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Abs t rac t .  Recently, a Bayesian receiver for blind detection in fading channels has 
been proposed by Chen, Wang and Liu (2000, IEEE Trans. Inform. Theory, 46, 
2079-2094), based on the sequential Monte Carlo methodology. That work is built 
on a parametric modelling of the fading process in the form of a state-space model, 
and assumes the knowledge of the second-order statistics of the fading channel. In 
this paper, we develop a nonparametric approach to the problem of blind detection in 
fading channels, without assuming any knowledge of the channel statistics. The basic 
idea is to decompose the fading process using a wavelet basis, and to use the sequen- 
tial Monte Carlo technique to track both the wavelet coefficients and the transmitted 
symbols. Moreover, the algorithm is adaptive to time varying speed/smoothness in 
the fading process and the uncertainty on the number of wavelet coefficients (shrink- 
age order) needed. Simulation results are provided to demonstrate the excellent 
performance of the proposed blind adaptive receivers. 

Key words and phrases: Fading channel, wavelet, adaptive shrinkage, Bayesian 
model averaging, sequential Monte Carlo, resampling. 

1. Introduction 

Signal detection in fading channels has been a key problem in communications and 
an array of methodologies have been developed to tackle this problem. Specifically, the 
optimal detector for fiat-fading channels with known channel statistics are studied in 
Haeb and Meyr (1989) and Lodge and Moher (1990), which has a prohibitively high 
complexity. Suboptimal receivers in fading channels often employ a two-stage structure, 
with a channel estimation stage followed by a sequence detection stage. Other approaches 
include the method based on a combination of hidden Markov model and Kalman filtering 
in Collings and Moore (1994), and the method based on the expectation-maximization 
(EM) algorithm (Georghiades and Han (1997)). 

Recently, Chen et al. (2000) develop a blind Bayesian receiver for fiat-fading chan- 
nels. It is based on the powerful sequential Monte Carlo (SMC) technique for numerical 
Bayesian computation. It achieves near-optimum performance without the use of any 
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training/pilot symbols or decision feedback. They assume that the fading channel pro- 
cess follows a linear dynamic model (i.e., ARMA model), and the model parameters 
are known to the receiver. However, some practical fading processes exhibit spectral 
characteristics that require a very-high order ARMA model to fit. Moreover, in some 
applications, the channel fading statistics may not be known to the receiver at all. Hence 
in this paper, we address the problem of blind adaptive detection in fading channels with 
unknown channel statistics. 

Our approach is to decompose the fading process using a wavelet basis, and then to 
use the SMC technique to estimate both the wavelet coefficients and the data symbols. 
Wavelet-based signal processing enjoys a very strong optimality property for general 
inverse problems in that their use can achieve accurate and parsimonious representation 
of the signal of interest. Some recent works have addressed the use of wavelet to model 
fading channels (Martone (2000)). In these methods, the shrinkage order is fixed a 
priori, and the wavelet coefficients are obtained by using training symbols and standard 
adaptive algorithms (e.g., LMS, RLS). Here our wavelet-based SMC receiver is blind in 
nature, i.e., without using any training symbols. 

It is noted that although wavelet decomposition can perfectly reconstruct any se- 
quence of finite length, truncation is often needed to filter out the noise, to achieve 
parsimony and to obtain better prediction. The shrinkage order used also reflects the 
trade-off between bias and smoothness. In fact, the shrinkage order directly controls 
the smoothness of the wavelet approximation. For a smooth underlying process, fewer 
number of wavelet coefficients are needed. When the underlying process is relatively 
volatile (e.g., large second derivative), a large number of wavelet coefficients are needed. 

It is noted that fading process often exhibit time varying characteristics, particularly 
its speed or smoothness. For example, it may be very smooth for a period of time then 
change to a period of fast fading. To more accurately track and predict the fading 
process to ensure high reliability in signal extraction, we propose an adaptive algorithm 
that allows the change of shrinkage order in the wavelet approximation. Simulation has 
shown it provides significant improvement over non-adaptive algorithms. 

