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A b s t r a c t .  A stress-strength system fails as soon as the applied stress, X, is at 
least as much as the strength, Y, of the system. Stress and strength are time-varying 
in many real-life systems but typical statistical models for stress-strength systems 
are static. In this article, the stress and strength processes are dynamically modeled 
as Brownian motions. The resulting stress-strength system is then governed by a 
time-homogeneous Markov process with an absorption barrier at 0. Conjugate as 
well as non-informative priors are developed for the model parameters and Markov 
chain sampling methods are used for posterior inference of the reliability of the stress- 
strength system. A generalization of this model is described next where the different 
stress-strength systems are assumed to be exchangeable. The proposed Bayesian 
analyses are illustrated in two examples where we obtain posterior estimates as well 
as perform model checking by cross-validation. 

Key words and phrases: Cross-validation, first-passage time, Gibbs sampler, hitting 
time, non-informative prior, prediction. 

1. Introduction 

A physical system, whether  it is a single component  or a large s t ructure ,  possesses 
an intrinsic ' s t rength '  Y. The  system itself is typically operat ing subject  to  some kind of 
environmental  'stress'  X and is rendered out  of commission at its t ime of failure, T say, 
which is reached as soon as X is at least as much as Y. Typically, s tat is t ical  inference 
focuses on reliability of the system, which is given by R = P ( Y  > X) .  For example,  
Weerahandi  and Johnson (1992) s tudy  a si tuat ion where X is the chamber  pressure 
genera ted  by ignition in a solid propel lant  rocket engine and Y is the rocket  chamber  
burst  s t rength.  When  X > Y, the chamber  blows up, resulting in a failure. 

The  stress-strength model  was first considered by Bi rnbaum (1956). Traditionally,  
s tochastic models for s tress-strength (SS) systems are static in the sense tha t  potent ia l  
da t a  on X and Y are considered not  to involve the t ime of sys tem operat ion.  In such 
models, m observations on X and n observations on Y are gathered.  The  dis t r ibut ion 
of X and Y are modeled parametr ica l ly  or nonparametrical ly.  For example,  Weerahandi  
and Johnson (1992) and many  others  assume tha t  X and Y are normal ly  dis tr ibuted.  
Inferences for R, such as point  and interval es t imat ion as well as hypothesis  test ing,  
are then  sought based on the assumed model. Comprehensive reviews of frequentist  
inference for s t ress-s trength models are given in Basu (1985) and Johnson (1988). For a 
review of Bayesian work in this area, see Ghosh and Sun (1998). 
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From a practical point of view, the status of a stress-strength system clearly changes 
dynamically with time. The dynamic approach to modeling SS-systems accommodates 
a time-dependent stress process, X(t) ,  and a strength process Y(t) .  Let Z(t) = Y(t)  - 
X( t )  represent the difference between strength and stress at time t. In the reliability 
engineering literature, Z(t) is called the limit-state function. The system fails as soon 
as stress exceeds strength and hence the failure time, T, is the first-passage functional 
given by 

(1.1) T = inf{0 < t < oc:  Z(t) < 0}. 

Basu and Ebrahimi (1983) have discussed this dynamic model for SS-systems. Reli- 
ability of the system is a function of time. For a specific time point t* > 0, the reliability 
of a SS-system, R(t*), is the chance that  the system will not fail within (0, t*]. It follows 
from (1.1) that 

/ X 

(1.2) R(t*) = P (T  > t*) = P ( inf Z(t) > O) . 
\0<t___t* / 

As mentioned earlier, a common assumption in the static case is that X and Y are 
independently normally distributed. Ebrahimi and Ramallingam (1993) motivate and 
generalize this to a dynamic model, where X(t)  and Y(t)  are independent Brownian 
motion (BM) processes with mean functions # x t  and # y t  and variance functions a ~ t  
and cr~t respectively. However, note that we observe X(t)  and Y(t)  and hence the 
difference Z(t) until time T when Z(t) hits zero for the first time and the system fails. 
Observations on the system cease after its failure. In particular, we actually observe the 
stopped processes X*(t),  Y*(t), and Z*(t) = Y*(t) - X * ( t )  where X*(t)  = X( t )  if t < T 
and = X(T)  if t > T, and Y*(t), Z*(t) are similarly defined. While the latent X(t) ,  Y( t )  
and hence Z(t) are Gaussian processes, the observed stopped process Z* (t) is no longer 
Gaussian but  a time-homogeneous Markov process (see Section 2). 

