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Abstract. Let {Xi;t € Z} be a strictly stationary nonlinear process of the form
Xi = &1 + 252, Wre, where Wy can be written as a function gr(gt—1,...,€t-r-q),
{e¢;t € Z} is a sequence of independent and identically distributed (i.i.d.) random
variables with Ele1|? < oo for some v > 0 and ¢ > 0 is a fixed integer. Under
certain mild regularity conditions on g, and {¢,} we then show that X; has a density
function f and that the standard kernel type estimator fn(z) based on a realization
{X1,...,Xr} from {X:} is, asymptotically, normal and converges a.s. to f(z) as
n — 0.

Key words and phrases: Nonlinear process, kernel type density estimators, bilinear
process, central limit theorem, almost sure convergence.

1. Introduction

Let Xi,...,X, be a set of identically distributed random variables (r.v.) with a
common distribution function (d.f.) F and let us assume that F' admits a probability
density (p.d.) f at some point z. If f(z) is not known, it can be estimated by using
kernel type density estimators j";, Several important properties of these estimators have
been discussed in Devroy (1987), Ibragimov and Khasminskii (1982), Parzen (1962),
Rosenblatt (1956, 1971), and Prakasa Rao (1983) among others for the case where the
r.v.’s are mutually independent. Some attempts have been made to extend these results
to sequences of dependent variables—as examples, we may mention the works which
appear in Ahmad (1977), Bradley (1983), Delacroix (1977), Gyorfi et al. (1989), Masry
(1983), Robinson (1983), and Rosenblatt (1970). Chanda (1983, 1995) Hall and Hart
(1990), Hallin and Tran (1996), and Tran (1992) have established asymptotic normality
and strong consistency for fn in the case where the underlying process is linear.

The aim of the present article is to extend these results for the X;’s when they form
a realization from a class of nonlinear processes which can be decomposed as follows,

(1.1) X :5t+Zth

r=1

where {&;;t € Z} is an innovation process consisting of i.i.d. r.v.’s, Wrt can be written
as a function g.(e¢—1,...,64—r—q) Where ¢ is a fixed integer > 0, and the convergence
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of the infinite sum on the right side of (1.1) is in some probabilistic sense. As we
shall see later on that the ARMA and (most) of the bilinear and Volterra processes
belong to the nonlinear type (1.1). The primary use of density estimation is possibly its
application to discriminate analysis as applied to stationary processes. In such cases, it
will be interesting if these estimates behave in a manner similar to those based on i.i.d.
observations.

Although the present analysis deals with the one dimensional p.d. f, one can rou-
tinely (albeit with more complicated technical details) extend these details to the esti-
mation of higher dimensional p.d.’s.

2. Probability density estimator and its asymptotic distribution

We define the kernel estimator f,(z) by

(2.1) Fa(z) =n71Y " ¢(z — Xisra),

t=1

where {r,} is a sequence of real numbers such that r, — 0, but nr, — oo as n — oo,
d(y;rn) = r1d(y/rn)(—00 < y < 00), and ¢ is a nonnegative Borel functlon Assume
the followmg conditions to hold.

(A) (i) For every real y, ¢(y) < M where M here and elsewhere in this article is
used as a generic symbol which denotes a finite positive constant independent of n, but
may vary from situation to situation, (ii) [*_¢(y)dy < oo, (iii) y¢(y) — 0 as y — oo,

and (iv) for every real a, [*_|¢(y + a) — ¢(y)|dy < M]al.
(B) If . denotes the characteristic function (ch.f.) of £; then

/|wmwmmw (s = 0,1).

(C) E|Wrt|Y < MhY for some vy > 0 and some h, > 0 (1 <7 < o0) such that if
we set H, := (3.0, h2)}/" whenever 0 < v < 1 and H, := 3.2 h, (r > 1)if y > 1,
then > 2 HY ™ — 0(v1) as v — oo.

Our main purpose in this section is to prove the following

THEOREM 2.1. Let conditions (A), (B), (C) and relation (1.1) hold, with {r,}
chosen as above. Then f(z) < M for every real x and as n — oo

(22) L((nra)V?(fa = f)) = N(0,0%),
where fo = fu(z), fa = fu(z) = B((z ~ X137m)) and o = f(z) [72, *(v)dy

The interesting aspect of (1.1) is that the entire class of ARMA processes and most
of the bilinear and Volterra processes belong to the type (1.1), and condition (C) is not

hard to check in any of these situations. We consider below some specific cases.

