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Abstract. In this paper, we consider the percentile test procedures for multivariate
and right censored data. Because of the involvement of censoring distribution into
the distribution of the proposed test statistic, we study the asymptotic normality
using the estimated covariance matrix. Finally, we derive the asymptotic relative
efficiency and illustrate our procedures with an example.
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1. Introduction

Median tests as nonparametric procedures for two sample problem are well known
and useful for detecting location translations. Basically there are two kinds of median
tests in the univariate case. One is the control median test (e.g. Mathisen (1943)) and the
other, the combined median test (e.g. Mood (1950)). The distinction between two kinds
of median tests is as follows: the control median test uses a median from control sample
whereas the combined median test uses a median from combined sample. From now on,
we call simply median test for the combined median test. Two kinds of median tests have
been modified or extended to the various directions. As a particular modification of the
control median test, Gastwirth (1968) proposed the first median test in order to improve
its performance as a two-sided test, which permits the experimenter to reach a decision
early. Therefore the first median test would be useful in case of the life trial situation.
Also Gastwirth discussed the application of the curtailed sampling to the first median
test for the early decision in the same paper. For more detailed discussion of the curtailed
sampling, we may refer to Alling (1963). Hettmansperger (1973) further considered a
conservative test based on the first median test statistic to cover the Behrens-Fisher
problem. Chatterjee and Sen (1964), Hettmansperger (1984) and Babu and Rao (1988)
considered extensions of the median test to multivariate data. Recently, Park and Desu
(1999) extended the control median test to multivariate data. Brookmeyer and Crowley
(1982) modified the median test for right censored data. Gastwirth and Wang (1988)
proposed the control median test for right censored data. Also Park and Desu (1998)
considered an extension of the control median test to multivariate and right censored
data. Therefore one may expect the advent of a median test procedure for multivariate
and right censored data. However, for the case of right censoring data, it is not rare
that one may not obtain a sample median or medians because of heavy censoring for
larger observations or early termination of experiments. In this case, it is impossible to
compare treatment effects with sample medians. In order to circumvent this stalemate,
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we consider a percentile test which uses the corresponding quantlie points instead of
using medians. Also Gastwirth and Wang (1988) proposed a control percentile test for
the consideration of the efficiency in the univariate case. In the next section, we propose
a multivariate percentile test for right censored data. We deal with the large sample
approximation in Section 3. Finally, we consider the asymptotic relative efficiency and
show an example for illustration of our proposed test procedure.

2. Multivariate percentile test for right censored data

Let X and Y be two independent g¢-variate random vectors with continuous dis-
tribution functions F' and G, respectively. It is of our concern to test the hypothesis
Hy : F = G. Since the location translation alternatives are of interest, we assume that
in general, v
(2.1) G(z) = F(z — A) for all z € R? and for some A € RY.

In view of this assumption, the null hypothesis can be restated as Hy : A = 0. Usually, a
random sample X;,...,X,, of X and an independent random sample Y, ...,Y,, of Y are
observed and tests are performed based on these samples. However in some experiments,
one can only observe {(V;,6;),s = 1,...,n} and {(W;,7;),j = 1,...,m}, where V;; =
min(Xg;, Cri), Oki = I(Vii = Xii), Wiy = min(Ys;, Dj) and 75 = I(We; = Yay)
fori=1,...,n,j=1,...,mand k = 1,...,¢q. I(-) is the indicator function. It is
assumed that C,...,C, is a censoring random sample with distribution function Hp
and Ds,...,D,, is an independent censoring random sample with distribution function
Hg. Furthermore, it is assumed that X’s, Y’s, C’s, and D’s are all independent each
other. For each k, k£ = 1,...,q, we denote F; and Gy as the marginal distribution
functions of F and G and Fy, and Glm, as the corresponding Kaplan-Meier estimates.
Also for each k, let Hyny = (n/N)Fy, 4 (m/N)Gy and Hyy = (n/N)Fyn + (m/N)Gim
with N = m +n. Finally, for each p with 0 < p < 1 and for each k, let &£ (p) be a p-th
quantile of Hxy and f,’; ~(p), the corresponding p-th sample quantile of Hyy. Then for
any consistent estimate £y (p) of the limiting null covariance matrix £o(p) of

