢%forallt=1,...,nvs.

H 1. not H().
Towards this end, we employ the cusum of squares test based on residuals. For an
estimator of g, we consider the kernel-type regression estimator introduced by Priestley
and Chao (1972). Let K be a kernel function and h = h, be a bandwidth. Given
observations Y7,...,Y,, the kernel regression function estimator g,(-) is given as

1 n
gn(z) = - ZYtKh(x —z4), 0<z<1,

where Kp(u) = K(u/h)/h, and the residuals are
_g'n(xt)7 t:].,...,'fl.

In order to obtain an asymptotic result as in Incldn and Tiao (1994), we assume
that {e;} is geometrically strong mixing, viz., if we put

o = ao(es, s <0),0(e5,8 > k), k=0,1,2,...,

where o(F,G) denotes the strong mixing coefficient between o-fields F and G (cf.
Doukhan (1994), p. 3), {ax} satisfies

(3.2) ap < Ce Pk

for some C' > 0 and p > 0.

Before we state the main theorem of this section, we introduce some notation and
conditions. We first define the partial sum of €7, namely, Sy, = Zf e k=1,...,n. In
fact, if we set s2 = Var(S,), then provided Ee} = 02 and Ee} < 00, we have

(3.3) 2 =n {E(e% — 0?2 42 i (1 — g) E(ef — o%) (2, — 02)}
k=1

n {E(e% -2 42 ZE(C% — o), — 02)}

k=1

—2EkE — o) (e, — oY),
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which is useful for later work. Since we have to deal with the residuals, we also define
the partial sum of residuals:

k
Si, = Z ¢ for k=[nh]+1,...,n— [nh],
t=[nh]+1

where the truncations for k£ are concerned with the kernel function K satisfying
supp(K) C [—1,1] which is assumed in (A3) below. Moreover, y(k) := E(e? —02)(e?,, —
0?) is estimated by

n—[nh]—k

. 1 2 A (a2 .
A(k) = —TA ST (& - )@y — ),
t=[nh]+1
where
1 n—[nh] ,
H2 = n——Q[nhT Z €
t=[nh]+1

Then the estimator 82 of s2 is given by
ln
Si=n {&(0) + 22&(/@} ,
k=1

for a sequence of positive integers {l,,} satisfying l,, — oo and [,,/n — 0 as n — o0 as
will be explained in more detail shortly. Note that the residuals near end points are
discarded to avoid the boundary effect in nonparametric regression.

Below are the conditions imposed in this section.

(A1) {ay} satisfies (3.2), and E|e? — 02" < oo for some r > 2.

(A2) The regression function g satisfies the Lipschitz condition, viz.,

lg(z) — g < Dilz—y|, 0<Lz,y<l1

for some constant 0 < Dy < oo.
(A3) The kernel function K vanishes outside [—1,1] and is Lipschitz continuous
on [—1,1], viz.,
|K(:c)—K(y)|§D2|:E—y], —1§$,y§1

for some constant 0 < Dy < 0. And K satisfies [ K(z)dz = 1.
(A4) The bandwidth h = h,, satisfies nh? — oo and nh* — 0 as n — oo.
(A5) 1, satisfies I, — 00, l,/vnh — 0 and I,h — 0 as n — co.

Remark. A broad class of processes, including invertible stationary ARMA(p, q)
processes with innovations having a continuous distribution, satisfy Condition (A1) (cf.
Gorodetskii (1977)). Conditions (A2)—(A4) are the usual conditions assumed in non-
parametric regression estimation.

Here is the main result of this section.
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THEOREM 3.1. Assume that Hy holds. Under Conditions (A1)-(A5),
1 (4 k —[nh]

— [ Sk — ————=5n-

8 ( kT ] ["h])

Now we prove Theorem 3.1. We start with a lemma which can be found in Doukhan
((1994), p. 46).

(34) T, :=

n

= sup [WO(u)].
0<u<1

max
[nhl+1<k<n—[nh]

We reject Hy if T); is large.

LeEMMA 3.I.  Assume that Ho holds. If E|e? — a%|” < 0o for some r > 2 and (3.2)
is true for some C > 0 and p > 0, then
(3.5) 1 (S[n.) — [TL?]Sn> 2 wo,

Sn

LEMMA 3.2. Under Hy and (Al)-(A4), as n — oo,

1 & &P
ety Y~ Okl = 0
where S = Zitc=[nh]+l €.
Proor. We write
1 k
=G-8 == ) (E-€)
t=[nh]+1
1 k
== D (gnl@e) — g(z0))? +27= Z (9(z1) — gn(@e))es
t={nh]+1 t=[nh}+1
= I+ 11}

Observe that

n—[nh]
(3.6) zkg% 3 { ZegKh(xg—:cJ)