Our inferential goals for this model are multifold. The first goal is Bayesian esti- 
mation of model parameters. The second goal is predictive inference. Consider a new 
system, identical in characteristic with the observed ones, which is beginning to operate 
with Z(0) = z > 0. For a future time t*, the reliability of this new system is 

Rz(t*) = Pz(T > t*) = Pz ( inf Z(t) < O) 
\0<t<t*  

where the subscript z in Pz refers to the assumption that Z(0) = z. We seek inferences 
for Rz(t*), such as point and interval estimates. The third goal is inference about an 
unfailed observed system. Suppose that Z*(tM) = z > 0 at the end of the monitoring 
period [0, tM]. The objective here is to predict the reliability of this system for a future 
time point t* > tM. It however follows that  

Rz,tM(t*) = P ( T  > t* I Z*(tM) = z) = Rz(t* - tM), 

i.e., the reliability of an equivalent system at a time t* - t M  where the system is started 
at Z(0) = z. Thus, the second and the third cases are equivalent. 

The plan for this paper is as follows. In Section 2, we summarize relevant results 
about the involved likelihood function. Conjugate and default priors for the model are 
developed in Section 3. We establish posterior propriety under the default prior in 
Section 4 and describe how Markov chain sampling methods can be used for posterior 
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analysis. In Section 5, we illustrate the proposed analysis in a da ta  set and compare 
the performances of the maximum likelihood est imate wi th  the Bayesian estimate. The 
proposed model is extended to an exchangeable setup in Section 6 and Bayesian inference 
for this exchangeable model is developed. Section 7 describes another  application where 
we obtain posterior point and interval estimates of reliability and perform model checking 
from a cross-validated prediction viewpoint. 

2. Sampling model 

We assume tha t  we have independent observations from n identical stress-strength 
systems. Observations on the i- th system are taken periodically at  pre-determined t ime 
grids 0 = ti0 < til < - ' .  < tiMi at which point monitoring stops (time truncation).  We 
use t i to denote the sequence of t ime points ( t l , . . . ,  tM). The periods tij - t i j - 1 ,  j = 
1 , . . . ,  Mi are not assumed to be equal. Finally, observation stops if the system fails 
during the monitoring period. In particular, we observe the stopped processes Z~(t), i = 
1 , . . . ,  n on discrete time-grids. 

If the i- th system does not fail during the monitoring period then tiM, represents 
the last monitored t ime point. For a failed system, the failure t ime T/ may occur in 
between two time grids ti,j-1 and ti,j. However, since failure is a catastrophic event, 
we assume tha t  the failure t ime T/ is exactly recorded even when it occurs within a 
time-grid interval. In such a case, for notat ional  convenience, we relabel the point on 
the grid immediately following the failure as tiM, and observation stops after failure. 

If we had observation from a Brownian motion (BM) on a discrete time-grid, it would 
have been easy to write down the likelihood function utilizing the independent normal  
increments of the BM. We instead observe the stopped process Z* (t). The complication 
in the distributional property of the process Z* (t) stems from the restriction tha t  Z* (t) 
is known to be positive for 0 _< t < T until  it is absorbed at  0 and we stop observing the 
process. 

The description of the transi t ion kernel for the Z* (t) process thus has two parts.  
Given tha t  the process is currently at  Z* (0) = a > 0, (i) it may move to a point z > 0 
at a future t ime-point t, or (ii) it may get absorbed at  0 by t ime t. Ebrahimi and 
Ramall ingam (1993) showed tha t  {Z*(t), t > 0} is a t ime-homogeneous Markov process 
with the following transi t ion kernel describing the cases (i) and (ii) respectively. 

