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Abstract. Estimation of the mean function in nonparametric regression is usefully
separated into estimating the means at the observed factor levels—a one-way layout
problem—and interpolation between the estimated means at adjacent factor levels.
Candidate penalized least squares (PLS) estimators for the mean vector of a one-way
layout are expressed as shrinkage estimators relative to an orthogonal regression basis
determined by the penalty matrix. The shrinkage representation of PLS suggests a
larger class of candidate monotone shrinkage (MS) estimators. Adaptive PLS and MS
estimators choose the shrinkage vector and penalty matrix to minimize estimated risk.
The actual risks of shrinkage-adaptive estimators depend strongly upon the economy
of the penalty basis in representing the unknown mean vector. Local annihilators
of polynomials, among them difference operators, generate penalty bases that are
economical in a range of examples. Diagnostic techniques for adaptive PLS or MS
estimators include basis-economy plots and estimates of loss or risk.

Key words and phrases: Nonparametric regression, one-way layout, adaptation, loss
estimator, risk estimator, economical basis, orthogonal polynomial, local annihilator.

1. Introduction

The regression model that motivates statistical procedures studied in this paper is
(11) yi =m(t;) +e, 1<i<n.

The nonrandom design points are ordered so that ¢ty < t3 < .-+ < t,. The errors
{e;} are independent, identically distributed, each having a N(0,0?) distribution. Both
the function m and the variance 02 are unknown. Estimation of m from the observed
{yi,ti} is the task undertaken. This probabilistic formulation serves for the derivation
and initial study of estimators for m. Asymptotic theory developed under the model is
supplemented with computational experiments on real and artificial data that respect the
fundamental distinction between data and probability model and bring out additional
aspects of estimator performance. These experiments also explore the use of estimated
losses and certain diagnostic plots to assess the performance of competing estimators on
particular data.

Let y = {y;}, u = {m(t;)}, and e = {e;} be nx 1 vectors with the stated components.
Nonparametric regression as just described can be separated logically into two problems.
The first is to estimate the values {m(¢;) : 1 < i < n}. This amounts to estimation of
the vector u in the possibly unbalanced one-way layout

(12) y=p+te,
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where e has a multivariate N (0,0%1,) distribution. It follows from Stein (1956) that the
least squares estimator of p is inadmissible under quadratic loss whenever the number
of factor levels exceeds 2. As will be seen, the least squares estimator can have high
quadratic risk when compared with alternative estimators less prone to overfitting the
data. '

Given an efficient estimator of p, the second problem is interpolation among its
components so as to estimate the function m. This is a problem in approximation theory
that is highly sensitive to assumptions on the nature of m. The observed {y;,t;} will not
tell us how many derivatives m has. In the absence of strong prior information about
the smoothness of m, we may settle for straightforward linear interpolation or spline
interpolation between the estimated components of p. At a minimum, such interpolation
is a convenient visual device for displaying estimators of m at the design points. To
consider separately the estimation at design points and the interpolation between design
points clarifies what can be done in nonparametric regression. Examples presented in
this paper support the claim that efficient estimation of the mean function at the design
points is often more important for data analysis than sophisticated interpolation between
adjacent estimates.

Suppose that the design points {t;} contain p < n distinct values s1 < 52 < -+- < sp,
which are the factor levels. Let X denote the n x p incidence matrix defined as follows:
row ¢ contains a 1 in the column j such that s; = ¢; and has zeroes in the other p — 1

positions. Let 8 = (m(s1),m(sz2),...,m(sp))’ denote the mean responses at the factor
levels. The mean vector of the one-way layout (1.2) is then
(L.3) p=XpB

and the least squares estimator of p is irs = X(X'X) 1 X'y.

Let D be any matrix with p columns, let v be an element of the extended non-
negative reals [0, 00|, and let |- | denote quadratic norm. The candidate penalized least
squares (PLS) estimator of y is

(1.4) fipLs(D,v) = Xfprs(D,v)

where

(1.5) BPLS(D, v) = argmin|jy — Xﬂ|2 + VID,BIZ]
BeERP

It is understood that ,BPLS(D, 00) =lim, e BPLS(D, v). Explicitly,
(1.6) pprs(D,v) = X(X'X +vD'D)"1Xy.

In this form, iprs(D, V) may be viewed as a generalized ridge estimator.

Effective choice of penalty matrix D and of the non-negative penalty weight v are
central issues. When v is zero, the candidate PLS estimator reduces to the least squares
estimator firs. For very large v, the PLS estimator effectively minimizes the residual
sum of squares subject to the constraint that |Dg|? is approximately zero. To guide
the choice of D and v, we will assess the quality of any estimator ji through normalized
quadratic loss and corresponding risk

1.7 L(p,p) =p Yo —ul®,  R(p,p,0%) =EL(j, p).
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Let
(1.8) S(D,v) = X(X'X +vD'D)"'X’

and let | - | denote Euclidean matrix norm. That is, |C|2 = tr(CC’) = tr(C’C) for any
matrix C. The risk of the candidate estimator fiprs(D,v) is then

(1'9) ) R(ﬂPLS(Day)’“702) =p—1[0'2|S(D, V)|2+ |/,L—S(D,V)y,|2].