Jj=1

2
£33 gla)Kne -~ 25) - g(xt)}

1 n—{nh] 1 n 2
3 % Z EZEth(Zt—QJJ‘)

<
t=[nh]+1 j=1
1 n—[nh] 1 n 2
+ o= - > (a(z;) — 9(e)) Kn(m: — z5)
t=[nh]+1 j=1

2
1 n—[nhj 1<
+t 7= 9(ze) =~ Z Knp(zy —z5) -1
t=[nh]+1 j=1
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It is easy to check that the first term in (3.6) is Op(n~Y/2h~1) since

2

1< 1
h—;eth(xt—ij) :O(;l—ﬁ) y

due to (A1) and (A3). The remaining nonstochastic terms in (3.6) are of order O(n!/2h?)
and O(n~3/2h~2), respectively, since

% Z(g(xj) = g(@)) Kn(zs — 27) = O(h)

and

(3.7) xt)( ZKh(a:t—-x]) ) (%)

where we have used (A2) and (A3). Then, by using (A4) we obtain

3. =
( 8) [nh}+1<k<n IIkl OP(l)

For I, we decompose it into three terms as follows:

k n
II, = ‘\7‘—- Zh {g(xt) ( %;Kh(xt ——xj)) } €t

k
Z { Z(g(xt)—g(%))Kh(xt—x])}
[nh]+
k n
55 fifoneenl

t [nh}+1 j=1

=1l 1+ 10— IIk,g.

First, observe that

n—[nh) n
2 1
il < == Y g (1= =) Kalze— ;) | |led]-
vn t=[nh]+1 nia

From this and (3.7), we have

! = —1/2 -1 )
(3.9) [nh]+11§11?gn_[nh]|ffk,1| Op(n h1)

For Iy, set p = [n'/3] and q = [(logn)?], and define random variables V; and V
as follows:

aiy1—1

b;
sznt’ V;": Z ¢, ’1::1,‘..77':[?;2[”_’1]_:',

t=a; t=b;+1 pt+q
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Where ne = (071 3001 (9(2e) — 9(25)) Kn (2 — 25))er, ai = [nh] + 1+ (p+g)(i — 1) and
=[nh]+ 1+ (p + q)(i — 1) 4+ p. Then, we can write

2 & 2 & 2
(3.10) I3 = Z me=—= Vit =D V/+-=A,

t [nh]+1 v i=1 vn i=1 vn
where uy, is the largest integer such that [nh]+1+uk(p+q) < k,and Ay = Zf:[nh]+1 Me—
Yok Vi — > ik V. Let ¢ be any positive real number. By the coupling theorem (cf.
Doukhan (1994), p. 8, and Bosq (1996), p. 18), there exist independent random variables
Vi, ..., V7 such that V;* and V; have the same distribution and

s VR orEVi|\ "/
<|V Vi3 )318<a3 C\/ﬁ) .

Then, we can see that

(3.11) 3| = op(1),

max
[nhl+1<k<n

since

Uk

1
P — Sy
<[nh]+1?:?§n_[nh1 vn ; '

< _ g
—P(fé‘% 7| ><)

1=

u C 1 u C
< — * = — : * 2

r

< —Var (ZV) +2P([V 1A C‘/_)

o).l ()
= o(1).

In the same manner, we also get

i V;’ = Op(l).

1
3.12 ax _
(3.12) [nh]+11§nk§n-[nh] vn —

Furthermore, applying the coupling theorem again, we can show that for any ¢ > 0,
1
P —|Ag| >
<[nh]+1?]§é{n—[nh] \/ﬁl kl C>
< P
Z <a1<knsl&aﬁ1—1 >.m

i=1 t=a,

-0 (r (r :,CQQ)hQ) ’

k
>C\/_)+P max Z el > CVn

ary1<k<n—[nh] t=ars1
—r
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the detailed proofs of which are omitted for brevity. This entails that
1

3.1 — A, = 1).

(3.13) (nhl+15ken—[nh] V71 [Ak| = 0p(1)

Combining (3.10) and (3.11)—(3.13), we have

3.14 Il 5| = 1).

( ) [nh]-{-lrfnkaé(n—[nh]l k,2| OP( )
Finally, we show that

(3.15) III]C"?,I = Op(].).

max
[nh]+1<k<n—[nh]

Let & = (n~' 325, €;Kn(2: —x;))er, p = py = [nhlogn] and ¢ = gn = 2[nh]+[(log n)?],
and define a;, b;, r and uy as we did before. Set

b; a;41—1
Wi=> (& -E&), W= (&-E&), i=1..,r
t=ai t=bi+1

If we put v.(k) = Ee€j€14+k, then
1 < .
B =~ > Kz - )7t - 5),
j=1
and

2 & 2 i 2 2 &
Ihis=-—=> Wi+ —=Y W/ +-=A+-—= Y Eg,
g Vg (R -
where A}, = Zf:[nh] 16— B&) — 3705 Wy — 3k W/, Simple algebra shows that if
(A1) and (A3) hold, then

n—[nh]

