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Abstrac t .  In kernel methods, all the information about the training data is con- 
tained in the Gram matrix. If this matrix has large diagonal values, which arises for 
many types of kernels, then kernel methods do not perform well: We propose and 
test several methods for dealing with this problem by reducing the dynamic range of 
the matrix while preserving the positive definiteness of the Hessian of the quadratic 
programming problem that one has to solve when training a Support Vector Machine, 
which is a common kernel approach for pattern recognition. 
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1. Introduction 

The present paper is structured as follows. We start  with a concise summary of some 
aspects of Support Vector Machines (SVMs), with a focus on a particular formulation 
which we will use subsequently. The discussion assumes some previous knowledge of 
SVMs. In Section 2, we introduce the problem of large diagonals, followed by our 
proposed method to handle it (Section 3). Section 4 presents experiments, and Section 5 
summarizes our conclusions. 

SVMs and related kernel methods can be considered an approximate implementation 
of the structural risk minimization principle suggested by Vapnik (1979). To this end, 
they minimize an objective function containing a trade-off between two goals, that  of 
minimizing the training error, and that  of minimizing a regularization term. In SVMs, 
the latter is a function of the margin of separation between the two classes in a binary 
pat tern recognition problem. This margin is measured in a so-called feature space ?-I 
which is a Hilbert space into which the training patterns are mapped by means of a map 

(1.1) ~ : 2(' ~ ~ .  

Here, the input domain A" can be an arbitrary nonempty set. The art of designing an 
SVM for a task at hand consists of selecting a feature space with the property that  dot 
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products between mapped input points, ((I)(x), (I)(x')), can be computed in terms of a 
so-called kernel 

(1.2) k(x, x') = 

which can be evaluated efficiently. Such a kernel necessarily belongs to the class of 
positive definite kernels (e.g. Berg et al. (1984)), i.e., it satisfies 

m 

(1.3) E aiajk(xi,xj) >_ 0 
i , j=l  

for all ai E ~,  xi E A', i = 1 , . . . , m .  The kernel can be thought of as a nonlinear 
similarity measure that corresponds to the dot product in the associated feature space. 
Using k, we can carry out all algorithms in 7-/that can be cast in terms of dot products, 
examples being SVMs and PCA (for an overview, see SchSlkopf and Smola (2002)). To 
train a classifier f(x) = sgn((w, (I)(x)) + b), where 

m 

(1.4) w = E aj~(xj), 
j= l  

the SVM pattern recognition algorithm minimizes the quadratic form 

m 

(1.5) Ilwll2 = E aiajKij 
i , j=l 

subject to the constraints 

(1.6) yi[(~(xi),w)§ l, i.e., yi l ~ a j K i j ~ b  ~ >_1. 
[ J j-~l 

This formulation comes from the usual primal formulation rewritten using the representer 
theorem, which says that  the solution can be rewritten as ~-~i (~i~(xi). Also, we are 
considering the zero training error case. Nonzero training errors are incorporated as 
suggested by Cortes and Vapnik (1995), for all i C {1 , . . . ,  m}. Here, 

(1.7) ( x i ,Y l ) , . . . , (Xm,Ym)  C X x {:J:l} 

are the training examples, and 

(1.8) Kij := k(xi, xj) = (O(xi), O(xj)) 

is the Gram matrix. 
Note that  the regularizer (1.5) equals the squared length of the weight vector w in 

T/. Sometimes, a modification of this approach is considered, where the regularizer 

m 

(1.9) E a~ 
i=1 
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is used instead of (1.5). Whilst this is no longer the squared length of a weight vector in 
the feature space/~,  it is instructive to re-interpret it as the squared length in a different 
feature space, namely in l~ m. 

To this end, we consider the feature map 

(1.10) Ore(X) := (k(X, Xl),...,k(X, Xm)) T, 

sometimes called the empirical kernel map (Tsuda (1999); Schhlkopf and Smola (2002)) 
(cf. also Hastie and Tibshirani (1990)). In this case, the (primal) SVM optimization 
problem consists in minimizing 

(1.11) Ilalt 2 

subject to 

(1.12) a) + b] >__ 1 

for a l l /  C { 1 , . . . , m } ,  where a = (a, , .  .. ,a,~) T e R m. In view of (1.10), however, 
m the constraints (1.12) are equivalent to Y~[~j=I ajK~j + b] >_ 1, i.e. to (1.6), while the 

regularizer t[ aI[ 2 equals (1.9). 
Therefore, using the regularizer (1.9) and the original kernel corresponds to a start- 

dard SVM with the desired kernel used as input features. This SVM operates in an m- 
dimensional feature space with the standard SVM regularizer, i.e., the squared weight of 
the weight vector in the feature space. We can thus train a classifier using the regularizer 
(1.9) simply by training an SVM with the kernel 

(1.13) kin(x, x') := (era(x), Cm(x')), 

and thus, by definition of Om, using the Gram matrix 

(1.14) Km = K K  T, 

where K denotes the Gram matrix of the original kernel. The last equation shows that 
when employing the empirical kernel map, it is not necessary to use a positive definite 
kernel. The reason is that no matter  what K is, the Gram matrix K K  T is always positive 
definite, which is sufficient for an SVM. (Here, as in (1.3), we allow for a nonzero null 
space in our usage of the concept of positive definiteness.) 

In summary then, when using the modified regularizer we can simply train a stan- 
dard (linear) SVM with the empirical kernel map as input (feature) vectors. This will 
allow us to consider non-positive definite kernels, which will be useful for the problem of 
kernel matrices with large diagonals. 