VI(F &N D), - - Fan (€ (0))),

assuming that the inverse f);,l (p) of Y (p) exists, we propose a g-variate p-th percentile
test statistic My as follows:

Fa@n®) -p\ . [(Fun®) -

MN=7’L . ot N
Fqn(&éN(p)) —D

~ (0) R ;
Fqn(E;N(p)) —-P

where T means the transpose of a matrix or a vector. We will identify $o(p) and $n(p)
later. Then an a-level test of Hy : F = G against Hy : F' # G is to

“reject Hy if My > C(a).

The constant C(a) is chosen so that the size of the test is a. Since the exact null
distribution of My depends on F, G, Hr and H¢ in a complicated manner, it is natural
to consider the large sample approximation.
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3. Limiting distribution of My

For the derivation of the limiting null distribution of My, we introduce some more
notations about distribution and subdistribution functions. In the following, for each &,
Hp, and Hg, denote the marginal distribution functions for Hr and Hg, respectively.
Foreach k, k=1,...,q, let

Fy(u) = P(Vii < u, 65 = 1), t(u) = P(Wij < u,7k; _ 1),
Sk, (u) = P(Vii > u) = (1 — F(u))(1 — Hr, (u)),
Sa, (u) = P(Wi; > u) = (1 = Gi(v))(1 — Hg, (u)).

Also foreach 1 < k#1< g, let

Fyi(u,v) = P(Vis < u, Vi < 0,68 = 6 = 1),
Gry(u,v) = PWi; < u,Wy; < v, 15 = 115 = 1), '

Sk (u,v) = P(Vi; > u,Vi; >v),  Sgu(u,v) = P(Wg; > u, Wi >v),

Np, (u,v) = P(Vis S u, Vi 20,60 =1), Mg, (u,v) = P(Vi; > u,Vi; < v,8; = 1),

Ng,, (u’ ’U) = P(ij <u, vvlj 2 U, Tej = 1)7
Me,, (u7 U) = P(ij 2> U, VVIJ' Lv,my = 1).

Also we need the following assumptions:
AsSUMPTION 1. As N — oo, n/m — A € (0, 00).

AssuMPTION 2. For each k, &k = 1,...,q, F; and G, are continuous and twice
differentiable at &, (p) with fi(€£x(p)) > 0 and gi(&fx(p)) > O for each N, where fj
and gy are the respective densities.

Now we state Bahadur representation of the Kaplan-Meier estimate, which is due
to Lo and Singh (1985).

LEMMA 1. For each k, k=1,...,q and for each 0 < p < 1, with Assumptions 1
and 2, we have with probability one (w.p.1), as N — oo,

Frn(€in(0) — Fu(&in(0))
= % > B(Viis 81ir €5 (0) + O(N~3/4(log N)*/*)  and
i=1
Crm(&in (0) — Gr(&in () = -7% > (Wi g, £ () + O(N =/ 4(log N)*/4),
=

where

B(Vii, 61y t) = (1 — Fk(t)){lmgiié’f)z 1) /0 I(Vi Sz%u();l)p’,;(u)} ind

YWig, 7> 1) = (1= Gi(£) {”Wkgjk pr=l) [0 123@:@)} .
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LEMMA 2. Under Assumption 2, for each k, k=1,...,q and for each 0 < p < 1,
w.p.l, as N — o0,

éits) - i) = ) o5/ 0g )

where hgn is the density of Hyy .