(i) P(Z*(t )  > z [ Z*(0) = a , p , a  2) = fb~=z~bt(a,b,p,~r2)db for a > 0, z > 0, t > 0, 
and 

(ii) P(Z*(t )  = 0 [ Z*(0) = a , p , a  2) = 1 - H a ( t , p , a  2) for a > 0, t > 0, 
where # = # y  - # x , a  2 = a 2 + a 2,  and 

(2.1) Ct(a, b; #, a 2) = ~ r a v ~  - r a7r exp k . - - - f i - ] J  ' 

(a+#t~_{~(--a+pt~ (--2#a'~ ], (2.2) ] 

We can now proceed to write down the form of the likelihood function. For the i- 
th  system, we observe snapshots of the t ra jec tory  at  discrete t ime-points {z*( t i j ) , j  = 
1 , . . . ,  Mi}. All n systems star t  at t ime ti0 = 0 with a known positive value. At any 
intermediate tij, z* (tij) is clearly > 0 and hence the likelihood is determined by (i) above. 
If the system failed at  the last t ime point z* (ti,M~) = 0 then the likelihood contribution 
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is determined from (ii) above. Let 

(2.3) a [ + 
exp  - 2to  J" 

If we now let Aij  = t~j -- ti,j-1 denote the grid widths, the likelihood function is then 

(2.4) 
n Ms 

L(# 'a2)  = H 1-[ g~'r ) '#; a2) 
i=lj=l 

where gt(a, b; #, a 2) combines cases (i) and (ii) in a concise form as 

(2.5)  

Ct(a, b; #, a2), 
gt(a, b; it, a 2) = ha(t; #, a2), 

1, 

a > O ,  b > O  

a > O ,  b = O  

a = O ,  b = O .  

One of our inferentiM goMs is the reliability of such a stress-strength system at time 
t* when initially Z(0) = z > 0. From (1.2), Rz(t*;It, a 2) = P ( T  > t* [ #,a2) .  if the 
mean parameter # < 0, then, based on a well-known Brownian motion result, the hitting 
time T has density hz(t, 0 ), which is an inverse Gaussian distribution. If # > 0, then as 
is expected, the process may not reach 0 in finite time and P ( T  < ~ [ Z(O) = z, #, a 2) = 
e x p ( -  2-~). From the above distributional results, it now follows that the reliability at 
a future time t* is 
(2.6) Rz(t*; #, a 2) = Hz(t*; #, a2). 

3. Priors 

For Bayesian analysis, one needs to specify prior distribution for the unknown pa- 
rameters # and a 2 of the model. A conjugate type prior for the transformed parameters 
01 = p / a  and 02 = 1/a can be hierarchically specified as follows: 

�9 01 has a N(0o, l/T0) prior and 02 has an independent Gamma(a0,130) prior with 
m e a n  

�9 The hyperparameters have a prior p(00, TO, a0,/30). For example, 00 "-~ N(u, 1/)~), 
To ~ Gamma(a, b), So ~ Gamma(c, d) and/3o .-~ Gamma(e, f ) .  
For later reference, we will denote this conjugate specification as 7rc(01,02). 

On the other hand, the available prior information may be weak for a variety of 
reasons including automation of the reliability assessment without the benefit of careful 
subjective elicitations and one may want to specify an objective prior. Several strategies 
to formalize a (typically improper) default prior to facilitate the Bayesian analysis are 
given in the excellent review paper of Kass and Wasserman (1996). In this section, we 
primarily focus on two such priors, the Jeffreys prior and the reference prior. Many 
authors have derived default priors for the static stress-strength model. Thompson and 
Basu (1993) derive reference priors when the stress and strength are both exponentially 
distributed. Ghosh and Sun (1998) provide reference as well as probability matching 
priors for different stress-strength models. 