2. The problem of large diagonals 

An important feature of kernel methods is that  the input domain X does not have 
to be a vector space. The inputs might just as well be discrete objects such as strings. 
Moreover, the map r might compute rather complex features of the inputs. Examples 
thereof are polynomial kernels (Boser et al. (1992)), where �9 computes all products (of 
a given order) of entries of the inputs (in this case, the inputs are vectors), and string 
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kernels (Watkins (2000); Hanssler (1999); Lodhi et al. (2002)), which, for instance, can 
compute the number of common substrings (not necessarily contiguous) of a certain 
length n �9 5t of two strings x, x' in O(n]x[[x'[) time. Here, we assume that x and x' are 
two finite strings over a finite alphabet E. For the string kernel of order n, a basis for 
the feature space consists of the set of all strings of length n, E n. In this case, (I) maps 
a string x into a vector whose entries indicate whether the respective string of length 
n occurs as a substring in x. By construction, these will be rather sparse vectors--a 
large number of possible substrings do not occur in a given string. Therefore, the dot 
product of two different vectors will take a value which is much smaller than the dot 
product of a vector with itself. This can also be understood as follows: any string shares 
all substrings with itself, but  relatively few substrings with another string. Therefore, it 
will typically be the case that we are faced with large diagonals. By this we mean that, 
given some training inputs x l , . . . ,  Xm, we have 

(2.1) k(xi ,x i )  >> lk(xi,xj)] for xi # xj,  i , j  �9 { 1 , . . . , m } .  

The diagonal terms k(xi, xi) are necessarily nonnegative for positive definite kernels, 
hence no modulus on the left hand side. In this case, the associated Gram matrix will 
have large diagonal elements. 

Note that in the machine learning literature, this problem is sometimes referred to 
as diagonal dominance. However, the latter term is used in linear algebra for matrices 
where the absolute value of each diagonal element is greater than the sum of the absolute 
values of the other elements in its row (or column). Real diagonally dominant matrices 
with positive diagonal elements are positive definite. 

Let us next consider an innocuous application which is rather popular with SVMs: 
handwritten digit recognition. We suppose that the data are handwritten characters 
represented by images in [0, 1] y (here, N c N is the number of pixels), and that only a 
small fraction of the images is ink (i.e. few entries take the value 1). In that  case, we 
typically have (x, x) > (x, x') for x ~ x', and thus the polynomial kernel (which is what 
most commonly is used for SVM handwritten digit recognition) 

(2.2) k(x,  x') = (x, x') d 

satisfies k(x, x) >> [k(x, x')[ already for moderately large d- - i t  has large diagonals. 
Note that as in the case of the string kernel, one can also understand this phe- 

nomenon in terms of the sparsity of the vectors in the feature space. It is known that 
the polynomial kernel of order d effectively maps the data into a feature space whose 
dimensions are spanned by all products of d pixels. Clearly, if some of the pixels take 
the value zero to begin with, then an even larger fraction of all possible products of d 
pixels (assuming d > 1) will be zero. Therefore, the sparsity of the vectors will increase 
with d. 

In practice, it has been observed that SVMs do not work well in this situation. 
Empirically, they work much better  if the images are scaled such that the individual 
pixel values are in [-1, 1], i.e., that the background value is -1 .  In this case, the data 
vectors are less sparse and thus further from being orthogonal. 

Indeed, large diagonals correspond to approximate orthogonality of any two different 
patterns mapped into the feature space. To see this, assume that x r x' and note that  
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due to k(x,x) > [k(x,x')], 

r  = / r 1 6 2  

v/(r r (r r 

_ _ k ( x ,  z ' )  O. 
v/k(x, 

In some cases, an SVM trained using a kernel with large diagonals will memorize  
the data. Let us consider a simple toy example, using X as data  matrix and Y as label 
vector, respectively: 

r 1 0 0 9 0 0  

1 0 0 0 0 8  

1 0 0 0 0 0  
X =  

0 0 9 0 0 0  

0 0 0 0 0 0  

0 0 0 0 0 0  

The Gram matrix ~ r  these data (nsing 

r 

1 

1 
K =  

0 

0 

A standard SVM finds the solution 

w = (0.04,0,-0.11,0.11,0, 

0 0  

0 0  

0 9  

0 0  

8 0  

0 0  

the 

1 

65 

0 0  ~ 

O0 

O0 

O0 

O0 

0 9  

f + l  x 

+1 

+1 
, r - - ~ -  

- 1  

-1  

~,-1/ 

linear kernel k(x ,  x') = (x, x')) is 

1 0 0 0  ~ 

1 0 0 0 

1 8 2 0  0 0 

0 0 8 1 0  0 

0 0 0 6 4 0  

0 0 0 0 8 1  0 

f ( x )  = sgn((w, x) + b) with 

0.12,-0.12, 0.11, O, -0.11) T, b -- -0.02. 

It can be seen from the coefficients of the weight vector w that  this solution has but 
memorized the data: all the entries which are larger than 0.1 in absolute value correspond 
to dimensions which are nonzero only for one of the training points. We thus end up with 
a look-up table. A good solution for a linear classifier, on the other hand, would be to just 
choose the first feature, e.g., f ( x )  = sgn((w, x I + b), with w = (2, 0, 0, 0, 0, 0, 0, 0, 0, 0) T, 
b = - l .  

In the limit where K approaches a diagonal matrix D, the data  memorization prop- 
erty can be seen analytically. Using bold face notation for coefficient vectors (with e 
denoting the vector whose coefficients are all 1), we have in this case 

(2.3) ol = 0 -1 ( y -  be) 

eT D - l y  
(2.4) b - eV D_ 1 e 

and all training points are classified correctly. This can be deduced by (as all points 
are support vectors) solving for ~ with equality constraints rather than inequalities, and 
then solving for b. Note that  this is only true under the assumption that  D is invertible 
(i.e. that  k(xi ,  xi) > 0 for all i). 
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3. Methods to reduce large diagonals 

The basic idea that  we are proposing is very simple indeed. We would like to 
use a nonlinear transformation to reduce the size of the diagonal elements, or, more 
generally, to reduce the dynamic range of the Gram matrix entries. The only difficulty 
is that  if we simply do this, we have no guarantee that  we end up with a Gram matrix 
that  is still positive definite. To ensure that  it is, we can use methods of functional 
calculus for matrices. In the experiments we will mainly use a simple special case of the 
below. Nevertheless, let us introduce the general case, since we think it provides a useful 
perspective on kernel methods, and on the transformations that can be done on Gram 
matrices. 

Let K be a symmetric m • m matrix with eigenvalues in [Amin, Amax]. Consider a 
continuous function f on [Amin, Ama~]. 

