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Abstract .  A family of distributions for which an unbiased estimator of a function 
g(0) of a real parameter 0 can attain the second order Bhattacharyya lower bound 
is derived. Indeed; we obtain a necessary and sufficient condition for the attainment 
of the second order Bhattacharyya bound for a family of mixtures of distributions 
which belong to the exponential family. Furthermore, we give an example which 
does not satisfy this condition, but where the Bhattacharyya bound is attainable for 
a non-exponential family of distributions. 

Key words and phrases: Cram~r-Rao bound, exponential family, normal mixture, 
Bessel differential equation. 

1. Introduction 

In the estimation of a function g(O) of a real parameter 0, the Bhattacharyya bounds 
for the variance of an unbiased estimator are known as a generalization of the Cram~r- 
Rao bound (see Zacks (1971), Lehmann and Casella (1998)). A necessary and sufficient 
condition for the attainment of the Cram~r-Rao lower bound is that  the density of the 
unbiased estimator 0 of g(O) be of exponential type (see Wijsman (1973)). If an unbiased 
estimator 0 is a polynomial of degree k of the minimal sufficient statistic in an exponen- 
tial family and if its variance does not attain the Bhattacharyya lower bounds up to the 
( k -  1)-th order, then it attains the k-th order bound (see Fend (1959), Zacks (1971), and 
also Ishii (1976)). However, a family of distributions for which the Bhattacharyya bound 
can be attained seems to be still unknown. In this paper we consider a family of distribu- 
tions for which the second order Bhattacharyya bound becomes sharp. A necessary and 
sufficient condition for the second order Bhattacharyya bound to be sharp is given for 
a family of linear combinations of distributions which belong to the exponential family. 
An example on the normal mixture is also given. Moreover, an example is presented 
where this condition is not satisfied, but the Bhattacharyya bound is attainable in the 
non-exponential family of distributions. 

2. Bhattacharyya inequality 

Suppose that  (A', B) is a sample space and the family of probability distributions 
7 ) = {Po : 0 E O} is dominated with respect to some a-finite measure #, where O is an 
open interval of R 1. Denote by f ( x ,  O) = dPo/dp (0 C O) a probability density function 
(p.d.f.). We consider an estimation problem of the U-estimable function g(O), i.e. the 
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function g(O) for which its unbiased estimator with a finite variance exists, based on a 
sample X. 

We consider the Bhattacharyya inequality under the following regularity conditions 
(A1) to (A4). 

(A1) For almost all x [#], there exist (Oi/O0i)f(x,O) for i = 1 , . . . , k .  
(A2) For i = 1 , . . . , k ,  there exist B-measurable functions M~(x) > 0 such that 

I(Oi/OOi)f(x, O)l <_ Mi(x) for all 0 e O, and f Mi(x)d#(x) < co. 
(A3) f !((O~/O0~)f(x, O)(OY/OOJ)f(x, O))/f(x, O)l@(x) < cr for i , j  = 1 , . . . ,  k and 

for all 0 E O. 
(A4) For almost all x [it] and for all 0 E O, f ( x ,  O) > 0. 

THEOREM 2.1. (Bhattacharyya (1946), Zacks (1971)) Suppose that the conditions 
(A1) to (A4) hold. Assume that g(O) is a U-estimable function which is k-times differen- 
tiable over O. Let g(O) = t(g(i)(O),. . . ,  g(k)(O)), where g(i)(O) is the i-th order derivative 
of g(O). Let ~(X) be an unbiased estimator of g(O) having a finite variance, and assume 
that, for i = 1 , . . . ,  k, there exists a function Ni(x) such that I~(x) . (Oi/OOi)f(x, O)l <_ 
Ni(x) for all 0 e O, and f Ni(x)d#(x) < oc. Furthermore, let I(0) be a k x k non- 
negative definite matrix with elements 

[ o v ( x ,  o)/oo ~ o~ f ( x ,  o)/oo5] 
I i j ( o ) = E o { -]-(-~ -~) . f ( x ,  o ) J ' 

Then, if I(0) is non-singular over O, 

(2.1) Var0(O(X)) _> tg(O)I(O)-lg(O) =: Bk(O). 

And the equality holds in (2.1) if and only if 

k _ ,.,O~f(x,O)lO0 ~ 
(2.2) O ( x ) -  g(O)= E aiw) ~-~,g a.e. x [it] 

i=1  

for all 0 E O, where 

al(O)' 

ak(O), 

r176  

~_~ I ( 0 )  - 1  " �9 

\g(k)(o)] 

( i , j  = 1 , . . . , k ) .  

For a proof, we refer the reader to Bhattacharyya (1946) and Zacks (1971). The 
lower bound Bk(0) in (2.1) is called the k-th order Bhattacharyya (lower) bound�9 Note 
that B1 (0) is consistent with the Cram@r-Rao lower bound. 

