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Abstract. Regression function estimation from independent and identically dis-
tributed data is considered. The L2 error with integration with respect to the design
measure is used as an error criterion. It is shown that suitably defined local polyno-
mial kernel estimates are weakly and strongly universally consistent, i.e., it is shown
that the L, errors of these estimates converge to zero almost surely and in Ly for all
distributions.
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1. Introduction

1.1 Nonparametric regression function estimation

Let (X,Y), (X1,Y1), (X2,Y2),... be independent identically distributed IR? x IR-
valued random vectors with EY? < oco. In regression analysis we want to estimate ¥
after having observed X, i.e. we want to determine a function f with f(X) “close” to Y.
If “closeness” is measured by the mean squared error, then one wants to find a function
f* such that
(1.1) E{|f"(X)-YP}= min E{|f(X) — Y%}

Let m(z) := E{Y | X = z} be the regression function and denote the distribution of X
by u. The well-known relation which holds for each measurable function f

(1.2) E{|f(X) - Y|’} = E{lm(X) - Y|’} + / |f (z) — m(z)[* u(de)

implies that m is the solution of the minimization problem (1), and for an arbitrary f,
Ly error [|f(z) — m(z)|?u(dz) is the difference between E{|f(X) — Y|?} and
E{|m(X) — Y|?*}—the minimum of (1.2).

In the regression estimation problem the distribution of (X,Y") (and consequently m)
is unknown. Given a sequence D,, = {(X1,Y1),...,(Xn, Yn)} of independent observations
of (X,Y), our goal is to construct an estimate m,(z) = my(z,D,) of m(z) such that
the Ly error [ |my(z) — m(z)|?u(dz) is small.
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879



880 MICHAEL KOHLER

1.2 Universal consistency

A sequence of estimators (my,)nen is called weakly universally consistent if
E [ |mn(z) — m(z)]?u(dz) — 0 (n — oo) for all distributions of (X,Y) with EY? < oo.
It is called strongly universally consistent if [ |m,(z) — m(z)|?u(dz) — 0 (n — o0)
a.s. for all distributions of (X,Y) with EY? < oo.

Stone (1977) first pointed out that there exist weakly universally consistent estima-
tors. He considered k,-nearest neighbor estimates

k(3
(1.3) mn(z) = Wni(z) Y
i=1
where
(14) Wn,,-(a:) = Wn’i(ﬁﬂ, X1, ey Xn)
is one if X; is among the k,-nearest neighbors of z in {X3,...,X,} and zero otherwise,

and where k, — o0 and k,,/n — 0 (n — 00). The strong universal consistency of nearest
neighbor estimates has been shown in Devroye et al. (1994).

Estimates of the form (1.3) with weight functions (1.4) are called local averaging
estimates. Kernel estimates belong to the class of these estimates. There

. X (:c ;an>

n IE——XJ'
Pk ()

(0/0 = 0 by definition) for some kernel function K : IR — IRy and bandwidth A, > 0.
Another example of local averaging estimates are partitioning estimates, which depend
on a partition P, = {A, 1,An2,...} of IR®. There the weights (1.4) are defined by

T4, (2)(X3)
i1 Lan @) (X5)’

where An(z) = An,j if z € An; and I, ; denotes the indicator function of A, ;.

The weak universal consistency of kernel estimates has been shown under certain
conditions on h, and K independently by Devroye and Wagner (1980) and Spiegelman
and Sachs (1980). The corresponding result for partitioning estimates has been obtained
by Gyorfi (1991). The strong universal consistency of kernel and partitioning estimates
for suitably defined kernels, sequences of bandwidths and sequences of partitions has
been shown by Walk (2002). Various results concerning consistency of variants of kernel
and partitioning estimates can be found in Devroye and Krzyzak (1989), Nobel (1996),
Gyorfi and Walk (1996, 1997) and Gyorfi et al. (1998).

It is easy to see that the partitioning estimate minimizes the so—called empirical Lo

Wn’,'(.’b) =

risk
1 n
(15) =S - VP
i=1
over the class of all real-valued functions f which are piecewise constant with respect

to P,. Least squares estimates are defined by minimizing the empirical Ly risk over
general classes of functions (consisting e.g. of piecewise polynomials). The weak and
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strong universal consistency of various least squares estimates has been shown in Lugosi
and Zeger (1995) and Kohler (1997, 1999).