Functional calculus provides a method to define a unique symmetric matrix, denoted 
by f ( K ) ,  which has eigenvalues in if(Amid), f(Amax)]. This matrix can be computed via a 
Taylor series expansion in K,  or using the eigenvalue decomposition of K: If K = STDS 
(with D diagonal and S unitary), then f (K)  = STf(D)S, where f(D) is the diagonal 
matrix with elements f(D)ii = f(D~). 

The convenient property of this procedure is that  we can treat functions of sym- 
metric matrices just like functions on I~; in particular, we have, for a E I~, and real 
continuous functions f ,  g defined on [)'min, Am~], (below, a(K) denotes the spectrum of 
K) 

( a f  + g)(K)  = o f(K) + g(K) 

( fg ) (K)  = f ( K ) g ( K )  = g ( K ) f ( K )  

IrfH ,o(K) = ]If(K)]l 
= 

In technical terms, the C*-algebra generated by K is isomorphic to the set of continuous 
functions on a(K). 

For our problems, functional calculus can be applied in the following way. We 
start off with a positive definite matrix K which has large diagonal values. We then 
reduce its dynamic range by elementwise application of a nonlinear function, such as 
~(x) = log(x + 1) or ~(x) = sgn(x)- Ix[ p with 0 < p < 1. This will lead to a matrix 
which may no longer be positive definite. However, it is still symmetric, and hence we 
can apply functional calculus. As a consequence of a(f(K)) = f(a(K)), we just need to 
apply a function f which maps to R +. This will ensure that  all eigenvalues of J:(K) are 
nonnegative, hence f (K)  will be positive definite. 

One can use these observations to design the following scheme. 
For positive definite K,  

1. compute the positive definite matrix A := 
2. reduce the dynamic range of the entries of A by applying an elementwise trans- 

formation ~, leading to a symmetric matrix A~ 
3. compute the positive definite matrix K r := (A~) 2 and use it in subsequent 

processing. The entries of K r will be the "effective kernel," which in this case is no 
longer given in analytic form. 
Note that  in this procedure, if ~ is the identity, then we have K = K ~. 
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Experimentally, this scheme works rather well. However, it has one downside: since 
we no longer have the kernel function in analytic form, our only means of evaluating it 
is to include all test inputs (not the test labels, though) into the matrix K. In other 
words, K should be the Gram matrix computed from the observations x l , . . .  ,Xm+n 
where Xm+~,... ,Xm+n denote the test inputs. We thus need to know the test inputs 
already during training. This setting is sometimes referred to as transduction (Vapnik 
(1998)). 

If we skip the step of taking the square root of K,  we can alleviate this problem. In 
that case, the only application of functional calculus left is a rather trivial one, that  of 
computing the square of K. The m x m submatrix of K 2 which in this case would have 
to be used for training then equals the Gram matrix when using the empirical kernel 
map 

(3.1) r -~ ( k ( x ,  Xl) , . . .  , k(x, xrnq-n)) T. 

For the purposes of computing dot products, however, this can approximately be replaced 
by the empirical kernel map in terms of the training examples only, i.e., by (1.10). The 
justification for this is that  for large r E N, 

_lr @r(x),  ~r(x')) ,-~ I x  k(x, x")k(x', x")dP(x"), 

where P is assumed to be the distribution of the inputs. Therefore, we have 
1 ( r  ~ 1 ~ ~ (~m+n(X), ~m+n(X')). Altogether, the procedure then boils 

down to simply training an SVM using the empirical kernel map in terms of the training 
examples and the transformed kernel function ~(k(x, x')). This is what we will use in 
the experiments below unless stated otherwise. Note that a subset of the results of this 
paper has appeared in (Schhtkopf et el. (2002)). 

4. Experiments 

4.1 Artificial data 
We first constructed a set of artificial experiments which produce kernels exhibit- 

ing large diagonals. The experiments are as follows: a string classification problem, a 
microarray cancer detection problem supplemented with extra noisy features and a toy 
problem whose labels depend upon hidden variables; the visible variables are nonlinear 
combinations of those hidden variables. 
4.1.1 Stying classification 

We considered the following classification problem. Two classes of strings are gen- 
erated with equal probability by two different Markov models. Both classes of strings 
consist of letters from the same alphabet of a -- 20 letters, and strings from both classes 
are always of length n = 20. Strings from the negative class are generated by a model 
where transitions from any letter to any other letter are equally likely. Strings from the 
positive class are generated by a model where transitions from one letter to itself (so 
the next letter is the same as the last) have probability 0.43, and all other transitions 
have probability 0.03. For both classes the starting letter of any string is equally likely 
to be any letter of the alphabet. The task then is to predict which class a given string 
belongs to. To map these strings into a feature space, we used the string subsequence 
kernel employed by Lodhi et al. (2002) for text categorization. As described above, this 
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kernel is an inner product in a feature space consisting of all subsequences of length I. 
A subsequence is any ordered sequence of 1 characters occurring in the text though not 
necessarily contiguously. In the present application, the subsequences are weighted by 
an exponentially decaying factor A of their full length in the text, hence emphasizing 
those occurrences which are close to contiguous. A direct computation of this feature 
vector would involve a prohibitive amount of computation, a method of computing the 
inner product efficiently using a dynamic programming technique is described by Lodhi 

1 et al. (2002). For our problem we chose the parameters l = 3 and A = ~. 
We generated 50 such strings and used the string subsequence kernel with A = 0.25. 

We split the data into 25 for training and 25 for testing in 20 separate trials. We 
measured the success of a method by calculating the mean classification loss on the test 
sets. Figure 1 shows four strings from the dataset and the computed kernel matrix for 
these strings (the matrix was rescaled by dividing by the largest entry). Note that  the 
diagonal entries are much larger than the off-diagonals because a long string has a large 
number of subsequences that  are shared with no other strings in the dataset apart from 
itself. However, information relevant to the classification of the strings is contained in 
the matrix. This can be seen by computing the mean kernel value between two examples 
of the positive class which is equal to 0.0003 + 0.0011, whereas the mean kernel value 
between two examples of opposite classes is 0.00002 + 0.00007. Although the numbers 
are very small, this captures that  the positive class have more in common with each 
other than with random strings (they are more likely to have repeated letters). 

string class 

qqbqqnshrtkt fhhaahhh +ve 

abajahnaajjjjiiiittt +ve 

sdolncqniflmmpcrioog - v e  

reaqhcoigealgqjdsdgs -ve  

[0.6183 0.0133 0.0000 0.0000~ 

/0.0133 1.0000 0.0000 0.0000 / 

K = / 0"0000 0.0000 0.4692 0.0002 / 

\0.0000 0.0000 0.0002 0.4292] 

Fig. 1. Four strings and their kernel matrix using the string subsequence kernel with ~ ---- 0.25. 
Note that the diagonal entries are much larger than the off-diagonals because a long string has 
a large number of subsequences that are shared with no other strings in the dataset apart from 
itself. 