In the sampling scheme of our dynamic model, the observation process is truncated 
at failure and hence, for the failed systems, the stopping times T~'s are part of the 
data. The resulting log-likelihood for these stopped processes is quite complicated as 
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shown in (2.4) in the previous section. As a result, the information matrix is difficult 
to compute and the formal derivation of the Jeffreys and the reference priors for (#, a 2) 
is a formidable task. We take a pragmatic approach to the prior construction and 
pretend that the data, Z~ are obtained from the unstopped BM {Zi( t) , t  >_ 0}, i = 
1 ,2 , . . .  ,n. It should be remarked that a special case (i.e. n = 1) of such data  from the 
(unstopped) Brownian motion process has been considered by Sivaganesan and Lingham 
(2000). Using the independent normal increment structure of the BM, it follows that 
the information matrix is 

n t E i = I  i] i ( # , a 2 ) = d i a g [ E i = l  iM , " M 
L , j" 

The most frequently used default prior is Jeffreys prior which is proportional to the 
positive square root of the determinant of the information matrix. Note, further that  
the information matrix is block-diagonal. For such information matrices, Dat ta  and 
Ghosh (1995) have derived the reference prior explicitly. Based on their result, we 
obtain default priors as below: 

7re(p, 0 "2) = (a2)-q/2I(--CX) <~ ].t < (:X), 0 .2 > 0) for q > 2, or, alternatively 

7rq(p,a) --- a l - q I ( - o o  < # < oc, a > O) for q > 2. 

If we plug-in q = 2 and q = 3, we respectively obtain the "reference" prior and the 
"Jeffreys" prior. In terms of the reparametrization 0 = (01,02) with 01 = # /a  and 02 = 
1/0. the default priors are given by 

(3.1) 7rq(O) = oq-4I ( -cc  < O1 < oc, 02 > 0). 

4. Posterior analysis 

4.1 Propriety of the posterior 
The likelihood and the priors for our stress-strength model were described in Sec- 

tions 2 and 3 respectively. Here, we pursue posterior analysis of the model. Note that  
the default prior on 0 described in (3.1) is improper. A very important question in such 
a case is the propriety of the posterior. This is especially a crucial issue in Markov chain 
Monte Carlo (MCMC) analysis where an improper posterior may not be immediately 
obvious in the full conditional distributions or in the transition kernel of the Markov 
chain but may lead to completely erroneous results. 

Result 1. Let N = ~ i n l  Mi. Assume that N > 1 and the improper default priors 
q-4  are given by 7rq(0 ) = 02 , where q _> 2. Let D denote the observed data. Then, 

(i) The posterior 7rq(0 I D) is proper. 
(ii) In addition, 01,02, # and a have finite posterior means. 

PaOOF. We will only prove (i) as the proof of (ii) is similar. Moreover, for sim- 
plicity of exposition, we assume that each of the n observed systems is 'alive' (has not 
reached 0) at the end of the monitoring time. The case when some of the systems fail 
during monitoring can be dealt with in an analogous manner. 

Fix t > 0, a > 0, b > 0, 0 C O. Then, one can show that 

1 [01t-(b-a)02] 
< 02 vq 
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The ( i , j ) - th  term in the likelihood, L ( 0 ) i s  CA,~(aij,bij) (see (2.4)), where aij = 
z~( t t j -1) ,  bij = z~(t~,j). Then, using the above inequality, for a positive constant O,  
we get, 

L(O ) < clONe -1/2[A-(C2/B)]O~ x e -B/2[(Ol-(O2C/B))]2 

where 

A = = Z a n d  c : 
i=1 ~=1 E ~ j  ' B ~=1 j = l  i=1 j = ,  

Since the prior is 7rq(0) = 0 q-4 and the posterior is 7rq(0 [ 0 )  = c2" 7rq(0) x L(0)  for 
normalizing constant c2, we get, 

fff  I D)dO~ < (v6~)O(~ N+q-4)~-,/~I~-(c=/s)l~ 7(q(O CLC2" 
I=--0~ 

Since A > C2/B by Cauchy-Schwarz inequality, it now follows that 

which establishes the propriety of the posterior. [] 

Remark. The condition that N > 1 is needed for the validity of the Cauchy- 
Schwarz inequality and simply means that  we should plan to get at least two observations 
from the n systems that are being monitored. As there are two unknown parameters 
that govern the Brownian systems, this is a natural condition to impose to insure that  
the posterior is proper. 