The rest of this paper is organized as follows. The time varying wavelet represen- 
tation of fading channels is discussed in Section 2. The nonparametric adaptive blind 
SMC receiver for flat-fading channels is presented in Section 3. Simulation results are 
provided in Section 4. Section 5 contains the conclusions. 

2. Problem formulation 

2.1 Flat-fading channel model 
Consider a discrete-time baseband communication system signaling through a flat- 

fading channel with additive white Gaussian noise. The transmitted data symbols {st} 
take values from a finite alphabet set ,A = {al, a 2 , . . . ,  afAI}. The input-output relation- 
ship is given by 

y~ = sta~ + et, t = 1, 2 , . . .  

where Yt, at  and et are respectively the received signal, the fading coefficient and the 
noise sample at time t. It is assumed that the processes {at}, {st} and {et} are mutually 
independent and et assumes a complex Gaussian distribution, 

( 2 . 2 )  ~ 
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The fading process is assumed to be Rayleigh, that  is, {at} is a zero-mean complex 
Gaussian process with a Jakes' autocorrelation function given by (Proakis (1995)) 

(2.3) E{atat*+j } = Jo(27rfdTj), 

where J0(') is the Bessel function of the first kind and zeroth order, fd is the maximum 
Doppler shift, and T is the symbol interval. Note that  in Chen et al. (2000), it is 
assumed that the fading process {at} follows an ARMA model. However, for practical 
fading processes, e.g., Jakes' fading processes, very-high order models are needed to 
fit the fading spectrum given by (2.3). Hence, in this paper, we drop such a model 
assumption and treat the general fading processes via a non-parametric approach using 
the wavelet decomposition. 

2.2 Wavelet representation of fading processes 
Consider the following wavelet regression representation of a segment of the fading 

process ~ -- [al, a2 , . . . ,  aK] T, 

c~ = +~, 

where 5~ is the discrete wavelet transform (DWT) of c~, a n d  ~T is the orthogonal matrix 
corresponding to the discrete wavelet transformation (Daubechies (1988, 1992)). The 
detailed construction of the matrix ~ taking into account the edge effects can be found 
in (Guo et al. (2002)). Since the wavelet representation exhibits several useful properties, 
such as orthogonality, compact support, varying degrees of smoothness, and localization 
in time and scale (frequency), only a few large coefficients explain most of the functional 
form in the fading process, while the remaining majority are comparatively small and 
therefore can be discarded (Donoho and Johnstone (1994)). In addition, for any possi- 
bility of estimating st given Yt only, it is required the fading process to be smooth with 
certain predictability. When too many wavelet terms are used in the approximation, the 
process may become less smooth and one may loss the ability to estimate the symbol st. 
Note that in the extreme case when the full order is used, there always exists a Os such 
that 

= 

holds perfectly for any sequence of S = [ s l , . . . ,  8K] T, where c~* (S) = [ a l s 1 , . . .  , aKSK] T. 
Hence P(Yt [ 5~, S) does not depend on S and we loss all the ability to make inference on 
St.  

The relationship between fading speed and the number of wavelet terms needed 
for proper approximation is demonstrated by the following numerical example. In this 
example, we choose the length of the fading process segment ~ as 128, the Daubechies 
filter with order 2, and the decomposition level 7. Then the size of the wavelet coefficients 
5: is 143. For a given fading process realization, we compute the wavelet coefficients ~, 
and then truncate it by keeping only the first ~ elements. Hence, the fading process c~ 
is approximated by 

&~ = ~[:, 1:~]5~[1 : ~]. 

The approximation error is then 

_- KE{If  - 
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Fig. 1. The average approximation error versus the number of wavelet coefficients in the 
wavelet representation of the fading processes. The Daubechies filter with order 2 is used. 