Instead of minimizing the empirical Lo risk (1.5) over some small class of functions
one can also add a penalty term to (1.5) which penalizes the roughness of a function
(e.g. a constant times the squared integral of the second derivative of f) and minimize
the resulting sum over basically all functions (see Eubank (1988) or Wahba (1990) for
details). The strong universal consistency of such smoothing spline estimates has been
shown in Kohler and Krzyzak (2001).

1.3 Local polynomial kernel estimates
It is easy to see that the kernel estimate

s K (x X; ) Y,
my(z) = ngle( J)

satisfies for each z € IR%

3 2o - YiPK () = g S e v (T,

Instead of fitting locally a constant to the data, the local polynomial kernel estimate fits
locally a polynomial of some fixed degree M to the data, i.e., it is defined by

(1.6) Mn(z) = P ()
where

(1‘7) ﬁw() = ﬁz(:Dn) €Fum

= Z js,.oeja” (x(l))jl teeet (‘L'(d))jd 2 Q4y,.05a € R
0<j1,e. i faSM

satisfies
]. i ~ 2 :L""X»L . 2 X — X
(18) E;Ipx(Xz)—KlK(T) pxg;%ZIpm vex (S30).

Local polynomial kernel estimates have been considered by many authors, see e.g. the
monographs Héirdle (1990), Korostelev and Tsybakov (1993) and Fan and Gijbels (1996)
and the literature cited therein.

1.4 Main results

As defined in the previous subsection, local polynomial kernel estimates are in gen-
eral not weakly consistent, even if the regression function is smooth and the distribution
of X is nice (Devroye (1998), personal communication): Let X be uniformly distributed
on [0,1], Y be uniformly distributed on {—1,1} and assume that X and Y are indepen-
dent. Then it can been shown that the local linear estimate m,, defined by (1.6)—(1.8)
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with M = 1 and K = I;_y  satisfies E [ |my(z) — m(z)[*1(dz) = oo for all n and all
hn > 0. The proof of this fact uses that if an interval of length h,, contains exactly two
of the X;’s, if the corresponding Y;’s are different and if all other X;’s are more than
hn away from this interval, then the estimate will be on this interval equal to the line
which interpolates the two data points with z-values in this interval. This line can have
an arbitrary large slope and therefore also the estimate can take arbitrary large values
on this interval.

In this paper we modify the definition (1.6)—(1.8). We minimize in (1.8) only over
those polynomials whose coeflicients are bounded in absolute value by some constant
which depends on n and tends to infinity for n tending to infinity. We show that this
modified local polynomial kernel estimate is, under some mild conditions on the kernel
and the bandwidths, weakly and strongly consistent for all distributions of (X,Y) with
X bounded and Y square integrable. Furthermore we show, that if we set this estimate
to zero outside of some cube which depends on n and tends to IR? for n tending to
infinity, then the resulting estimate is weakly and strongly universally consistent.

1.5 Main idea in the proof

Let g : R? — IR be a square integrable function. Under some regularity conditions
on the kernel the generalized Lebesgue density theorem implies that for py-almost all x
the pointwise error |g(z) — m(z)|? can be approximated for sufficiently small A > 0 by

Flate) = ma)P o (252 ) i)
fomk (52w
The nominator in the above integral is equal to
£ {1900 - meoP gk (257 ) ]
o{soe ()] e (5))

By the strong law of large numbers this term is close to

}l—zZﬂYi - 9(X) — |Yi - m(Xi)|2)%K (m —th> ’
i=1

if n is large. In the definition of the local polynomial kernel estimate the function g is
chosen such that the last term is small.

The main difficulty in the proof is to show that the previous approximations also
hold if g is chosen in some data—dependent way from some fixed set of polynomials.

To prove that in this case the Lebesgue density theorem still holds we use that in the
definition of the estimate we consider only polynomials, whose coefficients are bounded
by some data independent constant. This implies that these polynomials satisfy some
Lipschitz condition for some constant, which doesn’t depend on the data.

To prove that in this case also something similar to the strong law of large numbers
holds, we use techniques from empirical process theory.
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1.6 Notation

IN, IR and IR, are the sets of natural, real and nonnegative real numbers, respec-
tively. I4 denotes the indicator function, card(A) the cardinality of a set A. The natural
logarithm is denoted by log().

The euclidean norm of z € IR® is denoted by ||z||, the components of z are denoted
by 20, ..., (9. For a function f : IR — IR set

Ifllo = sup |f(z)] and |£]|? =/]Rd |f ()| u(dz).

zeR4

For h> 0, z€ R? and K : IR? — IR define

)= 5 (3)

Cg°(IRY) is the set of all real-valued functions on IR? which are infinitely often differ-
entiable and have compact support, supp(X) is the support of the distribution of the
random variable X.