If the original kernel is denoted as an inner product k(x, y) = (~(x), O(y)), then 
we employ the kernel k(x,y) = (~(x),~(y)}P where 0 < p < 1 to solve the diagonal 
dominance problem. We will refer to this kernel as a subpolynomial one. When the input 
data  can take negative values we will use k(x, y) = sgn (O(x), O(y)) * I (O(x), O(y)) I p to 
retain the information given by the sign. If there are no negative values the two choices 
are equivalent, so we instead write the simpler version. 

As this kernel may no longer be positive definite we use the method described in 
Section 1, employing the empirical kernel map to embed our distance measure into a 
feature space. Results of using our method to solve the problem of large diagonals is 
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Table 1. Results on a string classification problem of using the string subsequence kernel (top 
row) and with a further nonlinear map via an RBF kernel (second row). For the RBF kernel 
the optimal ~r is shown, i.e. the one which minimizes the test error. The remaining rows show 
the results of using the subpolynomial kernel to deal with the large diagonal. 

kernel method classification loss 

original k, k(x, y) -- ((I)(x), (I)(y)) 0.36 4- 0.018 

optimal RBF, k(x, y) = exp ( - I ]eP(x~ (y)[[) a ---- 0.25 0.18 4- 0.021 

k~mp(z, v) = (r r  p = l  

p = 0 . 9  
p = 0 . 8  
p = 0 . 7  

p = 0 . 6  
p =0 .5  
p=0 .4  
p =  0.3 
p=0 .2  
p=0 .1  

0.30 4. 0.011 
0.25 4- 0.013 

0.20 4- 0.014 
0.15 4- 0.013 

0.13 • 0 . 0 1 0  

0.14 =k 0.008 
0.15 =k 0.010 

0.15 4. 0.008 
0.17 4. 0.010 
0.21 4- 0.013 

given in Table 1. In this, and subsequent  tables, each a lgor i thm tr ied is listed, together  
with the values of its hyperparamete r s  and the result ing mean  classification loss and its 
s t andard  error. The  me thod  provides, wi th  the op t imum choice of the free parameter ,  a 
reduct ion from a loss of 0.36 + 0.018 wi th  the original kernel to 0.13 + 0.001 with p = 0.6. 
Although we do not provide methods  for choosing this free parameter ,  it is straight- 
forward to apply conventional  techniques of model  selection (such as cross validation) to  
achieve this goal. 

We also performed some fur ther  exper iments  which we will briefly discuss. Th e  sub- 
polynomial  kernel adds a kind of nonl inear i ty  to the original kernel, such tha t  if p = 1 
is overfit t ing then  reducing p can reduce this overfitting, until  finally as p --~ 0, underfi t-  
t ing occurs. To check tha t  the nonlinear mapping really is doing something different to 

s tandard  nonlinear mappings such as R B F  kernels: k(x, y) -- exp(-Hr ), we also 
measured their  test  performance.  We thus give in our  exper imenta l  results the validation 
error score of the opt imal  R B F  kernel (given knowledge of the labels) using the possible 
values a = ( 2 - 1 ~  ,21~ i.e. selecting the one with the lowest val idat ion error.  
Al though this value is impossible to choose in real applications it serves to  show whether  
the R B F  kernel could help at all: if even the best  choice of R B F  is still not  be t t e r  t h an  
the linear rule then  it is clearly not  useful. An R B F  kernel can help if nonlinear relations 
between variables can help, bu t  we do not  believe it can help wi th  the diagonal  dotal- 
nance problem. In this problem an R B F  kernel does improve over the linear one, bu t  
not  by as much as the subpolynomial  kernel (see the table for results),  we thus believe 
in this problem there  is an issue of required nonl inear i ty  as well as a problem of large 
diagonals. We will see in later  exper iments  tha t  the subpolynomial  kernel can improve 
over the linear one even when the R B F  kernel only ever makes results worse. 

Next ,  to  check tha t  the result  is a feature  of kernel algori thms,  and not  something 
peculiar  to SVMs, we also applied the same kernels to ano ther  algori thm, kernel 1- 
nearest  neighbor. Using the original kernel mat r ix  yields a loss of 0.43 • 0.0085 whereas 
the subpolynomial  me thod  again improves the results, using p -- 0.6 yields 0.22 =k 0.0011 
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and p = 0.3 (the optimum choice) yields 0.17 + 0.001. Finally, we tried some alternative 
proposals for reducing the large diagonal effect. We tried using Kernel PCA to extract 
features as a pre-processing to training an SVM. The intuition behind using this is that  
features contributing to the large diagonal effect may have low variance and would thus 
be removed by KPCA. KPCA did improve performance a little, but  still worse than the 
subpolynomial method. The best result was found by extracting 15 features (from the 
kernel matrix of 50 examples) yielding a loss of 0.23 + 0.001. 

We also tried a "naive" method of subtracting a constant from the diagonal of the 
kernel matrix, i.e. K -- K - )~K D where K is the Gram matrix and K D is a diagonal 
matrix where K D = Kii. The largest choice of A before K is no longer positive definite is 
A = 0.5 which yields a loss of 0.25 • 0.014. Note that in this method, it is not necessary 
to use the empirical kernel map. 
4.1.2 Microarray  data with added noise  

We next considered the microarray classification problem of Alon et al. (1999) (see 
also Guyon et al. (2002) for a treatment of this problem with SVMs). In this problem one 
must distinguish between cancerous and normal tissue in a colon cancer problem given 
the expression of genes measured by microarray technology. In this problem one does not 
encounter large diagonals, however we augmented the original dataset with extra noisy 
features to simulate such a problem. The original data  has 62 examples (22 positive, 40 
negative) and 2000 features (gene expression levels of the tissues samples). We added 
a further 10,000 features to the dataset, such that for each example a randomly chosen 
100 of these features are chosen to be nonzero (taking a random value between 0 and 1) 
and the rest are equal to zero. This creates a kernel matrix with large diagonals. The 
first 4 • 4 entries of the kernel matrix of a linear kernel on the colon cancer problem 
before (K) and after (K') adding 10,000 sparse, noisy features. The added features are 
designed to create a kernel matrix with a large diagonal. 