In Fig. 1, we plot c ~ as a function of the number of wavelet coefficients for different 
values of normalized Doppler shift fdT .  It is seen that  in general, for a fixed approxi- 
mation error, the slower the fading process is, the less wavelet coefficients are needed to 
approximate the fading process. For fading processes with fading rate f d T  <_ 0.01, with 
32 wavelet coefficients, the approximation error is below -20  dB. For a very fast fading 
process, e.g., f d T  > 0.01, more wavelet coefficients are needed to well approximate it. 
Similar observations are made for Daubechies filters with order higher than two. Vari- 
ous wavelet shrinkage methods exist for choosing the shrinkage order, such as the hard 
shrinkage method, the visual shrinkage method (Donoho and Johnstone (1994)), and the 
adaptive Bayesian shrinkage method (Chipman et al. (1997); Clyde and George (2000)). 

Due to the time varying nature of the fading process, here we use an axiaptive 
wavelet representation. Specifically, we assume the following model in state space form. 

(observation equation): yt = st dp t xt + et 

where Ct = 4~t[ 1 : at], the t-th row of the fixed wavelet transform matrix (~, and 
xt = ( x t , 1 , . . . ,  xt,,~). The state variables include at, the shrinkage order at time t and 
xt, the wavelet coefficient at time t and st, the transmitted symbol at time t. Assume 
that  the time-varying behavior is smooth, we adopt the following models for the state 
variables. 

1. We assume at follows a random walk in the interval [amin, amax], with transition 
probability 

P ( a t = i + v l a t - 1  = i ) = p i ~ , ,  for v c { - 1 , 0 , 1 } .  

2. There is a random perturbation in the wavelet coefficients as the system evolves, 

xt,i ---- x t - l #  + et#, for i --- 1 , . . . ,min{a~ ,~ t_ l}  

et# "- N(0, a~) independent for all i. 
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When at = a t -1  + 1, assign xt,~, a prior distribution of N(0, a2). That  is 

(2.4) 

where 

Xt~z t ~ Ct:~t 

where et,~, ~ N(0, a~), independent of et,k, k = 1 , . . . ,  a t - 1 .  
In summary, we have 

ak-1 

X~-I --~ T-t-l[1 : a t ]  

0l 

if at ~ a t - - 1  

if a t = ~ t - l - 1  

if ~t = ~ - 1  + 1. 

3. The transmitted symbol st is i . i .d,  taking values in .A. 

R e m a r k  1. The wavelet transform matrix is ordered in terms of the smoothness. 
Hence, when fading becomes faster, at tends to increase. Since we assume the change is 
smooth, we only allow at to move one step at a time. Also, to ensure stability, the prior 
probability of 'stay', P ( a t  = a t - l ) ,  should be given a relative large value such as 0.8. 

R e m a r k  2. Because the wavelet transform matrix is orthogonal and the change 
in the fading process is smooth, it is reasonable to assume that, when at increases, the 
wavelet coefficients (except the new one) will remain relatively stable. Also, to avoid large 
changes in the fading process, the new coefficient should be relatively small, achieved by 

2 imposing small a x. 

R e m a r k  3. The transmitted symbol st can adopt certain Markov property without 
complicating the extraction algorithm. 

R e m a r k  4. The above state space model is in fact a conditional linear dynamic 
model (Chen and Liu (2000)). Given a trajectory of the sequence {st, a t}~-  1, the system 
is linear and Gaussian. 

R e m a r k  5. The time-varying setting is useful even when the system is not really 
time-varying. It is known that the SMC tends to provide inaccurate results when some 
of the state variables (in our case, the shrinkage order a and the wavelet coefficients 
xt) are fixed (Andrieu et al. (1999); Liu and West (2001)). Allowing small disturbances 
in the system, SMC is able to make movements in process. It is not necessary to use 
the random walk model for the random disturbances, except for its convenience and 
simplicity. Under this setting the variance of the prior distribution of xt increases with 
t, though the posterior distribution gets compensated with more observations Yr. An 
Oerstein-Uhlenbeck process in the form of 

Xt, i  ~--- a x t - l , i  -ff V ~  -- a2e t , i  

provides a stationary prior for xt  and may result in bet ter  solutions. 
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Remark 6. Note that it is possible to specify a suitable shrinkage prior to avoid the 
crisp variable selection procedure. That  is, one can use all the variables in the model, 
but  imposes strong priors on the higher order wavelet coefficients to be close to zero 
(e.g., normal priors with mean zero and very small variances). It is a much simpler 
procedure and provides 'soft selection'. However, this procedure shifts the burden of 
model selection to prior specification, which may not be an easy task. Comparison 
between the two approaches is an interesting question, but  out of the scope of this 
paper. 