Ezxample 1. Let {X.} be a linear process defined by

(oo}
(23) Xt = Zgr‘ft—r
r=0
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where {e;} is a sequence of i.i.d. random variables (r.v.’s), with Ele;|? < oo for some
v > 0 and {g,} is a sequence of real numbers such that 3 oo r|g.|"/(?*7) = O(v~1) as
v — oo. We can then set h,. = |g-| > 0, (g0 = 1) and condition (C) will hold. If the
process (2.3) is an ARMA process then |g,| < Mp" for some p € (0,1) and condition
(C) will easily hold.

Example 2. Let {X,} be a bilinear process defined by

s £ P Q
(2.4) Xi=ei+ D e+ > ¢iXeit+ Y BiyXeierj,
J=1 i=1

i=1 j=1

where ¢1,...,¢¢, 01,...,8, and B;; (1 < i < P, 1< j < Q) are unknown parameters
and ¢, P, (), s are known integers > 0. Set p = max(¢, P), ¢ = max(s, Q).
We can formally write (2.4) as an infinite sum

o<
(2.5) X, =Oc+» Vy

r=1

where V4 = TIL_{ (A + Y1 Bjct—u—j)Oci_r,

..__¢1 __¢2 _¢p—1 _¢p-
7=01,0,..,07, A= 1 o --. 0 0
prp N . . ’
L 0 0 1 0 ]
Brj Baj -+ Bpj Loy 0,
B 000 = 00 - ---0
pxpy ] 1<i<q, px(@+D| .
0 0 --- 0 00 .- 0

et = (€45 r6t-q) 7, and X; = (X4, .., X¢—p+1)T. 1t is understood that ¢; = 0 if i > ¢,
0; =0, if j > q and §;; = 0 whenever i > P or j > Q. It is easy to see then that X; as
defined in (2.4) can be represented by

[eo]
(26) Xt =&+ Z Wrt

r=1

where Wi, = 2%, 0je4—j + nf Vie and W,y = n*V,, (r > 2). The conditions under
which the right side of (2.6) is a.s. convergent are discussed in Chanda (1991) and Liu
and Brockwell (1988). Note that W;.; as defined in (2.6) is a function of &,_1,...,E¢—pq-.
Also if we assume that v, = Ele1|?* < 0o, and X := po + (ZLI 6,~)1/;,£2k" <1
(po, 81, . .,04 have been defined in (2.4) (Chanda (1991))), then E|W,,|¥ < MA™* which

immediately establishes the validity of condition (C) with h, = A".
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In passing, we note that under certain regularity conditions the process represented
by (2.6) satisfies the Markovian property and is strongly mixing (see Pham (1986)).

Example 3. Let {X,} be a Volterra process defined by

) 00
Xe =&+ E grét—r + E Gri,ra€t—r1€t—r2

r=1 ri,ro=1

0o
+-e 4+ E Gri,m2,rg€t—11€t—rg * " " Et—ry

T],...,Tq:]
where {¢;} is an i.i.d. sequence of r.v.’s with Fle1]9” < co. Then we can write k2 =

§=1Zs,j |gu1,m,uj|5(r > 1), where S,; = {(ri,...,r5) : 1 < rp,...,1r; < oo,
max(ry,...,r;)=r}and §=vyify<land 6=1ify> 1.

Then it is easy to see that representation (1.1) obtains and condition (C) holds with
Wrt = z;:l Zsrj gul,.“,u,«et—ul...et-—uj, r 2 1.
The proof of Theorem 2.1 will rest on a few lemmas which we state and prove below.
We first set
(2.7) Y, :=r}/%7,
Te = ¢t — fn
where ¢ :== ¢(x — X¢;ry). Note that both Y; and 7, will depend on n.

LEMMA 2.1. Let the conditions of Theorem 2.1 hold. Then

o0
(2.8) S IE(MYi)| < Mr/04,

v=1

PROOF. Observe that for any integer v > 1 and integers a,b > 1 |[E(r872,,)| <
M(E(¢8%,,) + E(¢%) + E(¢b,,) + 1). Also, if we set Q; = o-algebra generated by
€s, $ < t and write T = X; — &; (so that T} is independent of &) then E(¢5,,|Q) =
[ (@ —y — Tig0;n) fe(¥)dy = r7°F [ @b (w) fo(z — Thyy — row)dw < Mr;5+! where
fe is the p.d. of €1 (because f.(y) < M by condition (B)). Therefore, |[E(t£1{,,)| <
Mr;%T1E¢¢ < Mr2=2=% and hence

(2.9) |B(Y?Y,,)| < Mr2-(atb)/2)
from which we conclude that for every v > 1
(2.10) IE(Y1Y140)| < Mry,.