1.7 Outline
The main results are stated in Section 2 and proven in Section 3. In the appendix

a list of some results of empirical process theory, which are used in the proofs, is given.

2. Main results

Let M € INg and B, h,, > 0. Set

Fu(Bn) = Yoo ay,g @Y (@ DY ey, < Ba

0<j1,....Ja<M

For given data D, and z € IR¢ choose

such that
1 <& A
(2:2) = 1Yi = pa(X0) K, (z ~ Xi)
i=1

< f (L §n: IY; — p(X) 2K, (z — Xi) + = ),

T peFM(Ba) \ M ™ n
and set
(2.3) Ma(T) = po(z).

THEOREM 2.1. Let K : Ry — R, be a monotone decreasing and left—continuous
function which satisfies

b- Iz (v) < K(v) < B-Io,py(v) (v € Ry)
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for some 0 <r < R <00, 0<b< B<oco. Define the kernel K : IR — IR by
K@ =K(Jul®) (ueR?).

Let M € INg. For n € IN choose 3,,, hy, > 0 such that

(2.4) Bn— 00 (n— o0),
(2.5) hn B2 —0 (n— o)
and 1
n - hS
(2.6) 7 Tog(n) — 00 (n— o00).

Let the estimate m,, be defined by (2.1)—(2.3). Then

/ |mn(z) — m(z)Pu(dz) -0 (n—00) a.s.
and

E { / (@) — m(:c)|2u(da:)} 50 (n—oo)
for every distribution of (X,Y) with || X|| bounded a.s. and EY? < oco.

In Theorem 2.1 we need boundedness of || X|| to ensure that the estimate is weakly
and strongly consistent. This assumption can be avoided, if we set the estimate to zero
outside of a cube which depends on the sample size n and tends to IR? for n tending to
infinity:

THEOREM 2.2. Let K : R, — IR, be a monotone decreasing and left-continuous
function which satisfies

b-Ijp2(v) < K(v) < B-Ip pe(v) (v €Ry)
for some 0 < r < R < 00, 0<b< B < 0o. Define the kernel K : R® — IR by
K(u) = K(Jul*) (u€R%.

Let M € Ng. For n € N choose Ay, Bn, hy > 0 such that

(2.7) A, — 00 (n—00),

(2.8) Brn— 00 (n— 00),

(2.9) ho-B2-A2M4 0 (n— o0)
and P

(2.10) n by, (n — ).

AL B2 log(n) O

Define my, by (2.1)~(2.3) and set Mn(x) = ma(z) - I_ 4, 4,1¢(z). Then

/]mn(m) —m(z)|?u(dr) -0 (n—oc0) a.s.

and
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B{ [ irn@) - m@)Putda) | -0 (0= o0)

for every distribution of (X,Y) with EY? < oo, i.e., T, is weakly and strongly univer-
sally consistent.

Remark 1. We want to stress that in Theorem 2.2 there is no assumption on the
underlying distribution of (X,Y’) besides EY? < co. In particular it is not required that
X have a density with respect to the Lebesgue-Borel measure or that m be (in some
sense) smooth.

Remark 2. Tt is well-known that one cannot derive a non—trivial rate of conver-
gence result for the Ly error of any estimate without restricting the class of distributions
considered, e.g. by assuming some smoothness property on m (see, e.g., Theorem 7.2
in Devroye et al. (1996) and Section 3 in Devroye and Wagner (1980)). Stone (1982)
showed that local polynomial kernel estimates achieve, in probability, the optimal rate
of convergence if the regression function is k-times continuously differentiable, M > k
and and the distribution of X has a density with respect to the Lebesgue-Borel measure
which is bounded away from zero and infinity.

Remark 3. It follows from the proofs given below that Theorems 2.1 and 2.2 also
hold if the bandwidth A of the estimate is chosen in an arbitrary data-driven way from
some deterministic interval [Rmin(R), hmaz(n)], where hpin(n), Amaz(n) € R4 satisfy
(2.5) and (2.9) with h,, replaced by ha,(n) and (2.6) and (2.10) with h,, replaced by

Remark 4. Let M = 0. Then the kernel estimate satisfies (1.6)—(1.8). It is easy
to see that if one truncates the kernel estimates at height +3,, then this truncated
kernel estimate satisfies (2.1)—(2.3). Hence Theorem 2.2 implies that a modified kernel
estimate, which is truncated at height 43, and is set equal to zero outside of some cube
tending to IR? for n tending to infinity, is weakly and strongly universally consistent. Tt
follows from Devroye and Wagner (1980) and Spiegelman and Sachs (1980) that these
modifications are not necessary in order to get weak universal consistency. Walk (2001)
shows that under suitable assumptions on the kernel and the bandwidth (including the
assumption that the bandwidth doesn’t change for every n) these modifications are also
not necessary to prove strong universal consistency.