3. The nonparametric adaptive blind SMC receiver 

Sequential Monte Carlo (SMC) method can be used to perform on-line filtering 
of nonlinear and non-Gaussian dynamic system. It utilizes the important concept of 
importance sampling, combined with sequential updating mechanism, to perform Monte 
Carlo estimation of the unobserved underlying state variables in a stochastic dynamic 
system. For detailed information and a wide range of applications, see Liu (2001) and 
Doucet et al. (2001). 

For a special class of the state space models, the conditional linear dynamic models 
(CDLM), Chen and Liu (2000) proposed an efficient SMC algorithm, the mixture Kalman 
filter (MKF). The CDLM becomes a linear and Gaussian system, given a trajectory of 
a subset of the state variables (indicators). Using this feature, MKF generates Monte 
Carlo samples only in the indicator space, and marginalizes out the rest of the state 
variables using Kalman filter. It has been shown to be very efficient in dealing with 
fading channels (Chen et al. (2000)) and other applications (Andrieu et al. (2000), Liu 
and Chen (1995)). 

Denote Y t  = (Yl, . . . ,Yt) ,  St = ( s l , . . . , s t )  and K t  = (~ l , - - . ,~ t ) .  We apply the 
SMC method to the problem of on-line estimation of the a posteriori probability of the 
symbol st based on the received signals up to time t, without knowing the fading process 
c~t. That is, at time t, we need to estimate 

(3.1) p(st = ai I Yt) ,  ai e A. 

Then a hard MAP (maximum a posteriori) decision on symbol st is given by 

st = a r g m a x p ( s t  = ai I Y t ) .  
a i  E .A  

In order to implement the SMC, we need to obtain a set of Monte Carlo samples of the 

transmitted symbols, {(~J),w}J))}~=], properly weighted with respect to p(St I Y t ) .  
Then the a posteriori symbol probability in (3.1) is approximated by 

1 m 

p(st = ai I Yt) ~- Wtt ~ l(s~j) = a~w(J) ~J t , 
j = l  

ai E .4, 

with Wt A v .  m w(j) 
A..Jj= 1 t �9 

The model in Section 2 is a CDLM where the indicator variables are (st, ~t). It is 
easily seen that given the entire trajectory (St, K t ) ,  the system is linear and Gaussian 
with Yt as the observation and xt as the state variable. 

Following the MKF algorithm (Chen and Liu (2000)), we construct an adaptive 
blind receiver as follows. Assume at time t - 1 we have a properly weighted sample 
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(~J-)l, g~J-)l, w}J)l) with respect  to the  target  distr ibution p (S t_ l ,  K t _ l  ] Y t - I ) .  Since 

given the t ra jec tory  ( ~ 1 ,  K( j )  ~, the system is linear and Gaussian, we have t - i /  

P(TJt--1 I ~ttJ)l' K ( j )  ~ J ) i  _ t - l , Y t - , )  = _ ) .  

Note that ,  with given new (st, at) and observation Yt at t ime t, the  mean  and variance 

matr ix  can he easily upda ted  to (tt~ j), E~/)) with the Kalman filter. 
Then  at t ime t, we generate  the samples of (st, at) using an efficient trial sampling 

distribution 

(3.2) q(s t ,  a t  ' ~ t 0 1 , K ~ J ) i ,  g t ) :  p(st ,  at I ~ t ~ I ,  K~J_)I, Y t ) .  