K = 

1.00 0.41 0.33 0.42~ 

0.41 1.00 0.17 0.39[ 

0.33 0.17 1.00 0.61 / ' 

0.42 0.39 0.61 1.00] 

39.20 0.41 0.33 0.73 

K ' :  /0"41 37.43 0.26 0 . 8 8 l .  
/ 0"33  0.26 31.94 0 . 6 1 J  

\ 0 . 7 3  0.88 0.61 35.32] 

The problem is again an artificial one demonstrating the problem of large diagonals, 
however this time the feature space is rather more explicit rather than the implicit one 
induced by string kernels. In this problem we can clearly see the large diagonal problem is 
really a special kind of feature selection problem. As such, feature selection algorithms 
should be able to help improve generalizability, unfortunately most feature selection 
algorithms work on explicit features rather than implicit ones induced by kernels. 

Performance of methods was measured using 10-fold cross validation, which was 
repeated 10 times. Due to the unbalanced nature of the number of positive and negative 
examples in this data set we measured the error rates using the balanced loss: 

(4.1) eba,(Y, 9) = ~ ~--{y : y - :  1-} + 2 - ~ - i  y~-- - -1 ;  

where y are the true labels and • are the estimates. Chance level is a loss of 0.5 regardless 
of the ratio of positive to negative examples. On this problem (with the added noise) an 
SVM using the original kernel does not perform better  than chance. The same is true of 
an RBF kernel. 
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Table 2. Results on a colon cancer classification problem with added noise of using a linear 

kernel ( top row) and an RBF kernel (second row). For the RBF kernel the optimal a is shown, 
i.e. the one which minimizes the test  error. The remaining rows show the results of using the 

subpolynomial  kernel to deal with the large diagonal. 

kernel method balanced loss 

original k, k (x ,  y) = (x,  y) 0.49 4- 0.005 

opt imal  RBF, k ( x ,  y) = exp ( - l l4(x) -~(y) l l  ) a = 1 0.50 4- 0.000 2o-2 

k~mp(x, y) = sgn (x, ~) �9 I (~, Y) I p p = 0.95 

p =  0.9 

p - - 0 . 8  

p -= 0.7 

p---- 0.6 

p---- 0.5 

p =  0.4 

p--- 0.3 

p =  0.2 

p---0 .1  

0.35 =t: 0.017 

0.30 4- 0.017 

0.25 4- 0.018 

0.22 4- 0.01"/ 

0.23 • 0.017 

0.25 • 0.019 

0.28 =t= 0.019 

0.29 • 0.018 

0.30 =h 0.019 

0.31 4- 0.018 

The results of using the original kernel, the RBF kernel and the subpolynomial 
method are given in Table 2. The subpolynomial kernel leads to a large improvement 
over using the original kernel. Its performance is close to that  of an SVM on the original 
data without the added noise, which in this case is 0.18 • 0.015. 
4.1.3 Hidden variable problem 

We then constructed an artificial problem where the labels can be predicted by 
a linear rule based upon some hidden variables. However, the visible variables are a 
nonlinear combination of the hidden variables combined with noise. The purpose is to 
show that  the subpolynomial kernel is not only useful in the case of matrices with large 
diagonals: it can also improve results in the case where a linear rule already overfits. 
The data axe generated as follows. There are 10 hidden variables: each class y E {+1} 
is generated by a 10 dimensional normal distribution N(#, a) with variance o 2 = 1, and 
mean p = y(0.5, 0 .5 , . . . ,  0.5). We then add 10 more (noisy) features for each example, 
each generated with N(0, 1). Let us denote the 20-dimeusional vector obtained this 
way for example i as hi. The visible variables xi are then constructed by taking all 
monomials of degree 1 to 4 of hi. It is known that  dot products between such vectors 
can be computed using polynomial kernels (Boser et al. (1992)), thus the dot product 
between two visible variables is 

k ( x i , x j ) = ( ( h i , h j ) + l )  4. 

We compared the subpolynomial method to a linear kernel and an RBF kernel using 
balanced 10-fold cross validation, repeated 10 times. The results are shown in Table 3. 
Again, the subpolynomial kernel gives improved results. 

One interpretation of these results is that  if we know that  the visible variables 
are polynomials of some hidden variables, then it makes sense to use a subpolynomial 
transformation to obtain a Gram matrix closer to the one we could compute if we were 
given the hidden variables. In effect, the subpolynomial kernel can (approximately) 

e x t r a c t  the hidden variables. 



402 JASON WESTON ET AL. 

Table 3. Results on the hidden variable problem of using a linear kernel (top row) and an RBF 
kernel (second row). For the RBF kernel the optimal a is shown, i.e. the one which minimizes 
the test error. The remaining rows show the results of using the subpolynomial kernel to deal 
with the large diagonal. 

kernel method classification loss 

original k, k(x, y) = (x, y) 0.26 4- 0.012 

optimal RBF, k(x, y) = exp ( - II~(x~(y)ll ) a = 512 0.26 + 0.013 

kemp(X, y) = sgn (x, y) * [ (x, y} [P p = l  

p = 0 . 9  

0.25 4- 0.012 
0.23:1:0.013 
0.19 -t- 0.012 
0.18 4- 0.012 

0 . 1 6  + 0 . 0 1 1  

0 . 1 6  + 0 . 0 1 1  

0 . 1 6  4- 0 . 0 1 1  

0.18 + 0.011 
0.20 :t: 0.012 
0.19 4- 0.013 

p = 0 . 8  
p = 0 . 7  

p = 0 . 6  
p = 0 . 5  
p = 0 . 4  
p =  0.3 
p =0 .2  

p=0 .1  

4.2 Real data 
In the following exper iments  we apply  our methods  to real problems. 

4.2.1 Thrombin binding problem 
In the th rombin  datase t  the problem is to predict  whether  a given drug binds to a 

target  site on thrombin,  a key receptor  in blood clotting. This  da tase t  was used in the 
KDD (Knowledge Discovery and Da ta  Mining) Cup 2001 compet i t ion  and was provided 
by DuPont  Pharmaceut ica ls .  