For the least squares estimator firs = fiprs(D,0), this risk reduces to o2.

Let 62 be a trustworthy estimator of 02. Customary when n substantially exceeds
p is the variance estimator 625 = (n — p) ™!y — fiLs|?>. The derivation of the Mallows
(1973) Cp, criterion yields the risk estimator

(1.10) R(D,v) = p[ly - S(D, vyl + {2[S(D, )] - n}57.

In particular, when 62 = 6%, the estimated risk for the least squares estimator of  is
f%(D, 0) = 62 5. We propose to choose both the penalty weight v and the penalty matrix
D so as to minimize the estimated risk R(D,v).

When represented with respect to the orthogonal penalty basis for the regression
space that is defined in the next section, PLS estimators suggest a larger class of candi-
date monotone shrinkage (MS) estimators for y. The themes of this paper are: asymp-
totic theory to support the strategy of choosing the candidate estimator that minimizes
estimated risk; the advantages of adaptive MS over adaptive PLS; methods for designing
effective penalty matrices; and the use of estimated loss/risk and of diagnostic plots to
assess the performance of adaptive PLS or MS estimators on given data.

The need for asymptotic analysis and for restrictions on the extent of adaptation is
indicated by an example. Suppose that S is permitted to vary over all n x n symmetric
matrices that have a specified set of eigenvectors and that o2 is known. The symmetric
matrix S that minimizes the right side of (1.10) over the class just described then gen-
erates an estimator of x4 whose risk is dominated by that of the least squares estimator
fir.s. This may be seen from Remark A on p. 1829 of Beran and Diimbgen (1998).

For fixed penalty matrix D, the shrinkage-adaptive PLS estimator is defined to be
fipLs(D,?), where 7 minimizes the estimated risk R(D,v) over all v in [0, co]. We will
call this the PLS(D) estimator. Section 2.3 describes how to compute it effectively.
Under the probability model described there, the risk of the adaptive estimator PLS(D)
converges to the risk of the unrealizable candidate PLS estimator with smallest risk.
Thus, the asymptotic risk of the PLS(D) estimator cannot exceed that of the least
squares estimator. In practice, it is often far smaller and the shrinkage-adaptive MS(D)
estimator to be defined in Subsection 2.2 typically reduces risk further. Subsection 3.2
develops possibilities for adaptation through choice of the penalty matrix D in addition
to v.

Though valuable in exploring the scope of adaptation and the overall behavior of
an estimator, ensemble results such as asymptotic minimaxity or rates of convergence
do not indicate the adequacy of a particular estimator on particular data. Section 3
addresses the use of estimated loss and of diagnostic basis-economy and shrinkage-vector
plots to assess adaptive PLS and MS estimators on given data.

Figure 1 exhibits penalized least squares estimates on three sets of artificial data.
The smooth case was suggested by the Canadian earnings data that was analyzed, with
further background, in Chu and Marron (1991). The respective mean functions are:
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Fig. 1. Each column displays the artificial data, the true mean vector, the PLS{D4) estimate,
and the MS(D4) estimate.

Smooth: my(t) = 2 — 50((t — 25)(t — 75))2.

Wiggly: ma(t) = my(t) — .25sin(507t).

Very Wiggly: ma(t) = my(t) — .25sin(1007t).
The design points are {¢t; =i/(n+1):1 < i < n} with n = 200. The j-th artificial data
set is {m;(4/201):1 < i < 200} + e, where e is a single pseudo-random sample drawn
from the N(0,02I0) distribution and o = .2. In this design, p = n. The variance o2 is
estimated by the high component estimator defined in (2.13), with g = .75p.
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As penalty matrix we use the (p —4) x p fourth difference matrix Dy. The first row
of Dy consists of entries 1, —4, 6, —4, 1 followed by zeros. The second row shifts the
non-zero entries one place to the right and puts a zero in the first column. Construction
of subsequent rows continues the shift of nonzero entries to the right. The d-th difference
penalty matrix Dy, defined formally in Section 3.2, is particularly appropriate when the
components of 8 are equally spaced values on a curve whose local behavior mimics a
polynomial of degree d — 1. In the present example, either d = 4 or d = 5 works well.
Computations for this and other examples in the paper were done with S-Plus 2000 for
Windows.

Column j in Fig. 1 plots the j-th artificial sample in the first row and the linearly
interpolated (dashed line) components of the mean vector u = {m;(i/201)} in the second
row. The function rnorm, initialized with set.seed(2), produced the pseudo-Gaussian
errors that are added to the means in the second row to obtain the artificial samples.
Any sinusoidal wiggles present in p are not apparent to the eye in the scatterplots of
this data.

The third row in the figure superposes on the data the linearly interpolated (solid
line) components of estimator PLS(D,). This shrinkage-adaptive PLS estimator recovers
the means well from the Smooth sample and detects the sinusoid underlying the Wiggly
sample, even though it distorts that sinusoid’s amplitude and regularity. However, on
the Very Wiggly sample, PLS(D,) fails utterly, like the eye, to detect the sinusoid and
settles for estimating the smooth component of the trend. The fourth row of Fig. 1 plots
the adaptive MS(Dy) generalization of PLS(D4) that is defined in Section 2.2. This
estimator succeeds in handling the Very Wiggly sample as well as the other two.