For this trial distribution, the impor tance  weight updat ing can be seen as (Liu and Chen 
(1998)), 

.~'(J) gd'(J) Y t - I ) .  W~ j) ---- w~J2I "p(yt I ~ t - - l ' ' ' t - - I '  

Note tha t  P(Yt I ~J)-I,K~O1, Y t - 1 )  can be computed  by 

(3.3) P(Yt I ~ttJ)l, K ( j )  
- -  t - - l '  Y t - 1 )  

1 

o( E E P(Yt I~tJ21, St 
ai6A u:--i ~ 

= ai,t~t = a~J) 1_ + ~' ,Yt-1)P(St  : ai)P(at --- t~J_) 1 + ~'). 

~_ (5) 
--'Yt,i ,v 

In order to calculate the terms in (3.2) and (3.3), we use the following one-step 
Kalman filter. First we need to adjust  the mean and variance mat r ix  for xt-1 to ac- 
commodat ion  the change of model  order. It is easily seen tha t  the  x~ 1 defined in (2.4) 
follows (~[tt_l,~-']t_l) , where (i) for nt = nt-1,  tttt_ 1 ---- tttt_ 1, ~;--1 : ~ t - -1 ;  (ii) for 
at : a t - 1 - -1 ,  t t ;_l  : t t ,_l[1 : at], ~ - 1  : ~ t - l [ 1  : t~t,1 : at]; and (iii) f o r a t  : a t_ l  +1 ,  
tt;_ 1 = [ t t t _  1 0] and 

t--1 : 0 " 

With  the s tate  space model  (2.4) and (2.1) and given St and K t ,  one step Ka lman  
filter can be used for updat ing ttt and St .  Specifically, we have 

Pt --- ~"~-1 q- I~t(T2x 
St 2 T = 8 ,~) tP,r  t + 0 .2 

S t  Pt 2 -1 T = - s t P t 4 ' t S t  C t  I t .  

Furthermore,  for v C { -  1,0, 1 }, 

(3.4) 

where 

= g ( J ) ,  a~J)l Y t - 1 )  N" (j) ,,2(j)~ P(Yt I ~tJ)l,St ai, t-1 at = - -{- II, "~ (~tt,i,u ~'t,i,u]' 

(3.5) - (j) 0 ) -  (J) 2 ( j )  ttt,i,,, -- s t q)tPtt_l and %,i,, = St. 
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-(J) in (3.4) can be computed by Therefore, "Yt,i,~, 

(3.6) 
_ (j) I ( [IYt " (j) ~12 ) 

_ - v ) .  "Yt,i,u if(j) exp -~2-Uy p(st = ai)p(t~t = _ + 
t , i ,v  ~  

The trial distribution in (3.2) can be computed as follows, 

(3.7) p ( 8  t = a i ,  a ` = a~J__) 1 q- 12, I ~ r~(J)  v ~ 

s = = p(y ,  t a .  a )p(a  = a (j) t - 1  -{- 
_ ( J )  

= "Yt,i,u" 

Finally, we summarize the nonparametric adaptive blind SMC receiver algorithm as 
follows: 

0. Initialization: For each j = 1, 2 , . . . , m :  

�9 Sample n(0 j) uniformly from [amin, amax]. 

�9 Set ]E(0 j) = 1000I (o~). Draw ~(5) = 0. 

�9 Set W(o j) = 1. 
The following steps are implemented at time t (t = 1 , . . . ,  Ko) to update each weighted 
sample. For j = 1 , . . . , m :  

, U) , 2( j)~ a n d - U )  given by 1. For each ai C .fit and v E {-1 ,0 ,1},  compute (#t,i,~ ~t,i,v) "rt,i,v 
(3.5) and (3.6), respectively. 