3. On the attainment of the Bhattacharyya bound 

In the previous section, we stated the necessary and sufficient condition for an 
unbiased estimator to attain the Bhattacharyya lower bound, under some regularity 
conditions. The problem whether the Bhattacharyya bounds become sharp as k ~ r 
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was investigated for some one-parameter cases by Blight and Rao (1974). Since (2.2) is 
a linear k-th order differential equation, its general solution is of the form 

k 
(3.1) f (x,  0) : E Ai(x)fi(x, 0), 

i=1 

where fi(x,O) (i = 1,. . .  ,k) are k linearly independent solutions of (2.2), and Ai(.) 
(i = 1 , . . . , k )  axe arbitrary functions. Next, we consider the case when k = 2 and 
a2(0) # 0 for all 0 e O. Let f l (x ,  0) be a particular solution of (2.2), and define 

Since 

f 2 ( x , O ) : = f l ( X , O ) f  1 f?(x,O) exp 

~-~f2(x,O) _ ~---~fl(x,O) 
f2(x ,@ fl(X,O) 

02 02 
002f2(x,O) _ - -~f l (x ,O) 

f2(x,O) :1(x,O) 
it follows that  

I2(x,0) 
a1(0) f2(x,0) 

+ 

a1(0) 

1 { fal(O)dO" 
fl(X,O)f2(x,O) exp - a2(0) J '  

1 al(O) e x p { _ f a l ( O )  } 
f l (x ,  O)f2(x, 0) a2(0) a - - ~  dO ' 

0 2 

+a2(0) 002f2(z'o) 
A(x,O) 

--~fl(X,O) 

--ai(0) f1(x,O) 
= -.(o). 

0 2 
002 f l  (X, 0) 

+ a2(0) f i  (x, 0) 

Because the Wronskian of f l  (x, 0) and f2(x, 0) is 

fl (X, 0) f2 (X, 0) 
W(fl'f2):= ~_~fl(x,O) ~of2(x,O) exp{- f al(O)d'~] = W : ~  

we see that  f , (x ,  0) and f2(x,0) are linearly independent,  hence {f l ,  f2} forms a funda- 
mental  system of solutions. By the theory of second order linear differential equation, it 
is well known that  the general solution of (2.2) is given by 

f 1 { fal(') } - - d O  dO. f(x,O) = Al(x)fl(X,O) + A2(x)fl(X,O) f2(x,O ) exp - a2(0) 

Note that,  even when k = 2, for general functions al (0) and a2(0), the solutions to (2.2) 
can not be expressed by means of elementary functions. 

THEOREM 3.1. Suppose that the conditions (A1) to (A4) hold. Assume that 
#({x E X[~(x) = r}) = 0 f o r  all r E R 1. Let k = 2 and a2(O) # 0 f o r  all O E O. 
Then the solution of (2.2) is expressed by a linear combination of distributions from the 
exponential family if and only if the following (i) and (ii) hold. 
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(i) There are a function t(x) and constants Co, Ca and C2 such that C2 has the 
same sign as a2(O), and [~(x) is of the form 

O(x) = C2t2(x) q- Cat(X) -4- Co. 

(ii) For Co, C1 and C2 given in (i), g(O) has the form 

a~(O) al(O)a~2(O) a~(O) a~(O) 3a~2(0) C12 
g(O) -- 4a2(0) 2a2(0) + T T + 16a2(0----) + Co - 4--0-2"~" 

PROOF. Necessity. Let 

f (x, O) := exp{ t (x)r  ( O) + r 

be a particular solution of (2.2). Then we have 

-~f(x,O) 
f (x ,  o) - t (x)r + r  

02 
002 f(x,  O) 

f ( x ,  O) -- t(x)r + r + (t(x)r + r 2. 

By substituting into (2.2), we obtain 

~(x) - 9(0) = t2(x)a2(O)r 
a It 0 + t(x){aa(O)r + 2(0)r 1 ( ) q'- 2a2(0)r162 

+ a1(0)r + a2 (0)r + a2(0)r 2 (0). 