4.2 Sampling method 
The posterior of the proposed model is analytically intractable due to the compli- 

cated form of the likelihood in (2.4). Instead, we estimate relevant posterior quantities 
based on samples drawn from the posterior via Markov chain Monte Carlo (MCMC). 
MCMC methods construct a Markov chain whose invariant distribution is the posterior 
and sample path averages of this Markov chain are used to estimate posterior quantities. 
An easy way to construct this chain is Gibbs sampling whose transition kernel is the 
product of the full conditional distributions. In our case, we only have two parameters 
01 and 02. However, the full conditional distribution of each parameter is rather complex. 
An alternative is to use Metropolis-Hastings algorithm but it raises several other issues 
such as the choice of the proposal distributions. Due to the complex functional form 
of the likelihood, it is not clear what proposal distribution(s) would provide an efficient 
sampler. Here, the following result is useful. 

Result 2. The joint posterior 7rq(0,, 02 I D) based on the default prior of (3.1) is a 
log-concave function of 01. Same is true for 02. 

PROOF. Note that log 7rq (01, 02 I D) = log c + log ~rq (0) + log L(0 ) where c is the 

normalizing constant. We first show log-concavity in 01. Since the prior 7rq(0) = 03 -4 
does not depend on 01, we need to show that the log-likelihood is concave in 81. From 
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n v-,M~ 1 * (2.4), logL(0) = ~-]i=1 ?-~j=l ~ (tij)). Based on the form of g( ) in 
(2.5), it suffices to prove that Ct( ) and ha( ) are log-concave in 01. Ebrahimi and 

= d 2 log h~ (t) Ramallingam (1993) showed that ~ - t  and = - t .  It follows that d0~ d0~ 
Ct ( ) ,  ha( ) and hence the posterior 7rq(01,02 I D) are log-concave in terms of 01. The 
proof of log-concavity in terms of 02 is more involved since the prior 7rq (0) = 03 -4 is not 
log-concave in 82 by itself. We consider logTrq(0 ) + logL(0 ) and the proof follows along 

d 2 similar lines by showing that the second partial ~ is non-positive. [] 

Result 2 establishes that the full conditional distributions 7rq(81 I D, 82) and 7rq(82 I 
D ,  Ol)  a r e  log-concave and one can draw samples directly from these full conditional 
distributions by the adaptive rejection sampling (ARS) method of Gilks and Wild (1992). 

If one instead wants to use the conjugate type prior 7re(0 ) described in Section 3, 
Markov ehaia sampling from the posterior proceeds along similar lines. The full con- 
ditional distributions of 81 and 82 axe still log-concave; the former because both the 
likelihood (Result 2) and the prior are log-concave in 81 and the proof of the latter is 
similar to Result 2. The full conditional distributions of the hyperparameters 00, T0 and 
/30 are respectively Normal, Gamma and Gamma due to the conjugate specification. 
Finally, the full conditional of or0 can be shown to be log-concave. 

To summarize, we use Gibbs sampling to construct a Markov chain with the pos- 
terior as its invariant distribution. We repeatedly and alternately draw samples from 
each full conditional distribution, either directly or by ARS. Finally, relevant posterior 
quantities are estimated as sample path averages of this Markov chain. 

5. Application 

We illustrate our proposed analysis in a data set with n = 10 systems. The data  are 
simulated from a dynamic stress-strength (SS) model where the difference (= strength 

- stress) process Z(t) is a BM with #true = --0.2 and at2rue = 1. The data are shown in 
Fig. 1. Each SS system started at Z(0) = 5 and is observed at periods of 0.5. Monitoring 
stopped at t = 25. Six out of the ten systems failed during this monitoring period. 