Now set R = ¢4 +Z£;‘{_2 Wity St = Xt — Ry, for t > g+ 3, where q is as defined in (1.1).
Since Rj1,, involves €144, &y, . ..,€2. Whenever v > g+ 2, it is distributed independently
of X; if v > g+ 2. Consequently for the same values of v,

(2.11) E(niTivo) = E(ri(¢(x — Xiyo;Tn) — fn))
= E(ni(¢(x — Riyy — Si144;7n) — fn))
= E(m(#(x — Riyy — S140;7n) — ¢(x — RiyviTn)))
+ E(Tl(¢(m = Rito; Tn) - fn))
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Again since 7, involves X, X; is independent of Ry, and E(7) = 0, the last term on
the right side of (2.11) vanishes. Now write Jo(r, s) := E(¢(z — €140 — T — 8;75) — (z —
€144 — T;75)) for every real r and s and take expectation of the expression on the right
side of (2.11) over €14, (which is independent of X7). It is then easy to conclude that

(2.12) E(nimiyy) = E(11Jo(R] 1y, S140))-

Since for every real r and s, [Jo(r, s)| = | [ ¢(w)(fe(z—r—s—rrw)— fe(z—T—rpw))dw| <
M|s| and < M (which follows from the fact that | f!(z)| < M for every real z by condition
(B)) and |11| < M1, it follows that for every choice of 7, > 0,

(2.13) |E(riT140)| = [E(T1Jo(R] 4y S140))]
< M(nn +r;1Qn)7

where Q@ = P(|S140| > nn) < MH,_ /0] whenever v > q + 2. Therefore, we conclude
by choosing 7, = 1/(1-"'Y)H7/(1+’7) in (2.12) that for every v > ¢ + 2,

(2.14) EMiYig)| < M/ g/,

If now we use (2.9) for 1 <v < g+ 1, and the relation (2.13) for v > ¢ + 2 and note

that since condition (C) implies that >°0° , H, ! (H"Y) < 0o (on account of the fact that
1+ v < 2+ v), we immediately obtain (2.8).

LeEmMMA 2.2. Let the conditions of Theorem 2.1 hold. Then f(x) exists everywhere,
f(x) < M, |f'(z)] £ M for every real x and the infinite sum on the right side of (1.1)
converges a.s.

PrOOF. First note that if ¢(u) and o1 (u) denote respectively the ch.f. of X; and Ty
then ¢(u) = ¢e(u)p1(u) and hence [%°_jul*|p(u)|du < [ |ul*|pe(u)|du < oo (s = 0,1)
by condition (B). Consequently, |f(*)(z)| < M for every real z, s = 0,1. Also for every

o0

Z Wrt

77—7

rt

m=N

(2.15) i P( 3
<M

as N — oo, by definition of Hy, in condition (C) and the fact that 1/(2 +v) < 1. The
second part of the Lemma follows immediately.
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It is easy to see that for every integer m > 1

m 4
(2.16) E(ZYt) < M(mE(Y{)
t=1

m
+m Y [E(YRYR,) + |[E(YPYi4)| + BT YE,)]

v=1

m m
+m Z Z “E(Y12Y1+v}/l+v+w)’

v=1w=1

+EMY Ntvrw)l + BN Y140 g0l

mom  m

+m Z Z Z ‘E(YIY1+vY1+v+wY1+v+w+y)|-

v=1 w=1 y=1

The results of the following lemmas can now be used to determine an upper bound to
the sum of the expressions on the right side of (2.16).

LEMMA 2.3. For everyv>1
(2.17) |E(Y?Y,)| < M,
whenevera+b=4 (a>1,b>1).
PrOOF. The result follows directly from (2.9).
LemMMA 2.4. For every v,w > 1 and (a,b) = (1,2) or (a,b) = (2,1),

(2.18) |E(Y1aY1b+le+v+w)| < Mry.