Then ~(x) can be expressed as ~(x) -- C2t2(x) + Cat(x) d- Co, where 

(3.2) C2 := a2(0)r 
a 0 tt (3.3) Ca :----- a1(0)r + 2( )~31 (0) -4- 2a2(O)r162 

a o " (o)~,~2(o) + g(O). (3.4) Co := aa(O)~b~2(O) + 2( )~b2 (0) + a2 

Note that Co, C1 and C2 are constants, since {t2(x),t(x),  1} is linearly independent. 
From (3.2) and (3.3) we deduce that 

: C2 ~ 1/2 
r = + \ a - - D 5  ) , 

consequently (3.4)implies (ii). 
Sufficiency. Assume that (i) and (ii) hold. Let 

Ca~:(O) := + a - ~  dO, 

f+(x,  O):= exp{t(x)r + r 

al(0) at2(O) 

2a~(O) 4a2(0)' 

1/2 
1 : al(O ) dO 1 [ ar2(O) d# 

dO- ~ J a2(O)-- + ~ J a2(O)--' 
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where + and - signs should be read consistently. By computation,  

~'~-'~f~(x,O) ( C  2 )1/2 C1(C2 )1/2 al(O) 
f• -- + a - ~  t(x) • -~2 a - ~  2a2(0) 

02 00 ~f• { C1 ( c2 ~ l /2a l (O)} t (x )  

a~(0) 

4a2(0)' 

al (O)a'2 (0) C 2 a' 1 (0) a'~ (0) 
+ 4a2(0) + 4C2a2(0) 2a2(0~ + 4a2(0-----) 

a2(0 ) 3a~2(0) Clal(0 ) f 62 ~1/2 
+ 4a2(e---  16a (e) T 2C2a2(e) ' 

which implies that  f+(x,  t?) and f_ (x, 0) are solutions of (2.2). The Wronskian of f+(x, O) 
and f_ (x, 0) is 

/+(x, e) / _ ( z ,  e) 
w ( y + , y _ )  = o 

~--~f_ (x, 0) (/U 
( 6:2 ~1/2 (2t(x)_~_ 61) = -f+(x,O)f_(x,O) \ a - - ~ ]  ~ # 0 ,  a.e. x [p], 

since C2 ~ 0 and #({x C A'12t(x) + C,/C2 = 0}) = 0. Hence f+(x,O) and f_(x,O) are 
fundamental  solutions of (2.2), and the general solution f(x,  O) is given by (3.1). [3 

Remark 3.1. According to Theorems 2.1 and 3.1, the conditions (i) and (ii) of 
Theorem 3.1 are necessary and sufficient for the at tainment  of the second order Bhat- 
tacharyya bound for a family of mixtures of distributions belonging to the exponential 
family. 

4. Examples 

In this section we give an example on the normal mixture distribution and an ex- 
ample where the condition (ii) of Theorem 3.1 is not satisfied but  the Bhat tacharyya 
bound is attainable in the non-exponential family of distributions. 

Example 4.1. (Normal mixture) Suppose that  X is a random variable according 
to the normal mixture distribution with p.d.f. 

f(x,  O) = pr - O) + qr + 0), 

where r is the p.d.f, of the standard normal distribution N(0, 1), 0 E R 1, p + q = 1 
and 0 < p < 1. Then we have 

ff-ff-~f(x, O) = -Of(x,  O) + xh(x, 0), 

O 2 
~ 2  f(x,  0) = (02 - 1)f(x,  0) + x2f(x, O) - 20xh(x, 0), 
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where 

and, consequently, 

(4.1) 

(4.2) 

(4.3) 

h(x,  O) := p r  - O) - qr + 0), 

f(x,O) - ]0) + -4pq f(x,,O) r162 q-0), 

-ff•f(x,O) 02 
-~f (x ,O)  

f(x, o) r e ,  o) 

--~f(x,O) 

f(x,O) 

= -0(02 1) 30x2 + (302 , ,  h(x,O) h(x,O) 
- - - l ) x y ( x ,  o) + x3 f ( x , o )  

x 

+ 8pqO f(x, O) r - O)r + 0), 
2 

(o 2 1 ) 2 + 2 ( 3 0 2  1)z2 + ~4 4o(o 2 ~, h e ,  O) . . . . .  l)X~ 

- 40x3 f(x, O) 16pq02 f(x, O) r - O)r + 0). 

Let Y be a random variable according to the normal  distr ibution N(O, 1) with mean  0 
and variance 1. Note tha t  - Y  is distr ibuted as N(-O, 1). Then  we get 

Eo[X 2] -- pEo[Y 2] + qEo[Y 2] = 02 + 1, 

Eo IX 4] = pEo [y4] + qEo [y4] = 04 -I- 602 q- 3, 

[xh(X,O)l Eo [ f(--(~,O~] -- pEo [Y] + qEo[Y] = O, 

[x3h(x,~ ] f(X, O) ] = pEo [y3] + qEo [y3] = 03 + 30, 

therefore, by Theorem 2.1, (4.1), (4.2) and (4.3), 

(1- K(O) 2OK(O) ) 
I(0)  = \ 2OK(O) 2(1 - 202K(0 ) )  ' 

where 

K(O) := 4pqEo f(X, O) r  - 0 ) r  + 0) . 

