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Abstract. A frequently occurring problem is to find a probability vector, p € D,
which minimizes the I-divergence between it and a given probability vector w. This is
referred to as the I-projection of m onto D. Darroch and Ratcliff (1972, Ann. Math.
Statist., 43, 1470-1480) gave an algorithm when D is defined by some linear equalities
and in this paper, for simplicity of exposition, we propose an iterative procedure when
D is defined by some linear inequalities. We also discuss the relationship between
I-projection and the maximum likelihood estimation for multinomial distribution.
All of the results can be applied to isotonic cone.
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1. Introduction

Let p = (p1,...,pk)T and ¢ = (g1,...,qx)T be the probability vectors and I-
divergence of p with respect to ¢, also called the Kullback-Liebler information number,
cross-entropy between p and g, information for discrimination, entropy of p relative to
g, is given by

k
I(p|q) = Zpi log(pi/q:)-

It is well known that I(p | q) has the following results. (See Kullback (1967), Kemperman
(1969) and Csiszar (1967).)

LEMMA 1.1. Forp,q € P (P denote the set of probability vector), then

k
(1.1) Iplg) >0, [2(p|g)]/*> Z i — al-

Thus it is heuristically reasonable to think of I(p | ¢) as representing a “distance”

between p and g. If we interpret I(p | q) as distance, then the I-projection of the
probability vector « onto a set D C P is defined as # € D such that

(1.2) Iz | ) =gleig1(p]7r).

251



252 WEI GAO AND NING-ZHONG SHI

Minimization problems of the forms (1.2) play a key role in the information theory
(Kullback (1959), Good (1963)) and also in statistics for the maximum likelihood esti-
mation (Csiszar (1967, 1975), Agresti (1984), Lemke and Dykstra (1984) and Dykstra
(1985)).

Darroch and Ratcliff (1972) considered the problem of I-projection when p € D

satisfies
k
Zaijpizhj, j=1,...,t
i=1

where a;;(i = 1,...,k;5 = 1,...,t) and h;(j = 1,...,t) are given constants. They
proposed an algorithm for problem (1.2) and also discussed the relationship between
(1.2) and the maximum likelihood estimation of p for multinomial distribution when p
belongs to the log-linear models, that is,

t
(1.3) i = )\H)\jij
Jj=1

where A and A;(j =1,...,t) are parameters.

When D is defined by some linear inequalities, then for given =, the I-projection
of m onto D is important not only in information theory but also in statistics for the
maximum likelihood estimation which will be described in Section 3. For example, for
some given s, p € D is defined by

1 s k s k
G Y < Y DD wpi=3 ks Y awpi=hy
j=1i=1 j=1 j=1i=1 j=1 i=1
forl=1,...,8s—1Lu=s+1,...,¢t
The relationship between the form (1.3) and the constraints (1.4) may be given in

LEMMA 1.2. If the probability vector p satisfying

(1.5) pi=mA ]2, A< <A,
j=1
!k ’ I s k
(1“6) z a'ijf)i < Z hj; Zacjpz th Zazupz = hu,
Jj=1i=1 j=1 j=11i=1
(1.7) Zza,,pz log \; = Zh log A,
7=11=1

exists (I =1,...,8, u=s+1,...,t), then it minimizes I(p | w) subject to (1.4) and is
unique in doing so.

PROOF. Let p be any probability vector satisfying (1.4), H; = Z{:l h and G; =
{zl Zf:l a;p; for 7 =1,...,¢t, then

G1 SH17~'~7GS—1 SHs_l,GSZHs,...,Gt =Ht
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By the Abel’s transformation, for 1 < --- < z;, one has

s—1
Zh iz — ZZa”p,mJ = Z(Hj - G5)(xi — zip1) <0.
j=11i=1 j=1
So
otk ) ot .
I(p|m) =logA+> > aijp;logh;j =log A+ Y hjlogh;
j—l i=1 j=1
< log/\+ ZZ“ZJM log)\ = sz IOg(pz/Wz)
j=1:i=1

and I(p | ) — I(p | ) > Y0, ps Jog(ps/mi) — Sk, pilog(pi/m:) = I(p|p) > 0.

Suppose that there exist two probability vector § and p satisfying (1.5)—(1.7). From
the above proof, we have I(p | n) = I(p | 7) and I(p | n) — I(p | ) = I(p | p) = 0 which
implies p = p by Lemma 1.1.