PROOF. Let g be as defined in (1.1) and let (a,b) be as given in Lemma 2.5. If
w > ¢ + 2, then using arguments similar to those leading to (2.11) we can show that

(2.19) E(r{ 1 1oi4vtw) = BP0 Jo(RY 1yt Stviw))
+ E(T{lle+v)E(¢(m - Rl+'v+w; rn) - f'n)’

where Ryt vtw = Eltvtw+ Doy Wrltotw, Sltvtw = Xitvtw = Ritotu, §1+v+w =
Ritviw — E14vtw and Jo is defined as in (2. 12). (Note that Ri4v+w is independent of
X; and Xj4,, and €144, is independent of R1 +vtw-) We now use Lemma 2.4 and
details similar to those leading to (2.14), and conclude routinely that whenever v > 1,
w > g+ 2 and i}, > 0 is arbitrary,

(220)  |E({ T puTibor)| < M(E(Iriry D + B2 (700, )Q00%)
+|B(r{ i1, (0 + Q7))
< M@yl + a0 tQR 2 o (4 Q1))
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where Q7 = P(|S11vaw| > n) < MH, w—q/M). Therefore, if a =1, b =2 or a = 2,

2/(2+7)Hv/(2+7)

b =1 then by choosing }, = rs we have the inequality

(2.21) lE(YlaY1b+vY1+v+w)| < M(Tz/(2+'y)H$/_(;2+’Y) + T£2+37)/(2+’7)H3)1/(§2+7)),

whenever v > 1 and w > ¢+ 2. For every v > 1 and w > 1 we can show, by using the
fact

|E(T1 4o+ 0] Qutw)l £ M(E(d14v40]|Quiw) +1) < M
where Q4. is the o-algebra generated by ¢; (t < v+ w) that
(2:22) B Y2 Vitotw)| < MrPTeD/2 < My,
if (a,b) = (1,2) or (2.1). This proves Lemma 2.4.
LEMMA 2.5. For everyv,w > 1

(2.23) E(YlY1+vY12+v+w) < Mry.

PROOF. Let g be as defined in (1.1), and in what follows we shall assume that
v>1and w > q+ 2. We can write

(2‘24} E(Tl7-1+v7-12+v+w) = E(Tl7'1+v¢%+v+w) - 2an(TlTl+v¢l+v+w)
+ f2E(rim14).

Note that é1+v+w is independent of X; and X;,, and hence

(2‘25) E(7-171+U¢%+v+w) = E(Tl'rl+v(¢2($ - R1+v+w - 5'1+v+w;7'n)
- ¢2($ - R1+v+w;rn))) + E(TlTv)
E(¢*(z — RitvwiTn))-

It is not difficult to show that E(¢2(z — Ry41vtw; rn)|Qv+w) < Mr;! where Qy4q is
the o-algebra generated by &,(t < v + w), and that E((¢*(x — R1+v+w — S tvtw;Tn) —
A2z — Ry yvtw; rn))IQ1+v+w) =.J (R1+v+w, S| +v4w) where for every real r, s, Jy(r, 8) :=
E(¢*(z — €140+w — T — 8;7n) — ¢*(T — €1404w — T;7n)). Since [Jy(r, s)] < Mr'1|s[ and
also < Mr,! for every r and s, and (2.9) holds, the absolute value of the first expression
on the right side of (2.24) does not exceed

(226)  E(mmiolrn (1S 14vtwl < 05)) + E(IMT1aolrs TS 14 v4w] < 1))
< E(Inmisol)rytng + El/2(712712+u)7";1E1/2(I2(51+v+w| > )
< M7 +r72QrY?)

where 7} and @Q}, are defined as in (2.20). If, now we use (2.13), (2.25) and (2.26) we
can easily conclude that whenever v > 1, w > ¢ + 2

(227) E(T1T1+’U¢%+v+w) < M(T;an + T 77n + 7y 2Qﬂ + T-zQ*I/Z)
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Similar analysis will show that if v > 1 and w > ¢+ 2

(2.28) E(TiTi40B14vt+w) < M + 05, + "'r-;lQn + T;l_lQ:LI/Q)'

We now combine (2.13), (2.23), (2.27), (2.28), choose 7,, and 7;, as in (2.13) and (2.21)
respectively, and note that f, < M. The following inequality will then emerge.