Ebrahimi and Ramallingam (1993) showed that for this dynamic SS model, the 
maximum likelihood estimates (MLEs) of # and a are unique. We obtained ~, ie  and 
amle using numerical optimization. The results are shown in Table 1. 

We obtained posterior inferences for the proposed Bayesian model with the default 
prior of (3.1) with q -- 2. The adaptive rejection based Gibbs sampler is run for 15,000 
iterations after a burn-in of 5,000. The estimated posterior mean, median and 95% 
credible interval for # and a are shown in Table 1. Both the mle and the posterior 

Fig.  1. 

m 

o 
I I | J I I 

0 5 10  15 20 25 

t 

T r a j e c t o r i e s  of  10 Z*(t) s y s t e m s  w h e n / ~  = - 0 . 2 ,  a = 1. 
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Table 1. MLE and posterior inference for ~t and a. 

True Value MLE Posterior 
Mean Median 95% Credible interval 

ju -0.2 -0.25 -0.2507 -0.2503 (-0.414, -0.08597) 

a 1.0 2.35 1.035 1.033 (0.9631, 1.116) 

i i i i I ! 

0 5 1 0  1 5  2 0  2 5  

Fig. 2. Reliability estimation. The thick solid line is the "true" reliability. The thin solid line 
is the mle. The middle dashed line is the posterior mean and the outer dashed lines represent 
a pointwise 90% credible band. 

est imates of # are close to the t rue  value. However, amle clearly overest imates while the 
poster ior  est imates  of a are close to  O'true. 
Our  main goal here is inference for reliability of the system. We consider a new sys- 
tem, say the /n  + 1)-th one, which will also s tar t  at  Z(0) = 5 and es t imate  its re- 
liability Rh(t*;#,a 2) at  a future  t ime t* using (2.6). Figure 2 shows the "true" re- 
liability R(t*;Ptrue,a2true) which we obta in  for 0 < t* < 25 at  grids of 0.5. By in- 

variance, the mle of Rio(t*; # , a  2) is Rio(t*; Pmle, a2mle) which is also shown in Fig. 2. 
Finally, at each t* grid, we es t imate  the poster ior  mean  and a 90% credible interval for 
Rio(t*; #, a2). For example,  the  poster ior  mean  at  a fixed t* is obta ined  as the average 
of {Rzo (t*; #(k), a~k)), k ---- 1 , . . . ,  K}  where (#(k), a(k)) are the  values drawn at  the k- th  

i terat ion of the Gibbs sampler  and K is the to ta l  number  of pos t -burn  in i terations. 
The  poster ior  es t imate  of reliabili ty is clearly superior to the  mle and the (pointwise) 
poster ior  credible band contains the t rue  reliability curve. 

6. An exchangeable model 

We have so far modeled the s t rength  Xi(t) and stress Yi(t) processes for the i -- 
1 , . . . , n  systems as independent  copies of BM(px,a2x) and B M ( # y , a  2)  respectively. 
However, often each SS sys tem has its own characterist ics which are reflected in its 
observed path.  An a t t rac t ive  way to  model  this diversity among systems is th rough a 
r andom effects type  model  where  we assume tha t  the s t rength  Xi(t) and stress Yi(t) pro- 
cesses for the i - th  system are BM(pxi ,  a2i) and B M ( # y i ,  a2i) respectively, i = 1 , . . . ,  n. 
Let  #i = #Yi - #xi,ai2 = a2i + a2i and let ~1i = #i/ai  and 02i = 1/ai, i = 1 , . . . , n  
be the t ransformed parameters .  Also, let Zi(t) = Yi(t) - Xi(t)  be the latent  difference 
process which we do not  observe bu t  instead observe the s topped process Z*(t) and 
observation stops at  failure t ime Ti as soon as Zi(t) <_ 0 for the first time. The  ex- 
changeabili ty among the n systems is modeled by assuming tha t  ~i ,  i = 1 , . . . , n  are 
i.i.d, from 7r(~ i ] 7) as follows: 
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�9 81i = #i /ai ,  i = 1 , . . . , n  axe i.i.d. ~ N(80,1/To). Independently, 82, = 1/a 2, 
i = 1 , . . . ,  n are i.i.d. Gamma (ao,/30) with scale = 1//30. 