Proor. First of all, we note that

. n . . m 4
(3.1) Hin(t) = Hon () = w7 [Fen(t) = Fi(6)] + 5 [Grm (1) = G(t)]-
Then from Lemma, 3 in Lo and Singh (1985), we see that w.p.1, as N — o0,
(3:2) sup |Hpy(p) ~ Hiw(p)| = O(N ™/ (log N)V/2).
O0<p<l

Thus from Taylor’s expansion around &; (p) and (3.2), we have w.p.1, as N — o0,
(3.3) Hen (&) — Hen(&in () = hin (Ein () (En (0) — i (0)) + O(N ' log N).
Also from Cheng (1984) with (3.1), we have w.p.1, as N — oo,

(3.4) HinEin(0) — Hin (Ein (@) — Hon (Exn(0)) + Hen 6in ()
= O(N~3*(log N)*/4).

Since Hin (€fn () = p+ O(N1), we have w.p.1 from (3.4) with (3.3), we obtain the
result.

THEOREM 1. Under Assumption 2, for each k, k=1,...,q and for each 0 < p <
1, w.p.l, as N — o0,

Fkn(é;;N (p)) — Fu(€in (D))

{1 A ®) 1V s e
= e § 2 BV i)

m

LGB L S (Wi o (2) + O(N /410 M)/,

hin(En(P) N

PROOF.

Fen(in (D) — Filéin(p))
= {Fkn(éitN(P)) — Fu(&in (D)) — Frn(&in(D)) + Fr(&in (p))}
+HEFe (€ (D) — Fr(&in (@)} + {Frn (Ein (9) — Fr(éin (0))}
=A+B+C, say.
Then by Cheng (1984), w.p.1, as N — oo,

A =O(N"3/4(log N)3/%).



938 HYO-IL PARK
From Taylor’s expansion and Lemmas 1 and 2, w.p.1, as N — oo,
fe(en(p) 1 =
B = ) B(Viis Oris + Whjs Thi»
hin (G (P)) N Z ki Okis Sy (P)) ;7( ki» Tki» Env (D))
+O(N~3/4(log N)3/4).

Therefore this theorem is followed by applying Lemma 1 to C.

‘We note that under Hy

E(B(Vii, 6ki» Een (D)) = E(Y(Whyj, hjs kv ()) = 0
v (®) JF* (u)

) ex _ ___ * 2 an
V8V s ) = (- Bu(ein@)? [ G ond
&in{(p) *(u
V(10¥i5, 75, i 00) = 1 = Guin ) [ SR,

Also we obtain by applying Fubini’s theorem that

(3.5) Cov(B(Vii, Okir Een (), B(Vis, 61, Ein (D))
= (1~ Fe(&n ()1 - Fi(§in ()

/EZN(P) /Em(l’) d2Fy,(u,v) /ﬁkN(P) /€¢N(P) S, (u, v)dF (u)dFf (v)
Sp. ()8R (v) St (W) SE, (v)

) /g;'N(p) /skn(p) / d?Np,, (u,8) | dF}(v)
0 0 v SFk (u) S%'z(’u)

) /Oe:m) { /::N(p) /:o Mﬁ;"zg’m} ilsgf((Z;]

= (1 - Fi(&n () (1 = FuEin (0))(C1(F) + Co(F) — Cs(F) — C4(F)), say

and
(3.6) Cov(Y(Wkj, Tj» e (P)), Y(Wig, 5, €l (D))

= (1 - G1(&n))(1 = Ga2(én))

/ﬁin(p) /&m(p) dzgkl(u v) /Ekzv(p) /Euv(p) 56y, (1, 0)dG3(w)dG; (v)
SG'k (u)SGz ('l)) Sék (U)Sg}; (v)

B /ﬁl*N (p) /‘ka(P) / d2Nle (U,, 3) dGi (’U)
0 0 v Sa,(u) SZ‘, (v)

_ /“N"’) /‘ffN"’> ® Mgy (s,) | dCi(w)
0 ol TS0 [ W

= (1 = G (&in ()1 = GilEn (9))) (C1(G) + C2(G) — C3(G) ~ Cu(G)),  say.