(2.29) B Y0¥ gp)| < MOV 4 /G0 /30,

whenever v > 1 and w > g + 2. For any v, w > 1, we can use the relations (2.9), (2.21),
the facts that f, < M, and E(¢¢, 4 40| Quvtw) = 17T [ 6%(2) fe(z — Tigotw ~Taz)dz <
Mr;o+ (@ = 1,2)(T; = X, — &), to conclude that (2.23) holds. This proves Lemma 2.5.

LEMMA 2.6. For every v,w,y > 1
(2.30) |B(Y1Y140Y 1404w Y1 4vtwty)] S MT2.

PROOF. Let g be as defined as in (1.1) and assume that v,w > 1 and y > ¢+

: D — y—q—1 g —
2_- Write R1+v+wj—y = Eltvtwty T 2, =1 Wrltotwty, Sttvtwty = Xitvtwy —
Ry yyiwty- Since Ry yyqyqy is independent of X, Xy4, and X1 putw,

(2.31) E(T1T1 40T ot w T 4utwty)
= E(T1T1+"’J0(R;+v+w+y7 Sl+v+w+y))
+ E(MiTi40T14040) E(9(7 — Ripotwiyi Tn) = fa),

where Ry, .ty = Ritvtwty — E14vtwty- Using arguments similar to those leading to
(2.19), (2.21) and (2.22) we eventually conclude that whenever v,w > 1,y > ¢+ 2 and
75, > 0 is arbitrary,

(2.32) IEM Y140 YigorwYievtwry)] < M20t +r22Q0 2 + r2Qe)

where Q5" = P(|S14vtwyl > 157), and 5’1+u+w+y = Z:iy_q Wri4vtwy- We now ap-
ply the inequality. Q;* < MH)__ /037 followed by the choice " =y 8/ (2+“’)H?,,/_(§+7)
to (2.30) and conclude easily that

(233)  |BE(YV1YiroYitvtwYitvswty)] < M(rQF20/C4n) g/ G4

+ ,»’(z4+57)/(2+7)H§“1{I(2+W))

_whenever v,w > 1 and y > ¢+ 2. For every v,w,y > 1 we can use the inequali-
ties E(P1+vtwty|Qutwty) < M, and E(|Y1Y14,Y1404w]) < M2 to conclude that for
v,w,y 21

(2.34) [EY1Y140Y14vs0 Y 4otwty)] < M2
This proves Lemma 2.6.
LEMMA 2.7. Let the conditions of Theorem 2.1 hold and let {m,} be a sequence

of positive integers such that m, — 00 asn — oc. Then

4
My

(2.35) E (Zyt) < M(mpr;t + m2 + m3rd+2n/@)y,
t=1
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PRrROOF. If we combine (2.16), (2.18), (2.23), (2.30), use the inequality E(Y{) <
Mr!, and condition (C) we obtain the relation
m
(2.36) E (Z Yt> < M{mr7t +m? + mP(r, + 7/ 1 4 p2/ @4y
+mB(r2 4 pUHI/@) 45/ (24).
The result (2.35) of Lemma 2.7 follows immediately if we set m = m,.

LEMMA 2.8. Let {k,}, {mn} and {t,.} be sequences of positive integers such that
Mo ~ 0208ty ~ n/2rk8k = In/(my, + t,)] and let conditions of Theorem 2.1
hold. Write

Ui=n"'23"Y, 1<j<kn,

tEA;
(2.37) Vi=n"23"Y, 1< <k,
tEBj
W =n"1/2 Z Y;,
teC

where A; = {1 +1,...,0;—t,}, By ={aj —ta+1,...,05},C = {n—-dn+1,...,n},
aj = j(my +t,) and dp =n — k,(my, +t,). Then as n — oo

kn
(2.38) > U1 = N(0,6%,
and
kn
W+ Z V; — 0  in probability,

Jj=1

where o2 is as defined in (2.2).