2. Estimated risk and shrinkage adaptation

A canonical representation assists both theoretical study and numerical computation
of the candidate PLS estimators iprs(D,v). These and the candidate MS estimators
defined in Section 2.2 are particular symmetric linear smoothers in the sense of Buja et
al. (1989) and are candidate REACT estimators in the sense of Beran (2000).

2.1 The penalty basis

The replication matrix R = X’'X is a p x p diagonal matrix whose k-th diagonal
element indicates the number of {¢;} that equal sx. For any matrix C, let M(C) denote
the subspace spanned by its columns. The columns of the matrix Uy = X R~1/2 provide
an orthonormal basis for the regression problem: UyUy = I, and M(Up) = M(X). Let
B = R™Y2D'DR~'/2, Because X = UyR'/?, equation (1.6) is equivalent to

(21) fipLs(D,v) = Uo(Ip + vB) ™ Ugy.

The symmetric matrix B has spectral representation B = I'AI" where the eigen-
vector matrix satisfies I'I' = I'lY = I, and the diagonal matrix A = diag{);} gives the
ordered eigenvalues with 0 < A\; < Ag < --- < A,. This eigenvalue ordering, the reverse of
the customary, is used here because the eigenvectors associated with the smallest eigen-
values largely determine the value and performance of candidate estimator iprs(D,v).
Let U = UgT'. It follows from (2.1) that

(2.2) ﬂpLs(D, l/) = U(Ip + I/A)——lU’y.
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The columns of the matrix U constitute the orthonormal penalty basis for the regression
space determined by the penalty matrix D : U'U = I, and M(U) = M(X).

Variational characterization of U. Alternatively, the successive columuns uy,us,. ..,
up, of the penalty basis matrix U may be defined through their variational properties:

e As above, let Uy = XR~!/2 provide an initial orthonormal basis matrix for the
regression space M(X).

e Find a unit vector u; = Upy in M(X) that minimizes the penalty |D(X'X)~!
X'uy|?. This reduces to finding the p x 1 unit vector - that minimizes [DR™1/2v|? =
v'By. The desired minimum penalty vector is thus uy = Uy, where «; is the j-th
column of the eigenvector matrix T

e Find a unit vector us = Upy in M(X) that minimizes the penalty |D(X’'X)™!
X'us]? subject to the constraint that uy is orthogonal to uy. This reduces to finding the
p X 1 unit vector v orthogonal to ; that minimizes |[DR~Y/24|> = 4'B7y. The desired
minimum penalty vector is thus us = Upye.

¢ Continue sequential constrained minimization to obtain the penalty basis matrix

(23) U= (Ug"}’l, U()")lg, seey U()")’p) = Uor

In the one-way layout under consideration, (X'X)™X'u; extracts the components of
basis vector uy, that are associated with the p factor levels. The penalty for this extracted
vector is

(2.4) DX X)X us? = | DR = 7By = M.

‘When the penalty matrix is a d-th difference operator, the preceding variational char-
acterization of U explains intuitively why its successive column vectors are increasingly

wiggly.

2.2 From PLS to monotone shrinkage estimators

Fix D so that the penalty basis U is determined. Let z = U’y and let f(») denote
the column vector (1/(1+vA1), 1/(1 +vA2),...,1/(1 4+ vAp)), with the understanding
that f(oo) = limy_o f(v). The distribution of z is N,(&,021,), where & = U’u. The
PLS estimator of ¢ implied by expression (2.2) is ‘

(2-5) éprs(D,v) =U'fiprs(D,v) = f(v)z,

where the multiplication of vectors in the expression to the right is performed compo-
nentwise as in the S language. Equivalently,

(2:6) fipLs(D,v) = Ulprs(D,v) = U diag{f(»)}U'y.

The structure of representation (2.6) suggests a larger family of candidate estimators
for p. Let

(2.7) Fus={f€0,1P:fr> f22>--- fp}
and let

(2.8) éms(D,f)=fz for f€ Fus.



906 RUDOLF BERAN

The candidate monotone shrinkage (MS) estimators for u associated with penalty matrix
D are defined by

(2.9) fas(D, f) = Ubus(D, f) = U diag{f}U'y  for f€ Fus.

It follows from (2.6) that the candidate PLS estimators are a proper subset of the MS
family in which the shrinkage vector f is restricted to the form {f(v):v € [0, oc]}.

The next section develops three good reasons for considering monotone shrinkage
estimators. First, for every candidate PLS estimator there is an MS estimator whose
risk is at least as small. Second, minimizing the estimated risk of candidate MS or PLS
estimators over all shrinkage vectors permitted by their definitions turns out to minimize
asymptotic risk over the respective classes of candidate estimators. Third, computation
of adaptive MS estimators is faster than computation of their adaptive PLS counterparts.