We now return to the subject of the limiting null distribution of M. From Theo-
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rem 1, for each k, k = 1,...,q, the limiting distributions of v/n(Fn(€fx(p)) — p) and

- Zﬂ(Vk“(sk“ka(p Zﬂ(vkzaakza gkN(p ) + Z’Y(WkJ)TkjigkN(p))

j=1

are the same under Ho. Therefore from the central limit theorem with Assumptions 1
and 2, under Hy, we see that for each k, k=1, ...,q, vi(Fen (€l N(p)) p) converges in
distribution to a normal random variable With mean 0 and variance o2 (p),

_ (1—p)? [E® dFrw)  Mi-p)? (5P dG}(u)
7lp) = (1+ /\)2/ S%I:(u) + (1+ )2 / %,

where £} (p) = limny o0 £y (p)- Also from (3.5) and (3.6), we see that the limiting null
covariance between

Vi(Een(Ein®) —p)  and  va(Fin(En () - p)

o) = §TDCF) + Call) ~ Co(F) = Cu(F)
PP (6,6) + o(6) - G3(0) - u(@))

1+ )2

with substitution of &} (p) for &y (p) in (3.5) and (3.6). Then by applying Cramér-Wold
device (cf. Billingsley (1986)), we obtain the following result.

THEOREM 2. For any consistent estimate $x5(p) of Zo(p), under Hy, My con-
verges in distribution to a x? random variable with q degrees of freedom, where

o3 (p)-- 01(1(17)
Zo(p) =
alq(p) -02(p)

We note that under Hy, the first and the second parts of each variance and covariance
term are the same except for . Therefore we could have reduced the expression of Xo(p)
to a more concise form. However since we have to obtain 3y (p) from two samples, we do
not reduce them in this manner. A consistent estimate 3y (p) for Zo(p) can be obtained
by substituting empirical ones for the quantities, which were introduced at the beginning
of this section. Then one can show the consistency of )N (p) by proving the consistency
of each component of ZN (p). For more detailed discussion, we may refer to Park and
Desu (1998).

4. Asymptotic relative efficiency and an example

In this section, we study the asymptotic relative efficiency (ARE). For this matter,
we only consider comparing two types of the median tests. Let Ly be the control median
test statistic which was proposed by Park and Desu (1998). We begin this section by
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stating the definition of ARE for the multivariate version (cf. Puri and Sen (1985)). For
two sequences of test statistics, say {@y} and {@Q%}, having asymptotically (under a
sequence {H;n} of alternative hypotheses) noncentral chi-square distributions with ¢
degrees of freedom and noncentrality parameters ¥ and ¥*, respectively, the ARE of
{Qn} relative to {Qy} is defined by

ARE@Q.Q) = g

Noncentrality parameters of {My} and {Ly} under alternatives depend on the
censoring distributions in a complicated manner. Therefore we will assume, in this
section, that censoring distributions for two samples are equal. We consider ARE under
the Pitman translation alternatives: for each k, k = 1,..., ¢ and for each N,

HlNZAN = (AlN,...,AqN)T = (ﬁl/fﬁ,...,Bq/\/JV)T,

where for each k, 0 is some nonzero constant. Before we derive the ARE(L, M), we
review a useful relation between the noncentrality parameter and the efficacies of com-
ponents of test statistics under the Pitman translation alternatives. For this purpose,
let {Zny = (Zin,...,Z4n)T} be a sequence of g-variate test statistics such that for
each N, Zy is arbitrarily distributed with mean vector, gy (Ax) and covariance matrix,
YN(AN), where py(An) = E(Zy | An) and En(AN) = V(Zn | An). We assume that
Z converges in distribution to Z, where Z is normally distributed with mean vector,
p and covariance matrix, £. Then we note that (Zy — puxn)TEN (Zn — py) converges
in distribution to a chi-square random variable with ¢ degrees of freedom. With those
notations and assumptions, we state the following result.