�9 The hyperpaxameter 3' = (80, To, ao,/3o) has a prior r(~/). 
We shall posit that 
(6.1) ~r(~/) = 7el (0o, To) x 7r2(a0,/3o). 

No standard approaches to deriving the reference prior under hierarchical set-ups are 
available in the literature. Yet, one may consider the following "default" priors for 7rl 
and 7r2 in (6.1). 

(6.2) 7rl(80,To) = 1~To and 7r2(a0,/30) = V/(aoPG(1,ao)  - 1)//3260, 

where PG(1,  x) = )-~i~o(X + i)-2 is the PolyGamma function. Then, in view of the 
propriety results in Yang and Berger (1998), having integrated out the second level 
parameter % it is clear that the marginal distribution of (811,... ,81n,821,.. . ,82n) is 
proper. It follows that the marginal distribution of the data is proper. Fm-thermore, 
the full conditional distributions of 80, TO are available in Bernardo and Smith ((1994), 
p. 440) and the full conditionM distributions of ao,/30 can be easily obtained from Sun 
and Ye (1996). 

Alternatively, one may specify a conjugate prior (~/) as before as: 80 --~ N(~, l/A), 
~'0 ~ Gamma(a,  b), ao "~ Gamma(a l ,  62), /30 ~ Gamma(i/l,/3~) and 80, TO, a0, ~0 are 
a priori independent. The posterior analysis of the exchangeable model under these 
conjugate priors structure can be performed once again via Gibbs sampling. The full 
conditional distribution of each of the hyperpaxameters is immediate. In fact, they 
axe Normal, Gamma and Gamma once again for 80, TO and/30 respectively due to the 
conjugate structure. The full conditional of (~0 is log-concave and one can draw samples 
by adaptive rejection (Gilks and Wild (1992)). 

Either with the default or with the conjugate prior model for the hyperpaxameters, 
the main issue in the MCMC implementation here is how to draw samples of 8i = 
(01i, 02i) from their full conditional distributions at the first stage of the model. 

Result 3. The full conditional distribution of 81i and 82i axe log-concave, i = 
1 , . . . , n .  

Mi PROOF. The log-likelihood from (2.4) is given by log L(01i, 82i) = ~-]j=l IOggho 
(z~(ti,j-1), z~(tij)). The remainder of the proof is similar to the proof of Result 2 and 
mostly rests on the fact that Ct( ) and ha( ) are log-concave functions of 81i and 82i. 
The proof here is even easier since the Gamma(a0,/3o) prior for 82i is log-concave when 
a0 >_ 1. The case of a0 < 1 is similar to the default prior case as in Result 2. [] 

The implementation of the Gibbs sampler is now obvious. The parameters Oli, 
02i, i = 1 , . . . ,  n are sampled from their full conditional distributions by adaptive rejec- 
tion whereas the second level parameters/ to,  TO, a0, /3O are sampled by either adaptive 
rejection or conjugate sampling. 

7. Application 2 

We illustrate inference for the proposed exchangeable model for n = 10 SS systems 
shown in Fig. 3. The trajectories in this figure represent 10 stopped Z/* (t) processes where 
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, (0) ,a(o),2, the unstopped Zi(t) processes are (~u i , ( i ) ) BMs and observation is stopped as soon 

= 1/(a!~ 2 i = 1, ,n are, in turn, as Zi(t) < 0. Also, 0~ ~ " (~176 and (02(~ 2 , ,  , , , - -  = / ~ i  / i " ' "  
obtained as random draws from the conjugate priors N(0o, l/T0) and Gamma(c~o,/~o) 
respectively (as described in the previous section). 