Remark 1. By similar proof, (1.6) and (1.7) are equivalent to

(16" Zzampzug > zhgug, Zampz =huy << s,

7j=11i=1
for u=s+1,...,¢

v ok v
(1.7/) Zza«éjz_)i = Z}lj, /_\r—l < /_\r =...= )_\v < j‘v+1-
j=r

j=r i=1

LemMMmA 1.3. (1.5), (1.6) and (1.7) can be expressed as

_ by
(1.8) Pi:WiHMj’, B1 < S s
i=1
Ik l sk s k
(1.9) Z Z bijpi < Zgj’ bijp: = Zgﬁ Z biuDi = gu,
j=11=1 =1 j=1li=1 j=1 i=1
s k
(1.10) Z ijDi log pj = Z g;logp;
Jj=11i=1

(Il=1,...,s—1Lu=s,...,c) whereb; >0 (i =1,...,k; j = 1,...,¢), E;zlbijzl,
c
and ) =19 = L.

PROOF. Define
bij =e(a; +u), g;=elhj+u), for i=1,...k;j=1,...,¢t

where u > 0, e > 0 are chosen to make
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If Z;Zl bi; = 1 for Vi, define ¢ = t. Otherwise define ¢ =t + 1 and let

t
biczl_zbij; gczl—zgj.
=1

With these definitions of {b;;;¢ =1,...,k;and j=1,...,c} and of {g;;5 =1,...,c¢}, it
is clear that the constraints (1.9) are equivalent to (1.6).
To express (1.5) into the form (1.8), define

ujzj\g-l/e)é, j=1,...,t and jp.=§

where § = A/ H;:l 5\}‘. Also it is obvious that the constraint (1.10) is equivalent to (1.7).

In Section 2, we propose an algorithm to the problem for (1.2) under constraints
(1.4). Section 3 is concerned with maximum likelihood estimation.

2. The proposed algorithm

By Lemma 1.3, without loss of generality, we suppose that a;; (1 = 1,...,k; j =
1,...,t) satisfy

t
Qij Z 0, Zaij =1.
j=1
Let
C={zxe Rz <zy<---<u4}

and for the weight w = (w1, ..., ws)’, denote the projection of z onto C by & = P, (x | C),
which satisfies

8
|z — z||2 = { min Z(a:] — p;)*w; subjectto pe€C
=1

It can be easily obtained (see Robertson et al. (1988)).
Algorithm for (1.2) under (1.4)

Let the initialpgo) =7; and /\go) =l1lfori=1,...,kand j=1,...,s.
step(n):

t

3 k Qi
™ =" TIM/ASDym T] (hu/ Zampf-”_”)
j=1 i=1

u=s+1

where A = Pyoy(UCD | 0), v = T app" Y, and UMY =
A ffr D),
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Remark 2. From the above algorithm, we can obtain the following results:

(2.1) Am—mﬁuWWfH hﬁugymw],
j=1

u=s+1 Li=1 =1

(22) A =...=x™  then A =.. /\(")—Zh A ”/Zza”p(‘" .

j=r i=1

8
23) > mAI M = Z Z aip" V.
=1

7j=11i=1

THEOREM 2.1. If h; (j = 1,...,t) are positive, then {p™} given in the above
proposed algorithm converges to the optimal solution of (1.2) under (1.4).

The proof is given in the Appendix.
Consider m sets of constraints each of the form (1.4). Let the r-th set be written

H Sr k
CTRNED 3 DE LIPS DD 35 S 3 TN I o
j=1 i=1

=1 1i=1 Jj=1 Jg=11i=1

forl=1,...,8, -1, u=s.+1,...,t; 7 =1,...,m. Then we have the following lemma.

LEMMA 2.1. If the probability vector p satisfying

m i,
— — {r) <(r S(r
25  p=mA ][R, X7 < <A,

r=1j=1
Sr k
SUID 9 STLE IS 9 STUES SIS oI LR
j=11i=1 j=11i=1 j=1 =1
(2.7 ZZa D; log 5\5.'") = Z hy) log /_\y)
Jj=1l1i=1 j=1
exists (1 = 1,...,8y — 1, u = s, +1,...,t;; 7 = 1,...,m), then p minimize I(p | 7)

subject to (2.4) and is unique.
PrOOF. The proof is similar to Lemma 1.2.
Similar to Lemma 1.3, we have the following lemma.