1 1
v tz[,%H el =0 <\/ﬁh) ’
and foralli=1,...,r,
Var(W;) = O (%) .
Then, in a manner similar to the derivation of (3.11)-(3.13), we can obtain (3.15) by
utilizing the coupling theorem since only ¢; with j = t — [nh],...,t + [nh] are involved

in each &;. Combining (3.8), (3.9), (3.14) and (3.15), we establish the lemma. O

LEMMA 3.3. Under Hy and (A1)—(A5), as n — oo,
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ProoOF. Let
n—[nh]—|k|
k)= (m—2nh)" > (] — pa)(ery — p2),
t=[nh]+1
where iy = (n — 2[nh])™ >0~ [Zl,i;Ll . It suffices to show that
L, I P
(3.16) > Ak - D (k) >0
k=L, k=—L,
and l l
(3.17) Stk = D k) S0
ke=—L1,, k=1,
In order to verify (3.16), we write
1 n—[nh]—-k
(k) —v* (k) = — D @ — )k — €lr) + (& — ey — p2)
t=[nh]+1

+ (& — €)(n2 — o) + (] — p2) (& 1k — €11)
+ (€ — p2)(p2 — fi2) + (2 — f2) (& 1k — €24%)
+ (p2 — o) (edy — p2) + (B2 — fi2)°}
= Ri(k)+ --- + Rg(k).
Observe that by the Schwarz inequality,

n—[nh]

|R1 (k)] < n_2[ Z (&
t [nh]+1
9 n—[nh] 8 n—[nh]
< oA Y (e gt e 2 (on(e) — g(w)el
" [ t=[nh]+1 n t=[nh]+1

By Jensen’s inequality and Condition (A1), we can see that

n—[nh] n—[nh] 18 4
Z (gn(s) — g(ze))* < 27 Z - Zeth(xt - z;)

t=[nh]+1 t=[nh]+1 j=1

4
(% > (g(25) — 9w Kn(z: - mj))

= Op < 21h2) + O(nh*) +0( %’#)



CUSUM OF 'SQUARES TEST FOR VARIANCE CHANGE 481

Since E Y7 E?;}Ll 4 = O(n) and

n—[nh] n—[nh] 1/2 n—[nh] 1/2
Z (gn(ﬂft)—g(xt))QefS( Z (gn(a:t)—g(xt))4) ( Z ef) ,

t=[nh|+1 t=[nh]+1 t=[nh}+1

we obtain, uniformly in k&,

1 4 1 4 12 1 2

where a V b denotes the maximum of a and b. For ¢ = 2,4, we have

1/2
1 n—[nh] \
(3.19) : |Ri(k)| < = 2[R Z @& -€)
t={nh]+1
_ni] 1/2
) Z (e — p2)®
t [nh]+1
] 1/2
(o)
) (L v h)
- F vnh
in view of (3.18). Furthermore, by Lemma 3.2, we have that for i = 3,6,
n
. (k)| €
(3.20) IR(R)| < (n — 2[nh])? [nh]+1<]<n [nh] \/_ Z (&
t={nh]+1
1 nfh] o
= (& — 5%)
\/’,_l t=[nh]+1
)
=op{— ),
n
and for ¢ = 5,7,
n—[nh] n—[nh]
1 IR
. (k) < ———— 2 _ —
B21) IR < s Y d -l e > @
t=[nh]+1 t=[nh]+1
—op [ L
= P ﬁ .
Also, by Lemma, 3.2,
. n=[nh] 2
(3.22) |Rs(k)| < (p2 — fio)? = ———5 Z (e — &)
(n —2[nh =[nh]+1
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Hence, (3.16) is yielded by (3.18)—(3.22) and Condition (A5).
Now, it remains to prove (3.17). Noticing that

n—[nh]—k

. 1 k
7" (k) — (k) = —| Y. (Gt - Eetelyy) - m(Eelfuk +0*)
t=[nh]+1
n—2[nh] +k 4
i [nh]+k n—[nh]
2 2 2
+ E € + Z € (>
n- 2[']’lh] t=[nh]+1 t=n—[nh]—k+1
we have
In In 1 n—[nh|—k
PINCAGERIESDY — T Y. (deiik — Bl )| +op(1).
k=—ln k=—1, t=[nh]+1

Then, using the Minkovski inequality in L2-norm || - ||2, and Conditions (A1) and (A5),
we obtain