2.3 FEstimated risks and shrinkage adaptation
For any vector h, let ave(h) denote the average of its components. Define the
function

(2.10) plf,€2,0%) = avelfZo? + (1 — )27 for fe[0,1].

Because |fips(D, f) — ul? = |fz — £|?, it follows that the normalized quadratic risk of
the candidate MS estimator is

(2'11) R(ﬂMS(D) f)v/'l‘a 02) =p(fv‘$2’02) for fe€ Fus.

In particular, the risk R(fiprs(D,v), u,02%) of the candidate PLS estimator, expressed
in the original coordinate system by equation (1.9), is simply p(f(v), &2, o2).

The risk function p(f,£2,02) depends on the unknown parameters £2 and 2. Having
obtained a variance estimator 62, we may estimate ¢2 by 22 — 42 and hence p(f,£2,02)
by

(2.12) (D, f) = ave[f?5% + (1 ~ f)*(2* — 6%)].

Expression (2.12) expresses in canonical form the Mallows risk estimator (1.10).

The following definitions carry out several strategies for estimating the variance o

o The least squares variance estimator. The least squares variance estimator 62 5 =
(n—p)~ |y — firs|? is unbiased and is consistent for 02 when n — p tends to infinity.

e The first-difference estimator. This estimator, 6%, = [2(n — 1)] 71 >0 (v —
yi_1)?, was treated by Rice (1984). It is consistent for 02 when n tends to infinity
and the bias lim,_,0o[2(n — 1)]7* 30 o (i — pi-1)? = 0. Similar estimators may be
constructed from higher-order differences of y.

The next two variance estimators make use of the penalty basis U. Choose U so that
the concatenated matrix (U | U) is orthogonal. Set z = U’y in analogy to the earlier
z=U'y.

e The high-component variance estimator. The strategy of pooling sums of squares
in analysis of variance suggests

2.

p p
213)  bh=(m-97'| Y A+ | =m-97"| DY F+ly-pwsl|,
1=q+1 i=q+1
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where ¢ < min{p,n — 1}. The bias of 6% is (n — ¢)~1 g1 &2. Consistency of 6% is
assured When this bias tends to zero as n — ¢ tends to 1nﬁmty When ¢ = p < n, the
estimator 6% reduces to 6% S-

e The robust high-component variance estimator. Let w denote the vector obtained
by concatenating {2;:9 + 1 < i < p} with Z. Robustness theory suggests the estimator

(2.14) 6re = median{jw;|:1 < j < n — q}/®~(.75)

for o, where <I> ! is the standard normal quantile function. Under model (1.2), 6%
approaches o2 in probability when n — ¢ is large and the high order components of ¢ are
small.

Let § = (2% — 62)/22. The risk estimator 5(D, f) in (2.12) can be rewritten in the
form

(2.15) p(D, f) = ave[(f — §)22%] + 6 ave(§).

For fixed penalty matrix D, the shrinkage-adaptive PLS(D) estimator is defined to be
llMS(Da 0)7 where
(2.16) p = argmin p(D, f(v)) = argmin ave[(f(v) — §)?2].
vef0,00] ve[0,00 -

Computation of ¥ is thus a weighted least squares problem that can be solved with the
S-Plus function nls in the manner exhibited on p. 244 of Venables and Ripley (1999).
The PLS fits plotted in the third row of Fig. 1 were obtained in this fashion.

Similarly, for fixed penalty matrix D, the shrinkage-adaptive MS(D) estimator is
defined to be fiprs(D, fars), where

(2.17) fus = argmin p(D, f) = ?rgminave[(f — §)?2].

f€Fus €Fms

To facilitate this minimization, let H ={h € RP:hy > hy > --- > hp} and let

A

(2.18) h= argmin ave[(h — §)%2].
eH

Then f MS = h+ That is, each component of f Mms is the positive part of the correspond-
ing component of A. For a proof, see Beran and Diimbgen (1998). Computation of A
is a weighted isotonic least squares problem that can be solved with the pool-adjacent-
violators algorithm (cf. Robertson et al. (1988)). The MS fits plotted in the last row of
Fig. 1 were obtained in this fashion. Computation is faster for MS(D) than for PLS(D).
S-Plus code for the examples in this paper is available from the author.

The following theorem shows that adaptation works in the sense that minimizing
estimated risk over either the MS or PLS shrinkage class for fixed D succeeds in mini-
mizing risk asymptotically over that class. The result makes no smoothness assumptions
on the unknown mean vector y and follows from Theorems 2.1 and 2.2 in Beran and
Diimbgen (1998).

THEOREM 2.1. Let F be any subset of Fars that is closed in [0,1]P. In particular,
F could be either the PLS shrinkage class {f(v):v € [0,00]} or the monotone shrinkage
class Fus. Suppose that 62 is consistent in that, for every r > 0 and 02 > 0,
(2.19) lim sup E|§%—0? =0.