LEMMA 3. For the sequence {Zn} of test statistics, suppose that
(1) for each k and for each N, & purn(A) = pfn(A) is assumed to ezist and be
continuous in some neighborhood of 0 with p(0) # 0,
(2) lUmy—oo N (Dkn)/ 1N (0) =1 and
(3) limN_.,oo EN(AN) =3.
Then under the Pitman translation alternatives, the limiting distribution of Z NEX,I (An)
Z n is a noncentral chi-square distribution with q degrees of freedom and the noncentrality
parameter
bre1 . b1e1
=] ... Pty ..,
Opep Opep

where for each k, ex is the efficacy of the k-th component, Zyy of the test statistic, Z
and P is the limiting correlation matriz.

PROOF. See Park and Desu (1999).

We note that the conditions (1) and (2) in Lemma 3 with the condition that the
sequence {Zy} of test statistics has a limiting distribution, are exactly the same as
those for the derivation of the efficacy of {Zn} in Theorem 5.2.7 of Randles and Wolfe
(1979) except the existence of the efficacy itself. Assumption 1 in Section 3 implies
that &5y — &, where & is a median of Hy = (1/(1 + A))Frx + (A/(1 + A))Gg. Since
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the noncentrality parameter contains the expressions of the limiting distribution of the
sequence of test statistics, without loss of generality, we use £ instead of £, in the
sequel to obtain the noncentrality parameter. Also we use Ay instead of Agyn for each
N when there is no confusion. We note that under Hy and the Pitman translation
alternatives, £; becomes also a median of F and Gy.

Therefore in view of Lemma 3, it is enough to derive the efficacies of ¢ components
and limiting correlation matrix for the noncentrality parameter. Foreach k, k=1,...,¢q
and 1 < k #1 < q, define

N (Br) = V(G (& + Ag) — 1/2),
n x 2 51: Ak * (a4
oin(Br) = {1 - M} (1 - Felé +Ak))2/0 o dFg(u)

I_V. hkN(E;: + Ak) ‘5’}2% (u)
mn Fol€r + Ag) }2 ~ . ) §rtDk dG:(u)
Nz {hkN(g;; Tay ) G+ A) /0 5%, (u)

and
n fi(§f + Ax n fil§f + A
ou(®) = {1- G SR H - Tt s o
Cov{B(Vii, bks, & + Ak), B(Vii, 615, &5 + A1)}
L S + D) fil6] + A0
N2 hin (& + Ar)hun (& + A1)
COV{’}’(ij,Tkj,E;: + Ak), ’Y(le,’rlj,ff + Al)}.

Then under the Pitman translation alternatives,
A ~ T A~ N
Fin(&f) = 1/2 = pin(Ay) Fin (1) — 1/2 — pan(An)
n = (A) .

o N o ..
Fqn(&;) - 1/2 - /LqN(Aq) Fqn(&?) - 1/2 - #qN(Aq)

converges in distribution to a chi-square random variable with g degrees of freedom.
Therefore we can use the Lemma 3 to derive the noncentrality parameter by checking
the three conditions. Assumption 2 in Section 3 guarantees the condition (1). Thus we

have
d A d A
B0 _ per+ o) amd BEEO) g,
dAy dAr  |a=o0
With the fact that Ay — 0 as N — 00, we see that
dp,kN(Ak)/dAk

hm = 1,
N—oo dupn(Ax)/dBx|A=0

which confirms the condition (2).

In order to check the condition (3), we take Xy as X. ¥ was defined in Section 3.
Since hxny = (n/N)fr + (m/N)gy with the fact that £ is a common median of Fj and
G}, under the Pitman translation alternatives, we have

im Se(€f + Ax)
N—oo hn (& + Ak)
dim Fy(&h+ Ak) = lim Gi(&L + Axk) = Gr(éR) = 1/2.

=1, and
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Thus with the assumption that censoring distributions for the control and the treatment
are equal, we can conclude with Assumption 1 that for each k,

lim o2y (Ax) = 0}
N—-oo
Also with the same arguments used for 02, we can show that
lim ogn(A) = ok
N—oo0

Therefore we have shown that all the three conditions in Lemma 3 are satisfied. This
means that, in view of Lemma 3, it is enough to consider the efficacies of two components
with limiting null correlation matrix to obtain the noncentrality parameter for the median
test M.