In the t raining set there  are 1909 examples represent ing different possible molecules 
(drugs), 42 of which bind. Hence the da ta  is r a the r  unbalanced in this respect.  Each 
example has a fixed length vector  of 139,351 binary features (variables) in {0, 1} which 
describe three-dimensional  propert ies  of the molecule. An impor tan t  characterist ic  of 
the da t a  is t ha t  very  few of the feature entries are nonzero (0.68% of the 1909 x 139351 
training matr ix ,  see (Weston et al. (2002)) for fur ther  stat is t ical  analysis of the dataset) .  
Thus,  many  of the features somewhat  resemble the noisy features tha t  we added on to  
the colon cancer  da tase t  to  create a large diagonal in Section 4.1.2. Indeed, const ruct ing 
a kernel mat r ix  of the t ra ining da t a  using a linear kernel yields a mat r ix  wi th  a mean  
diagonal element of 1377.9 + 2825 and a mean  off-diagonal element  of 78.7 • 209. We 
compared  the subpolynomial  me thod  to the original kernel and an  R B F  kernel using 
8-fold balanced cross val idat ion (ensuring an equal number  of positive examples were 
in each fold). We again used the balanced loss measure given in equat ion (4.1). The  
results are given in Table 4. Once again the subpolynomial  m e th o d  provides improved 
generalization. It  should be noted  tha t  feature selection and t ransduc t ion  methods  have 
also been shown to improve results, above tha t  of a linear kernel on this problem (Weston 
et al. (2002)). 
4.2.2 Lymphoma  classification 

We next  looked at the problem of identifying large B-Cell L y m p h o m a  by gene ex- 
pression profiling (Alizadeh et al. (2000)). In this problem the gene expression of 96 
samples is measured wi th  microarrays  to give 4026 features.  Sixty-one of the  samples 
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Table 4. Results on the thrombin binding problem of using a linear kernel (top row) and 
an RBF kernel (second row). For the RBF kernel the optimal a is shown, i.e. the one which 
minimizes the test error. The remaining rows show the results of using the subpolynomial 
kernel to deal with the large diagonal. 

kernel method 

original k, k(x, y) = (x, y) 

optimal RBF, k(x, y) = exp ( - l[4~(~:? (y)l[) a = 16 

kemp(x,y) = (x,y) p p = 0.9 

balanced loss 

0.30 :t: 0.04 

0.30 :k 0.04 

0.24 :t: 0.04 

p ---- 0.8 0.24 • 0.04 
p = 0.7 0.18 ::k 0.03 
p = 0.6 0.18 ::[= 0.03 
p = 0 . 5  0 . 1 5  ::t= 0 . 0 3  

p = 0.4 0.17 -t- 0.04 
p = 0.3 0.17 ::t= 0.04 

p ---- 0.2 0.18 ::t= 0.03 
p = 0.1 0.22 4- 0.05 

are in classes " D L C L " ,  "FL" or "CLL" (malignant)  and 35 are labelled "otherwise" 
(usually normal) .  Al though the da t a  does not  induce a kernel mat r ix  wi th  a very large 
diagonal it is possible tha t  the large number  of features induce overfit t ing even in a 
linear kernel. To examine if our  me thod  would still help in this s i tuat ion we applied the 
same techniques as before, this t ime using balanced 10-fold cross validation, repea ted  
10 times, and measuring error  ra tes  using the balanced loss. T h e  results are given in 
Table 5. The  improvement  given by the subpolynomial  kernel suggests t ha t  overfitt ing 
in linear kernels when the number  of features is large may  be overcome by applying 
special feature maps. It should be noted  tha t  (explicit) feature selection methods  have 
also been shown to improve results on this problem, see e.g. Weston et al. (2001). 
4.2.3 Prote in  f ami l y  classification 

We then  focussed on the problem of classifying prote in  domains into superfamilies 
in the S t ruc tura l  Classification of Prote ins  (SCOP)  da tabase  version 1.53 (Murzin et al. 
(1995)). We followed the same problem set t ing as Liao and Noble (2002): sequences were 
selected using the Astral  da tabase  (as t ra l .s tanford.edu cite), removing similar sequences 
using an E-value threshold of 10 -25 . This  procedure  resul ted in 4352 dist inct  sequences, 
grouped into families and superfamilies. For each family, the prote in  domains within 
the family are considered positive test  examples,  and the prote in  domains outside the 
family bu t  within the same superfamily  are taken as positive t ra ining examples. Th e  
da t a  set yields 54 families containing at  least 10 family members  (positive t raining ex- 
amples).  Negative examples are taken from outside of the positive sequence's  fold, and 
are randomly  split into t ra in  and test  sets in the  same rat io as the positive examples.  
Details about  the various families are listed in Table 6, and the complete  da t a  set is 
available at  www.cs .columbia .edu/compbio/svm-pairwise .  Note  t h a t  this exper imenta l  
se tup is similar to tha t  used by Jaakkola  et at. (2000), except  the posit ive t ra ining sets 
do not  include addit ional  prote in  sequences ex t rac ted  from a large, unlabeled database,  
which amounts  to a kind of " t ransduct ion"  (Vapnik (1998)) algori thm. We believe tha t  
it is this t ransduct ion  step which may  be responsible for much of the success of using 
the methods  described by Jaakkola  et al. (2000). However, to make a fair comparison of 
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Table 5. Results on the Lymphoma classification problem of using a linear kernel (top row) 
and an RBF kernel (second row). For the RBF kernel the optimal a is shown, i.e. the one which 
minimizes the test error. The remaining rows show the results of using the subpolynomial kernel 
to deal with the large diagonal. 

kernel method balanced loss 

original k, k(x, y) = (x, y) 0.043 -4- 0.008 

optimal RBF, k(x, y) = exp ( -IJ~(x)-~(Y)ll ) a = 4 0.052 -4- 0.008 2o-2 

kemp(x, y) = sgn (z, y) * I (x, Y> I p p = l  

p----0.9 

p = 0 . 8  

p = 0 . 7  

p =  0.6 

p----0.5 
p----0.4 

p = 0 . 3  
p = 0 . 2  

p----0.1 

0.037 A- 0.007 

0.021 -t- 0.005 

0.016 -4- 0.005 

0.015 -4- 0.005 

0.022 =t= 0.006 

0.022 -4- 0.006 

0.042 =t= 0.007 

0.046 + 0.008 
0.083 =t= 0.009 
0.106 -4- 0.009 

kernel me thods  we do not  include this s tep which could po ten t ia l ly  be  included in any  
of the methods .  S tudying  the impor t ance  of t r ansduc t ion  remains  a subjec t  of fur ther  
research. 