Note tha t  K(O) is finite for all 0 E O. Let g(O) := 02 be an es t imand and O(X) := X 2 - 1. 
Then  Theorem 2.1 implies that  the second order Bha t t acha ryya  lower bound B2(0) is 
given by 

~, -20K(0) 1 - K ( 0 ) ]  =402  +2"  
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On the other hand, letting al(0) = 20, a2(O) = 1, Co = / 3 2 / a  2 - 1, C1 = -2/3/c~ 2 and 
C2 = 1 /a  2 for a r 0, from Theorem 3.1 we see that the variance of the estimator O(X) 
is Var0(~(X)) = 402 + 2. Hence the variance of ~(X) coincides with the second order 
Bhattacharyya lower bound B2(0). Therefore O(X) is a uniformly minimum variance 
unbiased (UMVU) estimator of g(O). Note that ~(X) does not attain the first order 
Bhattacharyya lower bound BI(O) = 402/(1 -K (O ) ) ,  i.e., the Cram~r-Rao lower bound. 

Example 4.2. Let J~ (0) be the x-th Bessel function of the first kind, that is, 

(~)Xn~O (__1) n ( ~ ) 2 n  
Jx(0) = = n ! r (n  + x + 1) 

for x ---- 0, 1, 2 , . . . .  Note that J~(0) is a particular solution of the Bessel differential 
equation 

w(x,o) b-g2w(x,O) 
X 2 - -  0 2 = 0 Jr- 0 2 

~,(x,O) w(x,O) 

(see, e.g. Abramowitz and Stegun (1965)). Let 0o be the smallest positive root of the 
equation Jo(O) : O. For 0 < 0 < 0o, we put 

fJo(O) for x = 0 ,  
f(x,O) :-~_ "h 

[2J2x(O) for x = 1,2, . . . .  

Due to 

(4.4) 
(3O 

2 E J2~(0) = 1 -  Jo(0), 
x = l  

the function f(x, O) is a probability mass function (p.m.f.). Then we have 

II1(0)- J~ 
Jo(O) 

122 (0) - j~,2 (0) 
Jo(O) 

where 
co  

L(O) := E J2~2(0) 
x = l  J2x(O)' 

- -  + 2L(0), I12(0) -- JD(O)JD'(O) + 2M(0), 
Jo(O) 

- -  + 2 N ( 0 ) ,  

l II j;~(O)j;x(O) 
M(9) := E J2x(0) 

x ~ l  

Next, we represent M(0) and N(0) in terms of L(0). Since 

and 

(4.5) 

4x 2 _ 0 2 flJ2x(0) 02 J ~ ( 0 )  

00 

sF_~J2x(O)=o~, 
x = l  

tt 2 J;~ (0) 
N(O) := J2x(O) " 
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we can conclude that  

o~ ( x 2 j~x(O) ) 1 Jl(O) L(O) 
M(O) = E 4 - ~ -  1 OJ2x(O) J2x(O)- 0 2 O 

Taking into account 

(4.6) 
oo 

32 E x4J2x(O) = 04 4. 402, 
x = l  

we obtain, in a similar way as above, 

_ _  ~ L(O) N ( 9 ) -  Jo(9) 4- 4 - - -  
2 02 ' 

which leads us to 

I ( 0 )  = 

Q(9) 2Jo(9) - Q(O) 
go(e) -- do7 I 

2J0(9) - Q(9) Q(9) ] ' 
94(0) 024(9) / 

where 

Q(9) := J~(O) + 2Jo(O)L(9). 

Note that (4.4), (4.5) and (4.6) are quoted from Abramowitz and Stegun ((1965), for- 
mulas 9.1.46 and 9.1.87). We consider the estimating problem of g(9) = 02. Then, it 
follows from (2.1) that  the second order Bhattacharyya lower bound B2(9) is 492. Since 
the estimator ~(X) -- 4X 2 is unbiased for g(9) and Var0(~(X)) = 492, the variance of 
.0(X) coincides with the second order Bhattacharyya lower bound B2(9), hence ~(X) 
is the UMVU estimator of g(0). We remark that  in this case, the p.m.f, f (  x, 0) is not 
expressed as a linear combination of distributions belonging to the exponential family, 
because al (9) = 0, a2(9) = 92 and the condition (ii) of Theorem 3.1 is not satisfied, but 
the estimator ~(X) attains the second order Bhattacharyya lower bound B2(9). 

Remark 4.1. The term of the Bessel function distribution seems to be convention- 
ally used as distributions of a21X14- a2X2, where X1 and X2 are mutually independent 
random variables, each distributed as X 2 with same degree of freedom (McKay (1932), 
Bhattacharyya (1942), and Johnson et al. (1994)). The distribution in this example is 
different from the Bessel function distribution. 
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