3. Proofs
In the proof of Theorems 2.1 and 2.2 we will apply the following lemma.

LEMMA 3.1. Assume that the kernel K satisfies the assumptions of Theorem 2.1.
Then there exists a constant ¢; € IRy such that for oll h > 0 and all distributions p of
X the following three inequalities are valid:

a) For all z € R%:

K h((l) — Z)
= p(dz) < ¢.
B{Ea(z - X0} #) <

b) For all A>1:

1
/[—A,A]d m“(dx) <e - AL
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c) Forall f :R* - R,:

E{f(X)Kn(z — X)}
/ E{Ky(z - X)} p(dz) < e - /f(m)u(dx)

PROOF. a) follows from Lemma 1 in Devroye and Wagner (1980). In order to
prove b) choose z1,...,2x € IR? such that the union of all balls S,.. n(z;) of radius r - h
around z; cover [—A A]? and K < ¢- A% - h=? for some constant ¢ which depends only
on d. Then

1
/[_A,A]d I ACED ) Z/ 5ot BRG]

1 Kp(z — z;)
<Ly [ e s
=5 " 2 s, o Bl — 01
This together with a) implies the assertion of b). ¢) follows from a) and

B(X)Kne-X)} . Kie-z)
/ E{Kh(:l: - X)} 'u'(dx) - /'f(z) E{Kh(z — X)}”(d )ﬂ(d ) O

ProoF oF THEOREM 2.1. Choose A € R4, A > 1 such that supp( 6) C[-A, A}
Let L, ¢ > 0 be arbitrary. Then there exists m. € C§(IR*) such that
J Ime(z) — m(z)|?p(dz) < e. For z € IR set

L if z2>1L
TLzz{z if —-L<z<1L,
~L if z< L.

Set Y =T,Y and YV, = TpY; (i = 1,...,n). Without loss of generality we assume
that n is so large that ||¢]lco < B and L < S,,.
In the first step of the proof we show

(3.1) / Imn(z) — m(z)Pu(dz)

. (XK (£ —
<4. / E{|p=(X) E{[((f)éxlihé)} X) | Dn}p(da:) +c2-(e+ AM4g2  p )

for some constant ¢, which depends only on M and d.
We have

(32) / Imn(z) — m()u(dz)

<2 [ 1pa(z) - ma(o)Pulde) + 2 [ 1e(z) = m(z)Putao)
o E{po(X) — mo(X)PKn. (¢ — X) | Do}
<2c3 [ (o) - mlol - E{Ri (o~ X)) )
B{[pe(X) — m(X)PK, (& — X) | Do}
wf B, (o~ X)) )
E{jm(X) — i (X) K, (z — X) | Du}
wf Bl (o~ X)) o)

p(dz)
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By Lemma 3.1 ¢) the last integral is bounded by ¢; - [ |m(z) — me(z)?p(dz) < cre.
In order to bound the first integral on the right-hand side of (3.2) observe that the
first derivative of any f € Fp(By) is on the cube [~A, A]¢ bounded (with respect
to the euclidean norm) by d- M - (M + 1)2AM'43,. Hence by mean value theorem
|f(z) — f(u)] < c3- AM4B, . ||z — u| for all f € Far(B,) and all z, u € [—A, A]%. Here
c3 is a constant which depends only on M and d. Furthermore by definiton of Far(8,)

sup |f(z)| < (M +1)%-AM2. 8, (f € Faur(Bn))-
ze[—A,Al4d

Because of m, € C§°(IRd) we can assume without loss of generality that these two
relations also hold for f = /.. We conclude that for all z, u € [~ A4, A]¢ with ||z — u <
R h, and all f € Fp(Bn)

[1£(2) — me(z)? — | f(w) — me(u)?|
= [(f(z) — f(w)) + (Me(u) — me(2))] - |f(2) + f(u) — Me(u) — Me()]
<2-c3- AMB, |z —ul-4- (M +1)¢. AM4. 8,
<y APMAB2

From this, together with K}, (xz —u) =0 for ||z — uf| > R - hy,, we get

p —m 2 T — -

_ /E{(lﬁm(w) — () > = pe(X) — Mme(X)|*) Kp, (z — X) | Dn}
E{K,(z - X)}

E{Kp (z—X)|D

E{Kp, (z - X)}

p(dz)

< g AZMd . B2 hy,- n},u(d:c)

=g APM4. B2 h,.