P70 ave(£2)<o?r
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Let V(f) denote either the loss L(i(D, f), ) or the estimated risk p(D, f). Then, for
every penalty matriz D, every r > 0, and every o > 0,

(2.20) lim  sup  Esup|V(f)—p(f,&%0%)|=0.
JFEF

P00 ave(€2)<o?r
Moreover, if f = argming. x p(D, f), then

(2:21) lim  sup |R(ﬂ(D,f>,u,a2)—?ggR(ﬂ(D,f),u,ﬁ)r=0-

P ave(u?)/o2<r

By (2.20), the loss, risk and estimated risk of a candidate estimator converge to-
gether asymptotically. Uniformity of this convergence over F makes the estimated risk
of candidate estimators a reasonable surrogate for true risk or loss. By (2.21), the risk
of the shrinkage-adaptive estimator (D, f ) converges to that of the best candidate esti-
mator. These conclusions break down when the class of shrinkage vectors F is too large
in a covering number sense. In particular, it does not hold if F = [0,1]?, as shown in
Beran and Diimbgen (1998).

Remarks. Condition (2.19) holds for the variance estimator 624 if n — p tends to
infinity with p. Asymptotic results for other variance estimators are given in Beran
(1996) and Beran and Diimbgen (1998). The quantity ave(u?)/o? = ave(¢?)/o? in
(2.21) measures the signal to noise ratio. Limits (2.20) and (2.21) both hold without
any restrictions on the smoothness of u. Because the monotone shrinkage class Fyrg is
strictly larger than the generating PLS shrinkage class { f(v): v € [0, 00]}, the asymptotic
risk of MS(D) cannot exceed that of PLS(D).

COROLLARY 2.1. Under the conditions for Theorem 2.1,

(2.22) lim sup E|pD,f)—W)|=0

P ave(£2)<o?r

for W equal to either L(a(D, ), 1) or R(@(D, ), 1, 02).

PrOOF. Equation (2.20) implies that

(2.23) lim sup Esupl|p(D,f)— LD, f),un)| =0,
P00 ave(€2)<o?r  feF

which yields (2.22) for the first choice of W. Because f minimizes p(D, f) over f € F,
equation (2.20) also implies that

2.24 lim sup E|p(D, f) — minp(f,£2,0%)| = 0.
(2.24) L S |6(D; ) — min p(£,£7, %)

Combining this with (2.21) yields (2.22) for the second choice of W.

That the plug-in loss/risk estimator p(D, f) converges asymptotically to the actual
loss/risk of PLS(D) or MS(D) is useful when comparing adaptive estimators on specific
data. For the examples of Fig. 1, the plug-in loss/risk estimates and actual losses for
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MS loss MS plug-in  PLS loss PLS plug-in LS loss LS plug-in

Smooth .0011 —.0068 .0013 —.0066 0372 0455
Wiggly 0111 .0015 .0138 .0072 0372 0456
Very Wiggly 0127 .0092 .0326 .0290 0372 0454

PLS(D,), MS(Dy), and the least squares estimator are shown in Table 1. In scrutinizing
this table, we observe that:

e The plug-in estimated losses for the shrinkage-adaptive MS and PLS estimates
are noticeably smaller than the true losses.

e The plug-in losses indicate correctly the ordering of the true losses for the MS,
PLS and LS estimates.

e The loss of the LS estimator in each of the three examples is .0372, a value
reasonably close to the LS risk 02 = .04. The high-component variance estimator used
in this experiment overestimates the true variance modestly.

3. Penalty matrix adaptation

Section 3.1 analyzes the manner in which the penalty matrix D affects the asymp-
totic risks of adaptive estimators MS(D) and PLS(D). The economy of the penalty
basis in representing the unknown mean vector y is a key factor. Section 3.2 develops
candidate penalty matrices for equally and unequally spaced factor levels and considers
adaptation over both penalty matrix and shrinkage vector. Section 3.3 discusses diag-
nostic plots that display the empirical economy of candidate penalty bases and considers
an alternative to plug-in estimates for the loss or risk of adaptive estimators.

3.1 Role of an economical penalty basis

As will be seen, the risk of the shrinkage-adaptive PLS or MS estimator for u is
relatively small if all but the first few components of £ = U’y are very nearly zero.
In this event, we say that the columns of the matrix U provide an economical basis
for the regression space M(X). The benefit of using an economical regression basis is
clear heuristically. In that case, we need only identify and estimate from the data the
relatively few non-zero components of £, using the naive estimate zero for the remaining
components. The quadratic risk then accumulates small squared biases from ignoring
the nearly zero components of £ but does not accumulate the many variances that would
arise from an attempt to estimate these unbiasedly.

An idealized formulation of basis economy enables mathematical analysis of how
economy affects risk. For every b € [0,1], every r > 0, and every o2 > 0, consider the
projected ball

(3.1) B(r,b,0%) = {¢&:ave(¢?)/0? < r and & = 0 for i > bp}.

Suppose that the regression basis U associated with penalty matrix D is economical in
the formal sense that the transformed mean vector ¢ lies in B(r,b,0?) for some small
value of b and some finite positive value of r. Though this description is too simple
to serve as a complete definition of basis economy, it yields the following quantitative
results about the effect of basis economy on the risk of estimators of y.
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THEOREM 3.1. Fiz the penalty basis U by choice of D. For every b € [0,1], every
r > 0, and every o2 > 0, the asymptotic minimaz quadratic risk over all estimators of p
18

(32) lim II}f sup R(ﬂﬂ 22 02) = 0'27"b/(’l" + b)
P—0 Lt ¢ecB(r,b,a?)