2. Draw (s~J),n~ j)) from ,4 and a~J_) 1 + u, u E {-1 ,0 ,  1} with probability 

p(st = ai, at = a(J)t-I + u [ ~ t ~ l ,  r,'(J) v ~ o( - (j) ~ t - - 1 ,  a t )  "Yt,i,u" 

Append s~ j) to ~tJ_)l to obtain ~J)  and n~ j) to K~J) 1 to obtain K~ j). 
3. Compute the importance weight 

o ( J )  _ ( J )  w~ j) c< "~-1 E E h#,~.  
aiE,A uE{-1,O,1} 

4. Suppose the imputed sample s~ j) -- ai and a~ j) = a~ j), + u, then let ~u~ j) and 

E~5) be the corresponding mean and variance matrix of xt at time t. 
5. Resampling. 

Remark 7. The resampling procedure is an important step in SMC, as shown 
in Doucet et al. (2000) and Liu and Chen (1998). Roughly speaking, resampling is 
to duplicate the streams with large importance weights, while eliminate the ones with 
small importance weights. Heuristically, resampling can provide chances for good sample 
streams to amplify themselves and hence "rejuvenate" the sampler to produce a better 
result for future states as system evolves. 

Remark 8. If the speed of fading does not change over time, then one can assume 
there is a 'best'  (but unknown) wavelet order a to approximate the fading process. Then 

the blind receiver can be modified as follows: At time t -- 0, a (j) is sampled from a 
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prior distribution on a (say, uniform distribution o n  (t~min, g m a x ) ) ,  and they are fixed 
subsequently, i.e. ~J) = ~ 1 .  In this case, how 'good' each order is is represented by 
the weight of the streams, and the estimation of the symbols is essentially done through 
averaging results from different model size g, i.e. the Bayesian model averaging approach 
(Madigan and Raftery (1994), Volinsky et al. (1997), Madigan and York (1995), Hoeting 
et al. (1999), Raftery et al. (1997), George and McCulloch (1993)). Furthermore, if 

2 0 in the the wavelet coefficients does not change over time, one can further set a x = 
algorithm. 

Remark  9. The algorithm requires 3 x IAI one-step Kalman filter operations to 
generate one sample in each iteration. When IA I is large, this may create significant 
computational  burden. In such cases, one can simplify the algorithm by generating st 
and ~t separately. By assuming that,  if there is a change (u -- - 1  or 1) in s t  at t ime 
t, its effect on the current Yt is relatively small. Hence it is relatively safe to sample st 
assuming tr = tot-1. Specifically, steps 1-3 are changed to 

, (j) 2(j), 7 (j) given by (3.5) and (3.6), 1". For each ai C .4, compute t~tt,i,O, fft,i,O) and t#,o 

respectively. Draw s~ j) from .4 with probability 7t#,o- Append s~ j) to ~J-)l to obtain 
~J) .  

, (j) 2 ( j )  ~ and 2*. Assume the sampled s~ j) = ai . .  For ~, = - 1 , 0 ,  1, compute  (#t,i.,~,ut,i.,~) 

3,(3) given by (3.5) and (3.6), respectively. Draw ~, = ~,* with probability ~'t#*,~. t#* ~v 

Append g~J)to K~J_) 1 to obtain K~ j). 
3*. Compute  the importance weight 

- (j). �9 X ' ~  ,.~(j) 1 ,~(j). 
(j) "Yt,i ,v Z.~i t,i,O Ev------1 I t , i  ,v 

w~ j) c< ~ t -1  
~/t,i* ,0 

The resulting (~J) K (j) w~ j)) is properly weighted with respect to P(S t ,  K t  I Y t ) .  ~, t , t , 
This algorithm requires (IAI + 3) one-step Kalman filter operations for each sample. 

Remark  10. From the recursive procedure described above, we get the samples 
, ,4j) (J) ,~m (t + > are t~i+5, wt+~))j= 1 at t ime 5), 5 0, which properly weighted with respect to 

p(St+~ I Y t+5) .  Hence, focusing on St at t ime (t + 5), we obtain a delayed estimation of 
the symbol 

1 ~ l ( s ~ j )  , (j) 
= = a i ) w t +  ~, ai C `4, (3.8) p(st  = ai I Yt+~) ~ W~+a = 

7-; 

f (J) "m with Wt+~ =A z..,j=lx-'m wU)t+6. Since the weights l w t + ~ j = l  contain information about the 
signals (Yt+l , . . . ,  Yt+~), the estimation in (3.8) is usually more accurate. Note that  such 
a delayed estimation method incurs no additional computat ional  cost (i.e., cpu time), 

(J) (J) /,~ but it requires some extra memory for storing ~ s t + l , . . .  , s t + ~ j =  1. 