An SVM requires fixed length vectors.  Prote ins ,  of course, axe var iable- length  se- 
quences of amino  acids and  hence cannot  be  di rect ly  used in an SVM. To solve this t ask  
we used a sequence kernel, called the  s p e c t r u m  kernel, which m a p s  str ings into a space 
of features  which cor respond to every possible k -mer  (sequence of k let ters)  wi th  a t  mos t  
m mismatches ,  weighted by prior  probabi l i t ies  (Leslie et al. (2002)). In this exper iment  
we chose k = 3 and  m = 0. This  kernel is then  normal ized  so t ha t  each vector  has length 
1 in the fea ture  space; i.e., 

(4.2) k ( x , x ' )  = ( x , x ' )  
(x,,x,> 

An a s y m m e t r i c  soft marg in  is imp lemen ted  by  adding to the  diagonal  of  the  kernel 
ma t r i x  a value 0.02 �9 p, where p is the  f ract ion of t ra in ing set sequences t h a t  have 
the same  label as the current  sequence (see Cor tes  and  Vapnik (1995); Brown et al. 
(2000) for details) .  For compar ison,  the  same SVM p a r a m e t e r s  are used to  t ra in  an 
SVM using the  Fisher kernel ( Jaakkola  and  Hauss ler  (1999); J aakko la  et al. (2000), see 
also T s u d a  et al. (2002)), ano the r  possible kernel choice. The  Fisher  kernel is cur ren t ly  
considered one of the mos t  powerful  homology  de tec t ion  methods .  This  m e t h o d  combines 
a generat ive,  profile hidden Maxkov mode l  (HMM) and  uses it to genera te  a kernel for 
t ra in ing an SVM. A pro te in ' s  vector  r ep resen ta t ion  induced by the  kernel is its gradient  
wi th  respect  to the  profile hidden Maxkov model ,  the  p a r a m e t e r s  of  which are found by  
expec ta t ion-maximiza t ion .  

For each method ,  the ou t pu t  of  the  SVM is a d iscr iminant  score t ha t  is used to 
rank  the  m e m b e r s  of the tes t  set. Each  of the  above  me thods  produces  as o u t p u t  a 
ranking  of the  tes t  set sequences. To measure  the  qual i ty  of this ranking,  we use two 
different scores: receiver opera t ing  character is t ic  (ROC)  scores and  the  med ian  ra te  of 
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Table 6. S C O P  families included in the  exper iments .  For each family, the  numbe r s  of sequences  

in the  posit ive and  negat ive t ra in ing  and  tes t  sets  are listed. 

405 

Posit ive set  Negat ive set 

ID Train  Test  Train  Test  

1.27.1.1 12 6 2890 1444 

1.27.1.2 10 8 2408 1926 

1.36.1.2 29 7 3477 839 

1.36.1.5 10 26 1199 3117 

1.4.1.1 26 23 2256 1994 

1.4.1.2 41 8 3557 693 

1.4.1.3 40 9 3470 780 

1.41.1.2 36 6 3692 615 

1.41.1.5 17 25 1744 2563 

1.45.1.2 33 6 3650 663 

2.1.1.1 90 31 3102 1068 

2.1.1.2 99 22 3412 758 

2.1.1.3 113 8 3895 275 

2.1.1.4 88 33 3033 1137 

2.1.1.5 94 27 3240 930 

2.28.1.1 18 44 1246 3044 

2.28.1.3 56 6 3875 415 

2.38.4.1 30 5 3682 613 

2.38.4.3 24 11 2946 1349 

2.38.4.5 26 9 3191 1104 

2.44.1.2 11 140 307 3894 

2.5.1.1 13 11 2345 1983 

2.5.1.3 14 10 2525 1803 

2.52.1.2 12 5 3060 1275 

2.56.1.2 11 8 2509 1824 

2.9.1.2 17 14 2370 1951 

2.9.1.3 26 5 3625 696 

Posit ive set  Negat ive set  

ID Train Test  Train  Test  

2.9.1.4 

3.1.8.1 

3.1.8.3 

3.2.1.2 

3.2.1.3 

3.2.1.4 

3.2.1.5 

3.2.1.6 

3.2.1.7 

3.3.1.2 

3.3.1.5 

3.32.1.1 

3.32.1.11 

3.32.1.13 

3.32.1.8 

3.42.1.1 

3.42.1.5 

3.42.1.8 

7.3.10.1 

7.3.5.2 

7.3.6.1 

7.3.6.2 

7.3.6.4 

7.39.1.2 

7.39,1.3 

7.41.5.1 

7.41.5.2 

21 10 2928 1393 

19 8 3002 1263 

17 10 2686 1579 

37 16 3002 1297 

44 9 3569 73O 

46 7 3732 567 

46 7 3732 567 

48 5 3894 405 

48 5 3894 405 

22 7 3280 1043 

13 16 1938 2385 

42 9 3542 759 

46 5 3880 421 

43 8 3627 674 

40 11 3374 927 

29 10 3208 1105 

26 13 2876 1437 

34 5 3761 552 

11 95 423 3653 

12 9 2330 1746 

33 9 3203 873 

16 26 1553 2523 

37 5 3591 485 

20 7 3204 1121 

13 14 2083 2242 

10 9 2241 2016 

10 9 2241 2016 

false positives (RFP).  The  ROC score is the normalized area under a curve that  plots 
true positives as a function of false positives for varying classification thresholds. A 
perfect classifier that  puts all the positives at the top of the ranked list will receive an 
ROC score of 1, and for these data, a random classifier will receive an ROC score very 
close to 0. The median RFP score is the fraction of negative test sequences that score 
as high or bet ter  than the median-scoring positive sequence. RFP scores were used by 
Jaakkola et al. (2000) in evaluating the Fisher-SVM method. 