The . shrinkage-adaptive estimator fiprs(D, st) achieves asymptotic minimaz bound
(3.2) in that

(3.3) lim  sup R(ims(D, fus),p,0%) = o*rb/(r +b)
P00 ¢ B(r,b,02)

for every possible b, r, and o2.

Limit (3.3) follows from Theorem 4 in Beran (2000). As discussed in that paper,
equation (3.2) is a special case of Pinsker’s (1980) asymptotic minimax bound. Note
that (3.3) establishes more than formal asymptotic minimaxity of shrinkage-adaptive
estimator MS(D). When b is small, the right side of (3.3) is much smaller than the risk
o2 of the least squares estimator firs. To the extent that estimator PLS(D) approximates
estimator MS(D), its performance also benefits strongly from economy of the penalty
basis. This phenomenon underlies the very similar appearance of PLS(D,) and MS(Dy)
in the first column of Fig. 1.

3.2 Candidate penalty matrices and adaptation

The ideal choice of penalty basis U would have its first column proportional to the
unknown mean vector u so that only the first component of & would be nonzero. Though
unrealizable, this ideal choice indicates that prior information or conjecture about u can
be exploited in devising the penalty matrix D that generates the penalty basis. The
discussion in this section relates prior notions about the local behavior of the mean
function m to the construction of reasonable candidate penalty matrices.

Difference operators. Consider the important case when the factor level vector
s = (81, 82,...,5p) has equally spaced components. To define the d-th difference matrix
Dy, consider the (p — 1) X p matrix A(p) = {6; ;} in which & ; = 1, 6; ;41 = —1 for every
7 and all other entries are zero. Then,

(3.4) D, =A(p) and Dyg=A(p—-d+1)D41 for 2<d<p.

It may be verified that the (p — d) x p matrix D, annihilates powers of s up to power
d — 1 in the sense that

(3.5) Dgs* =0 for 0<k<d-1.

Moreover, in row ¢ of Dy, the elements not in columns 4, ¢ + 1,...7 + d are zero.

The penalty term in (1.5) is proportional to |DB|?> where 8 = m(s). When m
behaves locally like a polynomial of degree d — 1, property (3.5) and the subsequent
remark about zeros entail that |Dy8| is small. We may therefore expect that both
PLS(Dg4) and MS(Dg) will favor fits with local polynomial behavior of degree d — 1.
This implicit preference is appropriate whenever m has such local polynomial behavior.
The success of fits based on penalty matrix Dy in the first column of Fig. 1 illustrates
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the point. We note that normalizing the row vectors of Dy to have unit length does not
change the corresponding penalty basis U. However, (3.5) breaks down for k£ > 1 when
the components of s are not equally spaced.

Local annihilators. To devise useful candidate penalty matrices for arbitrary factor
levels s € RP and for other notions about m, we draw on the mathematical interpretation
of (3.5) as an orthogonality property. Let go, g1,...,94—1 be a given set of real-valued
functions defined on the real line. We hypothesize that the mean function m behaves
locally like a linear combination of the {gx:0 < k < d — 1}. Local polynomial behavior
is the special case where gi(s;) = s¥ for every k.

For each 7 such that 1 < ¢ < p— d, assume that the d vectors {{gx(s:),-- -, gk(8i+d):
0 < k < d — 1} are linearly independent in R%t1. This is a condition on the functions
{gr} that is satisfied, for instance, when gx(s;) = s¥. Let G; denote the d-dimensional
subspace of R4t that is spanned by these vectors. Define the (p—d) x p local annihilator
matrix Ag = {a; ;} as follows: In the i-th row of A4, the subvector {a; ;:1 < j < i+ d}
is the unit vector in R%1, unique up to sign, that is orthogonal to G;. The remaining
elements of Ay are zero.

THEOREM 3.2. Let gi(s) = (gr(s1),9x(s2),-..,9%(sp))'. Each row vector of the
local annihilator matrix Ag has unit length and ~

(3.6) Agge(s) =0 for 0<k<d-1.

Proor. The definition of A4 ensures that its rows have unit length and

P i+d
(37) Zai,jgk(sj) —_ Zai,jgk(sj) =0 for 0 < k < d—1.
j=1 g=i

Of particular utility as the generalization of Dy for unequally spaced factor levels
is the local polynomial annihilator. This is obtained by setting gi(s;) = sF in the
definition of A4. Thus, in the i-th row of the local polynomial annihilator, the subvector
{a;;:i < j < i+ d} is the basis vector of degree d in the orthonormal polynomial basis
on the factor levels (s;,...,8i+4). All other elements in the row are zero. The S-Plus
function poly enables computation of the local polynomial annihilator in a numerically
stable way for d up to 50 or so. When the components of s are equally spaced, the local
polynomial annihilator A; becomes a scalar multiple of the d-th difference matrix Dy.
Of course, local polynomial A; is proportional to D; for every factor level vector s.