LEMMA 2.2. (2.5), (2.6) and (2.7) can be expressed as

l
1.

m
_ )p(T
28 m=m]IIIW7PS, W7 < <ul?,

r=1j=1
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(2.9) Zzbf;)p, Z ) ZZbg)@ ig}r), Zb(”- g,
=1

j=1i=1 j=11i=1
(2.10) Zme Di log,u Zgj(r) log,u(r)
Jj=11i=1 i=1
where

bg) >0, Z b(T)

Thus by Lemma 2.2, without loss of generality, we suppose
(2.11) all) >0, Za"") =1

Let
={zxeRm;2;<--- <1z}

and we proposed the following algorithm.

Algorithm for (1.2) under (2.4)
Let the 1n1tlalp£ ) = 7; and )\(OT) =l1lfori=1,....kj=1,...,8r=1,...,m.
step(n, 1):
81 ) i k 5;)
n,1 -1, 1 ~1,1) ot 1 1 1,
p = b TEASD -ty T [hg 1S ap ""} :
j=1 j=s1+1 i=1
step(n, r):
. o™
Sr - L]
pgn ) p(n,r_l) H(A§n,r)/A§n—1,r))a£j) H [h(r)/ Z ag-)pgn r— 1)]
j=1 j=sr+1

for r = 2,...,m and where X(»") = P .. ,(U®™D | C,), wl("’r_l) =

Zf ) l(lr)pl(n = 1) , and Ul(n,r—l) — hgr))\l(n—l,r) (l —-1,.. -’ST).

THEOREM 2.2. If hg.r) (j = 1,...,8; 7 = 1,...,m) are positive, then {p(®")}
(r =1,...,m) given in the above algorithm converge to the optimal solution of (1.2)
under (2.4).

ProOOF. The proof is similar to Theorem 2.1.

We have discussed the I-projection as p restricted by the form of (1.4), also can
consider other form restrictions and similar results will be obtained. For example, p € D
satisfies

k k T
(2.12) (Zailpi —hl,...,zaitpi —ht> eCc”
=1 =1

where C* is the duality of C' which is a isotonic cone (see Robertson et al. (1988)).
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3. Application to maximum likelihood estimation

For 2 x 2 x k contingency table, let n;;; be the observation and p;j be the corre-
sponding probability, 7,7 =1,2; I =1,...,k. Then the log-likelihood function is

ko2 2
L(p) = nzz > bijilogpiji + ¢

1=1 i=1 j=1

where n = Zf 1 Zf 1 Z? 1 Mijls Piji = nyji/n and ¢ a constant.
Let ¢y = (p1upeat)/(pr2ip211) (I = 1,..., k), which are usually called the local odds
ratios. The maximum likelihood estlmatlon of p;ji is usually considered under

(3.1) ¢1 < < g

See Lemke and Dykstra (1984), McDonald and Diamond (1983, 1990), and Agresti and
Coull (1996).

LeEMMA 3.1. Let p be the MLE of p under (3.1), then p satisfies pr+1 = Dy+ti
(=1,....k).

PROOF. Suppose that the conclusion is not true and let 8; = py4i/P++1, pml
Bibiji (3,7 =1,2;1=1,...,k). Then

2 2 k
EZZﬁiﬂ logp;; = Z

2 k
> bijilogpiji+ Y Pryilog By

WE

=1 i=1 j=1 =1 i=1 j=1 =1
kE 2 2 k

= Z 3 hijilog i+ > byrilog(Pyi/Pr1)
=1 i=1 j=1 =1

M=
M-
e

N
i
—
-
Il
—_
LrY
I
—

Dijilog Piji
which is contradictory to the fact that 5 is MLE and thus p44+; = P4y, [ =1,...,k.

We only need to consider p satisfying p;+; = p4+1 (I = 1,...,k), thus p can be
expressed as the following saturated model:

(32) logpiu = A + /\(r) + )‘g(l:)’ log pro1 = A + )\(r) + )\g),
(3.3) log porr = Ar + /\(T) + ’\11 ,  logpas =\ + )\(T) + ,\(C) + 6

where )\g) = —)\(T), /\gi) = )\gi), and 8, =log¢; forl=1,... k.
LeMMA 3.2. {pii} is the MLE of {pii} under (3.1) if and only if
(34)  piu+ Pt = Pevt + Piats Prji + Doji = Prju + Pojt, 4,5 =1,2;1=1,...,k,

s s k k
(3.5) Zﬁzm SZﬁwh Zﬁ22l=Zﬁ22l, s=1,...,k—1,
=1 =1 =1

N
|
A

k
(36) Y Paslogd; =D pumjlogd;, 1< <

j=1 j=1
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where ¢; = (Pruban)/ (PraiPr)-