The conditions and method for the derivation of the efficacy for tests statistics
are well summarized in Randles and Wolfe (1979). Already we have noticed that all the
conditions in Theorem 5.2.7 in Randles and Wolfe are satisfied except the existence of the
efficacy. Therefore it is enough to check that condition. Then some simple considerations
for the efficacy e; of the k-th component of My leads as follows:

ey [ A [ dezw) )
€k = 49k\Sk Y A Sék(u) .

Also straightforward calculations produce the limiting null correlation matrix P with

Pl:l:"':quzl and

* * -1 / 2

k dGy, (u) & dG, (u)
S&, () Jo 5%, (u)

In the following, we denote &, as a median of Gy, for each k. Then we note that under

Hj and Pitman translation alternatives, & = &f. In order to derive the noncentrality

parameter for the control median tests statistics {Ly} (cf. Park and Desu (1998)), define
foreachk, k=1,...,qand 1<k #I[<g,

pen (Ak) = Vn(Gr(ék + Ax) — 1/2),

RAYS * (01
Ten(Ak) = (1 - Fi(ée + Ak))2/0 ng: ((U))

o f2(& + Ag) [EFA% dGE(u)

£
P =P = (C1(G) + Ca(G) — C3(G) — Cu(G)) {/0

+ %(1 — G(& + Ar))

g2 (& + Ak) Jo Sg, (v)
and
0N (A) = Cov{B(Vii, Ors, &k + Ar), B(Viis 613, & + A1)}
n fille + Bi) il + D)
m gk (& + Ar)gi(& + Ar)
Cov{y(Wij, Tkj> & + Ax), YWij, 115, & + A }.
Thus

(ﬁln(éfnﬁ(lﬂ)) —1/2 = pin(B1) ) ’ (Fln(éffi(l/?)) -1/2- #IN(Al))
n .. ER,I(A) .

Fn(G1(1/2)) — 1/2 — (D) Fin(C2(1/2)) — 1/2 — pran(Bo)
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converges in distribution to a chi-square random variable with ¢ degrees of freedom.
Therefore by the same arguments used for {My}, we can show that the conditions
(1), (2) and (3) in Lemma 3, are all satisfied. Then by checking all the conditions of
Theorem 5.4.7 in Randles and Wolfe (1979), we obtain the same efficacies as those of
{Ln}. Also it is easy to show that the limiting correlation matrix for Ly is the same
as that of M. Therefore we conclude that with the fact that £ = & under Pitman
translation alternatives, ARE(L, M) = 1.

Finally we illustrate our procedure with the NCGS data considered by Wei and
Lachin (1984). The patients are allocated into two groups, i.e. control (placebo) and
treatment (high dose) groups with sample sizes n = 48 and m = 65. The Kaplan-Meier
estimate for the second component of high dose group (X12) shows that a sample median
cannot be obtained because of the heavy censoring of higher observations. Therefore one
can not apply any median test procedure. Since the lower (or first) sample quartile point
(25%) can be achieved for all components, we consider applying the 25 percentile test to
this example. The necessary statistics for obtaining the 25 percentile test statistic are
as follows: '

€5 113(:25) =249.23  and  £5113(.25) = 640.26
Fy 48(249.23) — 0.25 = 0.44 — 0.25 = 0.19
F 48(640.26) — 0.25 = 0.27 — 0.25 = 0.02

s _ (0:2842884 01733308 and 3=l - (82975131 — 7.839439
113 = 1 0.1733398 0.1834684 113 = \ _7.839439 12.857183 /-

Then we obtain that Mj13 = 11.765, whose p-value is less than 0.005 from the chi-square
distribution with 2 degrees of freedom. Therefore we may conclude that the two groups
of patients are significantly different for the disease progression.
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