Remark. A referee kindly pointed out that the foregoing discussion of annihilators
can be linked to the algorithm for L-splines described at the end of Heckman and Ramsay
(2000). Let m®) denote the j-th derivative of m and let L be a differential operator such
that Lm = Zj;é ajm(j ). The set of all m such that Lm = 0 is a linear space of dimension
d. Let go, 91,...,94-1 denote a basis for this space. The construction of the sparse
matrix Ag in Theorem 3.2 follows from the Heckman and Ramsay algorithm by setting
@', D and U in their notation to Agq, identity matrix and (go(s), g1(s),---,9a-1(s)) in
the present setting.
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Fig. 2. Using penalty matrices D3 and local polynomial A3 respectively, each row displays
adaptive PLS and MS estimates for conditional mean electrical usage and the associated basis
economy plot.

D3 penalty Az penalty
PLS plug-in loss —33.55 —42.95
MS plug-in loss —35.57 —42.99

Figure 2 exhibits competing PLS and MS estimates for mean electrical usage as
a function of temperature. The data is described in Simonoff (1996). We estimate
mean electrical usage conditional on the observed temperatures, whose distinct values
are not equally spaced. The variance is estimated by 625. Because the trend in the
data appears to be roughly quadratic, we expect that MS and PLS fits generated with
the local polynomial annihilator A3 as penalty matrix will have relatively low estimated
risks. This turns out to be the case. The first row of Fig. 2 gives the PLS and MS fits
when the penalty matrix is D3 while the second row gives the corresponding fits when
the penalty matrix is local polynomial As. The plug-in loss/risk estimates for these
competing fits are shown in Table 2. In sharp contrast, the loss/risk estimate for the
least squares estimator of p is 129.70.

The negativity of the risk estimates in this table is an artifact of the small regression
space dimension, p = 37. The ordering of the estimated risks matches the visual quality
of the competing fits in Fig. 2. In this example, MS does not improve significantly upon
PLS. However, choosing the penalty matrix to handle unequal spacing of the design
points is clearly beneficial. The basis-economy plots in the third column of Fig. 2 exhibit
the superior empirical economy of the local polynomial Az penalty basis relative to the
D3 basis.
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Fig. 3. Row d displays the shrinkage-adaptive PLS(D,;) and MS(Dy;) estimates for mean
melanoma incidence and, in the third column, the associated basis-economy plot.

Adaptation over penalty bases. Having devised a set D of candidate penalty matrices,
we may use estimated risk to select an empirically best PLS or MS estimator by extending
the adaptation method described in Section 2. Over shrinkage class 7 and penalty matrix
class D, the fully adaptive estimator of y is defined to be fip r = i(D, f), where

(38) (D, f) = argmin (D, f).
DeD,feF
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d=1 d=2 d=3 d=4
PLS(Dg) plug-in loss  .0310 .0204 .0326 .0349
MS(Dy) plug-in loss 0165 .0166 .0194 .0230

If the cardinality of D is o(p'/?), F is a closed subset of Fys, and E|6? — o?| =
O(pl/ %), then Theorem 2.1 and Corollary 2.1 may be extended to justify the simultaneous
adaptation in (3.8) over both f and D. The extension follows from the error bounds
established in Theorems 2.1 and 2.2 of Beran and Diimbgen (1998). Justifying adaptation
over larger classes of penalty matrices is an open question. Because local polynomials of
degree up to 6 or so approximate a wide range of smooth mean vectors, adaptation over
large D need not be advantageous.

Figure 3 exhibits competing adaptive PLS and MS estimates for mean melanoma
incidence in males based on measurements for the years 1936 to 1972 and using the first-
difference variance estimator %,. The data is given on pp. 199-201 of Andrews and
Herzberg (1985). The first two columns in Fig. 3 display linearly interpolated PLS(Dg)
and MS(D,) fits to the data, the candidate penalty matrices being {Dg:1 < d < 4}.
The plug-in loss/risk estimates for these competing fits are showen in Table 3.

The loss/risk estimate for the least squares estimator of g, which coincides here
with the raw data, is .1165. It is not too surprising that the PLS(Ds) and MS(D;)
estimators have relatively low estimated risk among this group of competing shrinkage-
adaptive estimators because the underlying trend in the melanoma data is roughly linear.
The plotted shrinkage-adaptive estimators capture ripples in melanoma incidence that
are associated with the sunspot cycle. It is notable that the competing adaptive fits in
Fig. 3 are visually similar, even though their estimated risks differ. Heckman and Ramsay
(2000) obtained similar fits to this data with continuous-spline penalized least squares,
using differential penalty operators analogous to Dy and choosing penalty weight by
generalized cross-validation or by equivalent degrees-of-freedom. Their treatment also
considered a penalty differential operator that annihilates sinusoids of specified frequency.