PrOOF. Let ¢ denote the ch.f. of Uy, ..., U; and let ¢, be the ch.f. of U;. Then
we can write '

(239)  1o®(u,.. . u) - H%(U) < leo(’)(u u) — (e D (u, ..., u)|
J=1

kn
Z E(N;P)),

where N, := exp(iu Y921 U,) — UD(u,...,u) and P; = exp(zuU ). For fixed j and
nweset g=o05_1—tn, h=0aj_1+1,{=qa; —t, and write Rc-— €+ Zr el
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§t:= X;— Et (h <t < £). Note that N; € Qg, whereas Et belongs to the o-algebra

generated by €5, s > g + 1 whenever h <t < /.
Also, we can write P; = L;M; where

L; :=exp

¢
iun'1/2r,1/2 Z(q&(x— ﬁt;rn) - fn)] , and

t=h

¢
M; :=exp [iun'l/2r}/2 Z(q&(x — Xiimn) — (z— ﬁt;rn))} .
t=h

Since Iz{t (h < t < £) are distributed independently of N;, L; and N; are mutually
independent with E(N;) = 0 and hence
(2.40) |E(N;P;)l = |E(N;L;M;)]

< \E(N;Lj)| + |BE(N; Lj(M; — 1))

< E!MJ - 1|’
because E(N;L;) = E(N;)E(L;) =0. Define§ =vif0<y<land§=1ify> 1
Since | exp(ia) — 1} < 2|a/2| for every real @ and 8, 0 < § < 1, we have that
]

[4 ~
(241)  EIM; — 1) < MluP(nra)"2E > "(¢((z = Xi)/rn) = $((€ — Re)/rn))

t=h
¢ ~
< Mlul’(nra) ™82 Y Eig((@ — Xi)[ra) — d((z — Re)/ra)l’.
t=h
Also since Xy =& + Ty = & + }~2t + §t( Et = Iz:tt —&;) and for every r.v. X E|X|® <
(E|X1)® we deduce from condition (A) and (B) that
(2.42) E(|$((z — Xo)/ra) = $((@ = Ro)[ra)l | Q1)

< (Bl$((z ~ X)/r) — $((z — Be)/rn)] | Re-1)’

= =~ 6
= (rn [ 106z = Bu/ra) 61 fula - Ru = raz)is)
<M |§t]5 .

The results (2.38)—(2.42), the fact that E|§t|5 < MHf_g_q(h <t < ¥), and condi-
tion (C) will then imply that for all large n,

(2.43)

kn
eF(u, ... u) — H @;(u)
j=1

< Mlul®(nrn) "2k, > HE < Mluf (nrn) %k /tn
r=%t,—q

-0 as nooo(6>7/(2+7) and k, ~t,).
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Again, for sufliciently large n

(2.44) 82 .= E(Uf) =n"tm, (E(YIQ) +2 i(l - v/mn)E(YlYHv)>

v=1
> o’n"'m, /2,

by Lemma 2.2, and the fact that E(Y?) = r, E(¢*(z — X1;70)) — Tnf2 — 02 as n — 0.
We now use (2.35), (2.37), (2.44) and the specification of my, t,, and conclude eventually
that

2

ko En
(2.45) Y EWUH/ | D_EWU})
< Mkn E(UE)/(knmn/n)?

mn 4
< Mk,E (Z Y;) /n?

t=1
< M((nr) ™ + n " m,, + n " im2r+20/(24)

< M((nrp) P4+ k7L 4 7B/ 50, as n— oo,

Therefore, the Liapounov condition for the central limit theorem holds and hence
H?;l @i(u) — exp(—u?a?/2) as n — oo. If we use this relation and our conclusion in
(2.43) we immediately obtain (2.38). Now observe that since k,m,/n — 1 as n — o0,
n~Ykptn + dy) =1 — kymy/n — 0 as n — oo. Consequently,

2
kn 00
(246) E (Z Vi + W) < 7 Entn + dy) (E(Yf) +2) iE(YlYm)l)
i=1

v=1

< MnYknt, +d,) =0, as n— oo,

and the proof of Lemma 2.8 is complete.

Now since (n7,) /2(fn(z) — fu(z)) = 10, Yo/n2/2 = Z?;l U; + Zf;l V; + W the
result (2.2) is a direct consequence of Lemma 2.8.

Let ¢(u) = fioo exp(tuy)d(y)dy and let ¢ be the ch.f. of X;. Then assume that the
following condition holds.

(D) ffooo ¢(y)dy = 1 and for some g > 0, lim,,o(1 — P(u))/|ul? = kq, lkq| < 00
and | [ exp(—iuz)|u|?o(u)du| < oo.

Note that if ¢ < 1 then the last part of (D) holds by condition (B).