PROOF. Suppose that p satisfies (3.4)—-(3.6), and then for p satisfying (3.1)

k
> “(pr11log pru + Prac log prar + Paui log part + Paar log paat)
=1

k
= "[(Prs — Poz) log prut + (Pra1 + Pazt) log pray
=

+ (P11 + P221) log pa1s + Pozi log 1]

M?r

(P11 — P221) log prui + (Pr21 + Pazt) log prog

o~

=1
+ (D211 + D2a2r) log pa1t + Pa2i log @)

k
<> (Pr11log pru + Przi log prat + Pous log Paut + Pazi 10g p22t)
=1

_ Eo2 2 4

where ¢; = (p1upazi)/(praip21). For p = p, from the above, 37, 1 > 5 D701 Dijk -
_ ko2 _ _

108 Pijk = Y=y 2oi1 2og1 Dik log Pijk and thus

k2 2

k 2 2 k 2 2
DN hikloghie — D> > bigklogpije = Y > Y Pijk log(Bij/pijk) > 0.

I=1 i=1 j=1 =1 i=1 j=1 I=1 i=1 j=1

Suppose that 7 is the MLE of p under (3.1) and then p can be expressed as the form
of (3.2) and (3.3). By Kuhn-Tucker Conditions, it may be easily to prove (3.4)-(3.6).
This prove the necessity.

By Lemma 3.1, the MLE of p under (3.1) can be expressed as (3.2) and (3.3), and
thus by Lemmas 3.2 and 2.1, the MLE is equivalent to the I-projection for (1,...,1)T
onto

! l
D= {P;Pljl + poji = Pujt + Poju, Pirt + Pizt = Pint + Piat, D P22y < D Pazj
j=1 J=1

k k
ZPQQJ‘ = ZﬁQQj,i,j = 1,2;[ = ].,...,k— 1}
7=1 j=1
which can be obtained by the proposed algorithm given in Section 2.
Algorithm

Letp(os) =1 and al(o) =1lfori,j=1,2andl=1,...,k.
Step(n 1):

1 Diti 13 .
pgﬁ):mg‘z )7 7‘7.]:1a2;l_1a"'7k
Piy
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where piyt = i+ izt and pl; Y = p{ Y 4+ pGT fori = 1,2 and 1= 1, k.
Step(n, 2):
2 Diji 1 ..
pz(‘JT'll): (n,J1) ffz )’ Lji=4L21=1,... )k
+5l
where po = piji+ o and p77) = pii") +pii!) for j=1,2end =1, k.
Step(n, 3):

P> (i) = (1,1),(1,2), @ 1l =1,k
p(@lﬁ) ={ o a(™
Y p’ij,{’ ('ri—-l) (1’5.7) = (2a2))l = 17"'7k
a
s (n1) o D)
where (a&”), . ,agcn))T is the isotonic projection of (£ 22:(‘:},2) I - 22;:}_“2) )T with the
221 22k

weight (pgg’f) yeens pgg}f))T onto C,
C={zecRF:z; < - <z}
4. Discussions

The proposed algorithm in Section 2 generalizes the algorithm given by Darroch and
Ratcliff (1972). For the application given in Section 4, we have made some computations
and p(™ will be convergent at about n = 50 once pyj; = ni/n (5,5 =1,2;1=1,...,k)
are not very small. When s is equal to 1, it degenerates into the case given by Darroch
and Ratcliff. When s is equal to ¢, p € D satisfying

t

{ I t
Dopi<d hiy Dop=) k=1
= j=1 =1

i=1 j=1

(I =1,...,t) is usually defined as p stochastically larger than h and it is a very important
relationship between probability vectors (see Robertson et al. (1988)).
For pe€ D, let y; = Zle a;;pi —hj for j=1,...,t and

t

C= w;vzwjijO, for any y,7>0
j=1

If C is a convex cone induced by some partial ordering in R, then the proposed algorithm
given in Section 2 is applicable.
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Appendix

LEMMA A.l. Forx € R® and the weight w, % is the projection of x onto C if and
only if

iecC,

8

D (@i — £i)diw; =0,

i=1

S
Z(wi - Z)ysw; <0,  for VyeC.