4. S imula t ion  results 

In this section, we present some simulation examples to illustrate the performance 
of the proposed nonparametric adaptive SMC receivers in flat-fading channels. 
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15 128 

Fig. 2. The  frame structure for the nonparametric  SMC receivers. The block size is 128, and 
the adjacent blocks overlap by 15 symbols. 

The BPSK modulation is employed in the simulation, i.e., the transmitted symbols 
{st} take values from =~1. The characteristics of the fading channels are described in 
Section 2. The Jakes' fading process is generated using the frequency spectrum method 
(Proakis (1995)). In the decomposition of the fading process, the Daubechies wavelet 
filter with order 2 is used to construct the reconstruction matrix. Our simulations 
show that little performance improvement can be achieved with Daubechies filters of 
order higher than 2; whereas with Danbechies filter of order 1 (i.e., Haar wavelet), the 
performance degradation is significant. 

The signal frame structure is shown in Fig. 2. Each data  block contains K0 -- 
128 symbols. Adjacent blocks overlap by 15 symbols to allow the SMC filter to reach 
the steady state. To speed up the convergence, for each data  block, the values of the 

r ( j ) ~ ( j )  mean and the covariance of wavelet coefficients i/t0 , ,b 0 }~-1 are initialized as the 

r (j) E(j)}~=1 at the end of the previous block. corresponding values lttKo, Ko 
The performance of the proposed adaptive SMC receivers is compared with that 

of the receivers with perfect channel state information (CSI). In flat-fading channels, 
the receiver with CSI makes a decision on symbol st according to ~t = sign({~{a~yt}) 
(Proakis (1995)). We call the performance of the receiver with CSI the "known channel 
bound". 

First we consider the simpler case in which the fading speed does not change within 
the data block. The performance comparison is shown in Figs. 3 and 4, for flat-fading 
channels with normalized Doppler f dT  ---- 0.005 and f dT  = 0.01, respectively. 

The SMC receiver with fixed shrinkage order is first implemented, by fixing ~ and 
2 0 in the adaptive algorithm. For the adaptive approach, we set ax = 0.001, setting a x = 

and P(gt - - - -  t~t -1)  ~- 0.8 and p(t~ t -~- gt-1 -[- 1) = 0.1. In all settings, the number of the 
Monte Carlo samples drawn at each time is set at ra = 100. The resampling procedure 
is employed in the SMC and the threshold of effective sample size is rht = m/lO.  The 
delayed-weight method is used with 5 = 6. 

The bit error rate (BER) versus the signal-to-noise ratio is plotted in Fig. 3 for 
different settings. It is seen that in this case the best performance (close to the known 
channel bound) for fixed order model is achieved using eight wavelet coefficients. With 
four wavelet coefficients, the performance is a bit worse. And the performance is sub- 
stantially degraded if the shrinkage order is very large (e.g., 15, 25 and 32). 

Figure 4 shows the BER performance of the SMC blind receiver in a fiat-fading 
channel with normalized Doppler f dT  = 0.01. Because the fading speed is faster, the 
best order is increased to 15 (when Eb/No < 20 dB). 

On the other hand, without assuming any knowledge of the fading speed, the adap- 
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Fig. 3. The BER performance of the SMC receivers. The channel is flat-fading with 
fdT = 0.005. The delayed-weight method  is used with 6 = 6. 