In 1 n—[nh]—k
2 2 2
> —T > (Gelvk — Ecielin)
k=—ln t=[nh]+1 )
ln 1 n—[nh]—k
< Z 577 Z (Fetsn — Belelyr)
n — 2[nh]
t=—ln t=[nh]+1 9
1
=0p|l,—
"’ (ﬁ)
:OP(I)a

which implies (3.17) and the lemma is established. O

PROOF OF THEOREM 3.1. Let §2 Var( —int))- Then, from (3.3) and Lemma

3.3, we can see that §,/§, £ 1and 8n/vn 5 7. Now, note that

1/, k— [nh] 4
(8- Efms"—l"'ﬂ)
51 (4 [nh]
" 3n 5n {S’“ n— 2[nh]S "h]}

\f\/_{(s —Sk) — %(gn—[nh]_gn—[nh])}'

Then, the theorem is a direct result of Lemmas 3.1 and 3.2. O

4. Simulation results

In this section we conduct a simulation study to evaluate the tests in Sections 2
and 3. In this simulation we perform a test at a nominal level @ = 0.05. The empirical
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sizes and powers are calculated as the rejection number of the null hypothesis out of
2000 repetitions. First, in order to see the performance of T;, in Section 2, we consider
the model

Xt:,BXt_l—f-ﬁt, t:l,...,n,

where X is assumed to be 0 and ¢; are iid normal random variables with mean zero and
variance 02. Now we consider the problem of testing the following hypotheses:

Hy: 02 remains equal to 1 fort =1,...,n, vs.

Hy: o?=1fort=1,...,[n/2)and 0?2 = A for t = [n/2] + 1,...,n,
where A takes the values 2 and 4. Here we evaluate T,, with the sample size n = 200,
300, 500 and 8 = 0.2, 0.5, 0.8, 1.0. The empirical sizes and powers are summarized
in Table 1. As seen in the table, T;, does not have size distortions and produces good
powers. It is manifest that the sizes and powers do not depend upon the values of (3,
and the test works well for the unstable case as well as the stationary case.

Now, in order to evaluate the performance of the test T in Section 3, we consider
the nonparametric regression model in (3.1):

}/t:g(xt)+€t) tzlv'“;n’
where g(z) = 2522 — 4522 + 24z — 3.6 and {¢,} satisfies the equation:

et:¢€t—l+et7 '¢I<17 t:]-a"'an7

where e; are iid normal random variables with mean zero and variance w?. For the

estimation of the regression function, we use the kernel function
3
K(z) = 7(1 = 2*) Iy (2),

where I(-) denotes the indicator function, the bandwidth h = h, = n~1/3/3 and I,, =
[n1/4] in estimating s2. As before, we assume that the variance change occurs at t = n/2
and perform a test for the following hypotheses:

Hy: w? remains equal to 1 over t = 1,...,n, vs.

Hi: w? changes from 1 to § at t = [n/2],
where 6 takes the values 2, 4 and 9. Here we employ the sample size n = 200, 300, 500,
and ¢ = 0, 0.3, 0.5, 0.8 in order to see the correlation effect. The figures in Tables 2
and 3 denote the empirical sizes and powers, respectively. From the results, we can see
that the test has no severe size distortions at moderate sample size, say, n > 300, and it
produces good powers under Hy. The power depends on the values of ¢, which decreases
as ¢ approaches 1 and when 6§ has lower values. As anticipated, it increases as either 6
or n increases. The results obtained in our simulation study enable us to conclude that
the cusum of squares test performs adequately for the variance change in nonstationary
and nonparametric time series models.

Table 1. Empirical sizes and powers of T,.

8 0.2 0.5 0.8 1.0
A size 2 4 size 2 4 size 2 4 size 2 4
200 | .033 .818 1.00 030 818 1.00 .037 788  1.00 037 .826 1.00
n | 300 | .034 .953 1.00 039 953 1.00 .032 953  1.00 .037 .957 1.00
500 | .042 .998 1.00 050 .997 1.00 042 1.00 1.00 042 998 1.00
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Table 2. Empirical sizes of T};.

¢ 0.0 0.3 0.5 0.8
200 | 028 030 .035 .030

n | 300 | .026 .034 .041 .040

500 | .034 .048 .042 .050

Table 3. Empirical powers of T;;.

) 0.0 0.3 0.5 0.8
s 2 4 9 2 4 9 2 4 9 2 4 9
200 | .559 981 .998 511 978 998 466 .949 995 318 .851 .978
n|300|.834 1.00 1.00 774999 1.00 706 .995 1.00 474 961 996
500 | .990 1.00 1.00 975 1.00  1.00 940 1.00 1.00 725 999 1.00
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