We show a family-by-family comparison of the subpolynomial spectrum kernel with 
the normal spectrum kernel and the Fisher kernel in Fig. 2. The coordinates of each 
point in the plot are the ROC scores for one SCOP family. The subpolynomial kernel 
uses the parameter p = 0.2. Although the subpolynomial method does not improve 
performance on every single family over the other two methods, there are only a small 
number of cases where there is a loss in performance. 
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Table 7. Results of using the spectrum kernel with k = 3, m = 0 on the SCOP dataset (top 
row) and using a further nonlinear map via an RBF kernel (second row). For the RBF kernel 
the optimal a is shown, i.e. the one which minimizes the test error. The remaining rows (apart 
from the last one) show the results of using the subpolynomial kernel to deal with the large 
diagonal. The last row, for comparison, shows the performance of an SVM using the Fisher 
kernel. 

kernel method RFP ROC 

original k, k(~(x), r = (x, y) 0.1978 0.7516 

optimal RBF, k(x,y) = exp ( -  IIr (v)ll) ~ =0.25 0.1287 0.8469 

kemp(X, y) .= (r r p p = 0 . 5  

p = 0 . 4  

p = 0 . 3  

p = 0 . 2  

p = O . 1  

p = 0.05 

0.1697 0.7967 

0.1569 0.8072 

0.1474 0.8183 

0.1357 0.8251 

0.1431 0.8213 

0.1489 0.8156 

SVM-FISHER 0.2946 0.6762 
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Fig. 2. Family-by-family comparison of the subpolynomial spectrum kernel with the normal 
spectrum kernel (left), and the Fisher kernel (right). The coordinates of each point in the plot 
are the ROC scores for one SCOP family. The spectrum kernel uses k = 3 and m = 0, and 
the subpolynornial kernel uses p ---- 0.2. Points  above the diagonal indicate problems where the 
subpolynomial kernel performs better than the other methods. 

T h e  r e s u l t s  of  u s i n g  t h e  s p e c t r u m  kerne l ,  a n  R B F  kernel ,  a n d  t h e  s u b p o l y n o m i a l  

k e r n e l  a p p l i e d  t o  t h e  s p e c t r u m  k e r n e l  a n d  t h e  f i sher  k e r n e l  a r e  g iven  in  T a b l e  7 a n d  F ig .  2. 

T h e  m e a n  R O C  a n d  R F P  scores  a r e  s u p e r i o r  for t h e  s u b p o l y n o m i a l  k e r n e l  c o m p a r e d  t o  

t h e  l i nea r  one,  b u t  t h e  R B F  k e r n e l  w i t h  t h e  o p t i m a l  choice  of  a p e r f o r m s  b e s t  overa l l .  

W e  a lso  c o m p a r e d  t h e s e  m e t h o d s  to  u s ing  K P C A  to  e x t r a c t  f e a t u r e s  f rom t h e  spec -  

t r u m  ke rne l  as  a p r e - p r o c e s s i n g  s t e p  ( r e su l t s  n o t  s h o w n ) .  T h i s  o n l y  d e t e r i o r a t e d  t h e  

r e su l t s :  t h e  fewer t h e  f e a t u r e s  e x t r a c t e d ,  t h e  worse  t h e  r e su l t s .  N o t e  t h a t  o t h e r  k i n d s  

of  exp l i c i t  f e a t u r e  s e l ec t i on  c a n n o t  b e  used  in  t h i s  p r o b l e m ,  un less  i t  is p o s s i b l e  t o  in te -  

g r a t e  t h e  f e a t u r e  s e l ec t i on  m e t h o d  in to  t h e  c o n s t r u c t i o n  o f  t h e  s p e c t r u m  kerne l ,  as  t h e  

f e a t u r e s  a r e  n e v e r  e x p l i c i t e l y  r e p r e s e n t e d .  N o t e  t h o u g h  t h a t  t h e  i m p r o v e m e n t s  a r e  n o t  
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as large as reported in the other experiments (for example, the toy string kernel experi- 
ment of Section 4.1.1). We believe this is because this application does not suffer from 
the large diagonal problem as much as the other problems. This might explain why the 
RBF kernel outperforms the subpolynomial one. Even without using the subpolynomial 
method, the spectrum kernel is already superior to the Fisher kernel method. Finally, 
note that while these results do not represent the record results on this dataset: in (Liao 
and Noble (2002)), a different kernel (Smith-Waterman pairwise scores) is shown to pro- 
vide further improvements (mean RFP:  0.09, mean ROC: 0.89). The Smith-Waterman 
score technique is closely related to the empirical kernel map, where the (non-positive 
definite) "kernel" is the Smith-Waterman algorithm plus p-value computation. However, 
this method is much slower to compute. It is also possible to choose other parameters 
of the spectrum kernel to improve its results. Future work will continue to investigate 
these kernels. 

5. Conclusion 

It is a difficult problem to construct useful similarity measures for non-vectorial data  
types. Not only do the similarity measures have to be positive definite to be useable 
in an SVM (or, more generally, conditionally positive definite, see e.g. Sch51kopf and 
Smola (2002)), but, as we have explained in the present paper, they should also lead to 
Gram matrices whose diagonal values are not overly large. It can be difficult to satisfy 
both needs simultaneously, a prominent example being the much celebrated (but so far 
not too much used) string kernel. However, the problem is not limited to sophisticated 
kernels. It is common to all situations where the data  are represented as sparse vectors 
and then processed using an algorithm which is based on dot products. 

We have provided a method to deal with this problem. The method's upside is 
that it can improve performance on kernels that naturally generate matrices with large 
diagonals (that give almost orthogonal patterns). Its main downside so far is that  the 
precise role and the choice of the function we apply to reduce the dynamic range has yet 
to be understood, and that its main application, that  of string kernels and other kernels 
for structured objects, have yet to be demonstrated in a real application which truly 
exhibits the large diagonal effect. 
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