ProOOF. See Theorem 1.3.2 of Robertson et al. ((1988), p. 17).
Lemva A2, Y5 S aip™ DAY < 58 by

PrROOF. Lety; = —1/)\2"—1) and y = (y1,.-.,Ys) € C. Then by Lemma A.1, we
have

)
ST w{m AR ™ - Ay (172" <o
Jj=1

which implies the lemma.
Lemma A3, SF p{™ <1,

PRrROOF.

t aij
Zp(n) Zp(" 1) H(,\(")//\(n 1))(1,J H (h /Zawp(" 1))

i=1 j=s+1 =1

<3 Sl V0 T (h DI )
Jj=s+1
< Zh + Z hy = 1.

Jj=s+1

Lowia Ad S alog [Ty (N /AT 2 (S5, ) log(X5oy hs/ ey -
Zf, ampz ))7 where q satisfies ELl a;jq; =hj forj=1,...,s

PROOF.
k s s k
> gilog H(Agn)/A?-l)a” =" aia 10g()\§'n)/)\§'n“1))
i=1 j=1 j—l i=1

,Zh log(AL™ /ALY

].—
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Y

8 S S
> hi|log{ S hjxg."‘” /NS hy
j=1 j=1 j=1

I

- (Jz::l hj) log (ZZaUpfn 1)/Zh

=1 j=1

:Zh log Zh /ZZa”p(" b

=1 14i=1

LemMma A5. {I{q|p™} is nonincreasing in n and bounded below by zero.

PRroOF.

I(q|p™) = I(q | pV)

k s t aij
a Z gi log {H()‘gn)/)‘_gn—l))a“ H (h /Z azyp(n 1)> }
=1 7j=1

j=8+1

k s
= 1la1 2" = Fatos [T

- Z Z a;54; log (h /Za”p(n 1))

i=1 j=s+1

s 23 h.:
I(g|p™) = | D by | log (T
Jj=1 ZJ 122 1 5P 5 )

t
Y jmat1 b
= 2 hy | log Sy
Z] s+12

j=s+1 i=1 %ijP;
I(g|p™")

IA

IA

by Lemma A .4.

Lemva A6, Ifh; (j =1,...,8) are positive, then limn_.co AT /A = 1, for
j=1,...,s :

PRrROOF. Since /\gn) / )\5»"_1) are uniformly bounded by (2.3), for {n,;} C {n} we have
lim; o )\gnt)/)ém‘l) =u;forj=1,...,s.

Jim Z(h log H (A" Ay th log Hu“" = i:hj log u;
Jj=1 j=1
> —log (XS: hj/u])
j=1
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s
=1 A1) /5 (me)
= — Jlim log | Y hiA™ /A

j=1
k s
= Jlimlog | 3> aip™ V| =0
— OO0
i=1 j=1

which implies 43 =--- =us = 1.

Remark A. From Lemma A.5, A.6 and (1.1), we have the following results:

k
(A1) ,}ngoZaijPE"‘“ =h;, for j=s+1,...,t,

i=1

s k s
(A2) Tim >N ap* Y =3y,
j=1

=1 i=1
~
(A.3) lim S P =1,
j=1
(A-4) im (™ - p{"™V) = 0.

PrOOF OF THEOREM 2.1. {p(™} is uniformly bounded, so for any subsequence,
there exists {n,} which satisfies lim,_, pgnr) =p} fori=1,...,k. From (2.1), p* can
be expressed into p} = 7w} p* H;zl(/\;-)‘“f, i =1,...,k and by (A.1), (A.2), (A.3) and
Lemma 1.2, we only need to prove p* satisfying (1.6) and (1.7) or (1.6') and (1.7").

Suppose there exists 1 = fo < f1 < --- < fi_1 < fi = s, which satisfies
(A.5) A= =AM} <Af 1= =A%, < <A 4 == A}

From the algorithm given in Section 2 and (A.5), for sufficient large n,., (/\5,:'_’3 FRTERS

A%"))’ is the solution of

fi
. ., -1 . .
min E wg(-" )(/\gn )hj/w](" ) 1) subject to pg 41 <o < py
j=fica+1

where wj(."’) = Ele aijpz("’—l), Thus for fi_1 +1 <m < f;, by Lemma A.1 we have

m k m k m
> dagpi=lim 37 a3k,

j=fi—1+1 =1 j=fi-1+li=1 J=fi1+1
$ 4 (n=1) /5 ()
: ny,—1 -
D hi=lim D ROV
j=fi—1+1 F=fr1+1
St k ( y Tt k
. r—1 «
= Hm Do 2w = 3w
J=ft-1+1 i=1 j=fi—1+1i=1

Thus p* satisfies (1.6")and (1.7) and By Lemma 1.2 and (A.4) this implies the theorem.
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