We obtain posterior inference for the reliability Ri(t*;0i  ) of each system, i = 
1 , . . . ,  10 for 0 _< t* _< 25 at grids of 0.5. Here Ri (t*; 0 ~) = H(t*; #i, a~) as defined in (2.6). 
This inference is obtained under the following conjugate prior model: 00 "~ N(0, 10000), 
To ~ Gamma(.01, .01), C~o ~ Gamma(2, 1), 13o ~ Gamma(2, 1). The estimated posterior 
means as well as pointwise 90% credible bands of  Ri(t*,Oi), i = 1 , . . . ,  10 axe shown 
in Fig. 4. We compare these point and interval estimates with the "true" reliability 
Ri(t*" 0 (o)) where the latter is obtained by evaluating the reliability at 0 (o) (A(o) A(0)~ ' ~ i  " ~ i  = k~li  ' ~2 i  1' 
i.e., the 0~ value used to simulate the observed Z*(t) process. As is expected, the ex- 
changeable model brings in more variation in the estimation process and hence the 
credible bands are wider than those in Section 5. 

The "true" 0} ~ values for the fourth and ninth systems axe positive and hence 
their "true" reliability Ri ( t* ,  0 !0) ) s t a y s  high throughout the duration of the monitoring 
period. This results in the true reliability of the ninth system falling outside the 90% 
credible band. A similar phenomenon for the fourth system is seen in the prediction 
band shown in Fig. 5. 

We now take a critical look at our proposed model and perform model checking 
from a predictive cross-validation viewpoint as discussed in Gelfand (1996) and many 
others. We predict the reliability of the i-th system Ri(t* ] Z ' i )  at time t* based on 
observations on all the other Z~(t) , . .  Z* .. .  �9 , i-1 (t), Z*+I (t), , Z~(t) systems. Note that in 
this prediction, we do not include observations Z* (t) on the i-th system. 

We now describe the prediction of Ri(t* [ Z*_i). We have 

(7.1) R~(t* [ Z ' i )  = I f  R~(t*; 0 ~)~(0~ [ 7, Z*&(-~  [ Z*i)d ~ id% 

Z = ~  =~ Moreover, the conditional distribution r (~ i  [ 7, _i) is independent of Z_i and is simply 

the prior distribution of 0 i" In the estimate Ri(t* I Z ' i ) ,  we estimate the integral over q, 
by Monte Carlo average over {@k), k ----- 1 , . . . ,  K} where these are (approximate) draws 
from the posterior r (~  [ Z ' i )  obtained by Markov chain sampling and K is the number 
of post-burn-in iterations. 

Figure 5 shows the result of this cross-validated prediction for systems 1, 2 , . . . ,  10. 
We remind the reader that this reliability prediction, for example for system 1, only uses 
the observed data from systems 2, 3 , . . . ,  10 and does not use observations on system 1. 

0 
I I I I I I 

0 5 10 15 20 25 

Fig. 3. Trajector ies  of 10 Z*(t) systems in the  exchangeable  model. 
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Fig. 4. Reliability estimation in the exchangeable model. The  solid line is the "true" reliability. 
The  middle dashed line is the posterior mean and the outer dashed lines represent a pointwise 
90% credible band. 
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Fig. 5. Cross validated reliability prediction in the exchangeable model. The solid line is the 
"true" reliability. The middle dashed line is the predictive mean and the outer  dashed lines 
represent a pointwise 90% prediction band. 
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We obtain the predictive mean (a point prediction) as well as a 90% pointwise prediction 
band for the reliability. Prediction clearly involves much more variation since here no 
learning from data is obtained at the first level (as ~ (0 i  I 7, Z ' i )  = ~(~ i  I V)) and 
the only updating comes from the second level parameter 7- This is reflected in the 
wider prediction bands (compared to the credible bands in Fig. 4). We also note that 
the "true" reliability R4(t*, 01 ~ for the 4th system (which, as we noted above, has a 
positive 01i value) falls outside the prediction band. Thus the "inclusion" proportions 
for the 90% credible bands in Fig. 4 and the 90% prediction bands in Fig. 5 are both 
9/10 which are what we expected. 
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