100 

~jo -1 

ii 2:! i i i ;  ...... : : / Z Z : I I Z Z : Z : Z : Z : Z Z Z Z : Z : I I Z : :  

~ v  et ffcoe icients [ i ' ~ " ~  
~ ' i  . . . . . . . . . . .  "~ 
-~- 8 wavelet coefficients ~ . . . . . . . . .  : . . . . . . . . . .  i . . . . . . . . . . . . .  

-8- Adaptive wavelet coefficients | i i 
-8- Known channel bound | i i 

5 10 15 20 25 
F-.b/N o (riB) 

Fig. 4. The BER performance of the  SMC receivers. The channel is flat-fading with felT = 0.01. 
The delayed-weight me thod  is used wi th  6 ---- 6. 

tive SMC receiver is able to perform as well as the best fixed order receiver in both cases, 
except in some low signal to noise ratio cases (less than 10 dB). The adaptive nature 
allows the receiver to 'choose' the correct order in process. 

We next show the performance of the adaptive SMC receiver for fading channels 
with time varying fading speed. Fading processes with normalized Doppler shift at 
fdT = 0.005 and fdT = 0.01 are generated and appended (smoothly at t -- 75) to form 
a block of length 128. The adaptive receiver is employed. Figure 5 shows the weighted 
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Fig. 5. The histogram for the shrinkage order associated with the sample s t reams at  t imes 
t = 50 (top) and t = 100 (bot tom) for Eb/No = 15 dB. The fading process is composed of two 
equal-length parts: the normalized Doppler shift is fdT  = 0.005 in the first par t  and fdT  = 0.01 
in the second part.  The result is the  average over 100 simulations. 

histogram of the shrinkage order associated with each sample stream at the first region 
(upper panel) and the second region (lower panel) Eb/No = 15 dB. The result is the 
average over 100 simulations. It is seen that the shrinkage order ~t focuses on the range 
of (3, 8) for the first region, which is close to the optimum fixed shrinkage order for 
the fdT = 0.005 (see Fig. 3). Meanwhile, for the second region, the shrinkage order 
focuses on the range of (7, 11), also close to the optimum fixed shrinkage order (8, 15) 
for fdT = 0.01 (see Fig. 4). 

We also check the performance between the adaptive SMC receiver and the fixed 
order SMC receiver at the two different regions. Figure 6 shows the error rate at each 
time point (120 simulations) at Eb/No -- 15 dB, It is easily seen that  the adaptive receiver 
performs the best in both regions while fixed order receivers do well in one region but 
fail in another. 

Figure 7 illustrates the overall BER performance for different SNR values for flat- 
fading channels with time varying Doppler values. It is seen that the proposed adaptive 
SMC receiver performs the best. 

5. Conclusions 

In this paper, we have developed a new nonparametric adaptive Bayesian receiver 
technique for blind detection in fading channels with unknown and time varying channel 
statistics. It is based on wavelet modelling of the fading process and the sequential 
Monte Carlo method for online Bayesian inference. Moreover, a novel adaptive blind 
Bayesian receiver is developed. To cope with the uncertainty in fading speed and the time 
varying feature, a special structure of the wavelet approximation to the fading process is 
developed and utilized for SMC filtering. The performance of the blind adaptive receivers 
for fiat-fading channels are demonstrated via computer simulations. It is seen that  the 
adaptive receiver works as well as the 'optimal' fixed order receiver for time-invariant 
fading processes, without assuming the knowledge of the fading speed. When the fading 



NONPARAMETRIC ADAPTIVE DETECTION IN FADING CHANNELS 435 

15 wavelet coefficients 
4 wavelet coefficients 
Adaptive wavelet coefficients 

>, 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.Q 

ft. 

0.05 . . . . . . . . .  . . . . .  

0 
2 0  4 0  6 0  8 0  100  120  

T i m e  

Fig. 6. The BER performance of the blind adaptive receiver at different time points for 
SNR = 15. The channel is flat-fading under time-varying Dopplers. 
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Fig. 7. The BER performance of the blind adaptive receiver. The channel is fiat-fading under 
time varying Dopplers. 

is indeed time varying, the adaptive receiver outperform all fixed order receivers. 
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