The third column in Fig. 3 plots the components {|z;|!/?} against i for each of the
four penalty bases considered. Such diagnostic plots will be called basis-economy plots.
The square root transformation reduces the vertical range and ‘makes more visible the
values near zero. The purpose of a basis-economy plot is to approximate the unobservable
ideal plot of the {|&|'/2} against i so as to assess the economy of the penalty basis. For
the melanoma. data, the penalty basis generated by Ds is empirically the most economical
in Fig. 3. This finding is consistent with the ranking of estimated risks described above.
At the same time, all four penalty matrices {Dg4: 1 < d < 4} yield similar looking fits.

3.3 Diagnostic tools

The foregoing theory and examples have identified two key factors that govern the
risk of PLS and MS estimators. The first and more important factor is the economy
of the basis U generated by the penalty matrix D. The second factor is the extent
to which adaptive monotone shrinkage or penalized least squares shrinkage is able to
exploit whatever economy exists in the chosen basis U. Flexibility in the shrinkage
strategy becomes particularly important when, as columns two and three of Fig. 1, high-
frequency details in the unknown mean entail that strict economy does not hold.

For a given penalty matrix, a comparative shrinkage-vector plot displays, with linear
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Fig. 4. On the Very Wiggly data, row d displays the shrinkage vectors for estimators PLS(Dy)
(solid interpolation) and MS(Dg) (dashed interpolation), the basis economy plot, and the ideal
basis economy plot.

interpolation for visibility, the components of the adaptively chosen shrinkage vectors
f pr.s and fMS Setting such a plot next to the basis-economy plot enables one to assess
how well adaptive MS or PLS estimation exploits the degree of economy present in the
penalty basis. For the Very Wiggly data described in the Introduction, the first two
columns in Fig. 4 display the shrinkage-vectors and basis-economy plots generated by
penalty matrices D; through Dy4. The Dy basis appears more economical than the other
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three penalty bases, but not much more than the D3 basis. However, for either the Dj
or D, basis, adaptive PLS does a poor job of mimicking adaptive MS. This phenomenon
underlies the inability of estimate PLS(D,) in Fig. 1 to recover the sinusoidal component
of trend. The third column of Fig. 4 plots the actual components of £, which are available
here because the data is artificial and u is known. It is gratifying that the empirical basis-
economy plots in the middle column capture the essential features found in the ideal plots
of the third column.

Feedback about which nonparametric regression procedure to use in a particular
data analysis can come from estimated performance summaries as well as from diagnostic
plots. A broadband diagnostic approach is surely more effective than any single tool.
Plug-in estimated losses sharpen our scrutiny of the fits and diagnostic plots in Figs. 1
to 4. However, the discussion accompanying Fig. 1 indicated that plug-in estimated
loss/risk for an adaptive PLS or MS estimate tends to underestimate true loss. We
therefore consider another approach to estimating the loss or risk of a general estimator
i = pi(y). Let g(y) = p(y) — y. If the function g satisfies assumptions detailed in Stein
(1981), then the risk of 4 under the Gaussian model described in the Introduction is

(3.9) R(,p,0%) =0 + E |20°n™1 > 8g:(y)/By: + n " g(w)|?| -

i=1

The implied estimator of loss or risk is

n
(3.10) L(p) = 6% +26*n"1 ) 8gi(y)/0yi + n g (v) >
i=1
When fi(y) lacks a tractable closed form, the partial derivatives needed in (3.10)
may be approximated numerically. Let v; denote the vector in R™ whose i-th component
is 1 and whose other components are 0. Then, for small real values of 6,

(3.11) 89i(y)/0ys = 6 Hgs(y + 6ui) — gi(y)], 1<i<n.

Computing these difference quotients requires computing i(y) = y + g(y) and the n
perturbed estimators {fi(y + 6v;):1 < i < n}.

Sometimes the Stein loss/risk estimator in (3.10) has a closed form expression.
For the candidate estimators fiprs(D,v) or fims(D, f), the estimator (3.10) reduces to
p(D, f(v)) or p(D, f) respectively. For either PLS(D) or MS(D), the loss, the risk, and
the plug-in loss/risk estimator converge together as p tends to infinity; Theorem 2.1 and
Corollary 2.1 give the details. However, the experiment reported in Section 2.3 indicates
that the rate of convergence may not be swift and that plug-in loss/risk estimators may
underestimate true loss.

Alternatively, we can construct by numerical approximation the Stein loss/risk es-
timator (3.11) for the shrinkage-adaptive estimators PLS(D) and MS(D). Does this
approach produce better estimates of loss than the plug-in method? For the examples
of Fig. 1, where the penalty matrix is Dy, the approximate Stein loss/risk estimate ob-
tained from (3.11) with § = .0001 may be compared with their plug-in counterparts and
the true losses (Table 4). In this table, the Stein and the plug-in estimates for the loss
of MS(D,) and PLS(D4) are close; their ranking is the same; and the former is only
slightly closer to the true loss in most cases. There is no compelling reason in this exper-
iment to prefer the Stein loss/risk estimates over their computationally simpler plug-in
counterparts.
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MSloss MS Stein  MS plug-in  PLSloss PLS Stein PLS plug-in

Smooth .0011 —.0061 —.0068 .0013 —.0061 —.0066
Wiggly 0111 .0031 .0015 0138 .0076 .0072
Very Wiggly 0127 .0100 .0092 0326 .0294 .0290
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