THEOREM 2.2. Let the conditions (A)—(D) hold and assume that {r,} is such that
Tn — 0, nr29%! — 0 but nr, — oo. Then asn — oo

(2.47) - L((nrn)?(fn — £)) = N(0,02).
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ProoF. Note that as n — oo,

1

(248)  (fa— f)/r2 = (2m) /_ exp(—ituz) (% (1) — 1)/Irnul?ulp(u)du

— -kq(27r)_1/ exp(—iuz)|u|To(u)du,

—00
which implies that (nry,)'/2(fn — f) — 0 as n — co. (2.38) will then follow from (2.39).
3. Almost sure convergence

For notational convenience we write 7, = 7(n) for integer value of n in Theorem 3.1
that follows.

THEOREM 3.1. Let conditions (A)-(D) hold, and assume that (i) r(n) | 0 and
for some a(0 < a < 1/2)n°r(n) — o0 as n — oo, (ii) for every p > 1, k(1 — r((k +
1)?)/r(kP)) — a finite constant as k — oo, where for every real z, r(z) is defined by
linear interpolation between integer which sandwich x and (iii) if q¢(a) = [ |p(w) —
ag(aw)|dw(0 < a < 1), then q(a)/{1 — a) — a finite constant as a — 1. Then as
n— oo

(3.1) faomf s

PROOF. Note that since f, — f as n — oo (by Lemma 2.3) it is sufficient if
we establish that ﬁl —f — 0 as. asn — oo. We can write fn — fn = Snpn/n where
Snm = 211 (¢(x = Xi;7m) = fm) = 24— Yim. Let ng = [kP], where p is any number €
((1—a)™,a™1), a being given as in (ii) above and k = 1,2,.... Then since E(Y}%) < M,
and (2.7) holds we have that var(Sp,n, /nk) = E(X %1 Yin, )2 /N2, < M(ngrn, )™ <
ME~P(=9) by (2.7) and condition (i) above. Therefore,

(3.2) Snene /e — 0 as.

as k — o0o. Let n be any integer, ny < n < nyy; for some & and set Cy = maxXy, <n<ny,; -
IS’n’n - Snknla Dk = maxnk§n<nk+1 ISnkn - Snknkl- Then

(3-3) |Snn/n| < |Snyns /1| + Ck/ng + Dy /.

It is easy to show that E(C?/n?) < EY e (Snn = Snen)?/ng < MY A (0 —
nk)/nirs. Again we can conclude from condition (ii) above that 7, /rp, — 1 as k — co.
Therefore, for all sufficiently large k and hence n, E(CZ/n2) < M(ng1 — ng)?/nir,, <

MkP*=2_ Since pa < 1 it follows immediately that
(3.4) Cr/np, — 0  as.

as k and hence n — co. Similarly from (3.6) below we conclude that E(D2/n?) <
Yot E(Snun—Snini)? < M(ngy1—1%) (Try —Tnpyy ) /nirz, < MEP*2. Consequently,

n=njg

(3.5) Dk/nk — 0 a.s.
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as k — oo and hence n — 00. (3.1) now will follow directly from (3.2)-(3.5).

LEMMA 3.1. Let the conditions of Theorem 3.1 hold. Then

(3‘6) E(Snkn - S'"rknk)2 < M(T"k - rnk+1)nk/r121k'

PrOOF. Note that Sy, n—Sn.n, is the sum of ng terms. For sufficiently large k, the
expectation of the sums of squares terms can easily be shown to be < ngE(d(x—Xq;75)—
¢z~ X157mn,))* < mryt [22 (S(w) = (w))* f(z — rnw)dw < Mrgrt [25 |¢(w) —
p(mw)ldw < Mngri'(1 — k) < M(rn, — Tng,)nera, where 1 > v, = /1, >
Tnui1/Tn, — 1 ask — oo by virtue of conditions (B) and (i)—(iii) above. If now we replace
d(x — X1;70), ¢(x — X144;7n) and f, in Lemma 2.1 by ¢(z — Xy1;7) — ¢(x — X1;70, ),
(@ — Xi14v;7n) — (@ — X14v;7n,) and fn, — fn, respectively then by routine analysis
and following the same sequence of arguments as led to (2.12) and eventually to (2.7)
we can establish that the expectation of the sums of cross products in E(Sp,n — Snyni )>

is numerically < M(rn, — Tn,,,)rxral CT7) 72, . The result (3.6) follows immediately.
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