This proves (3.1).

In the second step of the proof we bound E{|p,(X) — m(X)|?Ky, (z — X) | Dn} by
a sum of several terms. For z € IR? define §, € Fr(B,) by Po(u) = me(z) (u € RY).
Then

E{|pz(X) ~ m(X)[*Kh,,(z — X) | Dn}
= E{[Y — po(X)PKp, (¢ — X) | Dn} — E{]Y — m(X)]*Kn, (z — X)}

= B{Y = o(X)PKn, (5~ X) | Da} = (14 = D [¥i ~ pu(X0) P K, (2 — Xo)

i=1
H1+ e (% S 1% = e X P K (5= X0) = = 3 [¥s = £e(X0) P (0 x»)
i=1 i=1

HL+ 9SS e = B0 K (& = X) = (L4 P B{Y — m(X) K (o - X0}

i=1

+((1+€)° = DE{Y — m(X)|*Kp, (z - X)}
1
= ZTJ,n(x)
G=1
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In the next steps we give an upper bound for

Tj,n(x)

B, @ - 201

(3.3)

( €{1,2,3,4}).
In the third step of the proof we show

T4,n($)
E{Kh,(z - X)}

(3.4) u(dz) < (1 +6° = 1) -aE{]Y —m(X)}.

By Lemma 3.1 c¢) we get

T4 ()
B(R. (o = D)

Y TR NS

<(@+9°=1)-er [ E(Y -m(X)P | X = c}u(do)
— (1 + ¢ = 1) B{Y —m(X)P},

which proves (3.4).
In the fourth step of the proof we show

(3:5) lim sup E{Kfs’?x(x—) X)}

< 2¢ (1 + %) 1+ )E{lY - Y} +a(l+e)’ as.

pn(dz)

and

(3.6) liﬂsolipE/ E{ng”(iwz X)}u(da:)

< 2¢y (1 + %) (14 E{lY = Y1’} + c1(1 + €)%

We use the decomposition

T3’n(£17)

=(1+ 6)3;1; 2": [Y; — me(z)|?Kp, (z — Xi) — 1+ )PE{]Y — m(X)|*Kp, (z — X)}

i=1

=1+ e)ﬁ(% AL NCITACES SEIEDE AR NO D NCE X;-))

+(1+e? (% iZIIYi,L — Me(z) | Kp,(z — Xi)—+ éli’},L ~ 11e(X) [ K (% — Xi))

149! (% S Wi = e (KK (£ = X6) = B{[¥; = me(X) K, (@ - X))

i=1

)

+(1+ ) E{|Yz — me(X)PKn.(z — X)} = (1 + )E{|Y — me(X) K, (z - X)})
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+(1+ &) (B{Y — me(X) K, (¢ — X)} = E{]Y — m(X)|* K, (z — X)})
9
= Tjn.
=5
Using (a+b)2 < (1+ 1)a? + (1 +€)b? (a,b € R) we get

1 1<
Tsn(z) < (1 + ;) (14 6)35 E Y; - Y5 LK, (z — X5)
i=1

and
Ts,n(z) < (1 + %) 1+ e)'E{|Y, - YKy, (z— X)}.

Hence by Lemma 3.1 a)

Ts n(z)
Bk, (o - X7H)

< (1 + %) 1+ 6)3% Z Y; =Y .| Efg’;(az;_X;())}u(dx)
i=1 "

(3.7)

1 O
< <1+ E) . (1+6)361-ﬁZ|Yé -—Y,',le,

i=1
and by Lemma 3.1 c)

Tg,n (CL')

(3:8) Bk, (- X7
< (1 + %) (1+¢)? / = {E{IYLE—{IZE l(f —}I){(h)}(m - X)},M(dx)
< (1 + %) -1+ €)' E{lY - Y1|?}.
Furthermore
To,n(x)

= (149123 (Vor — @) ~ (¥ir — e(X)
i=1
(Yi,p — Me(x) + Y5 1 — Me(Xi)) K, (z — X3)

4 7 . su Me(u) — m(v l “ - X
< (1+€)%(2L + 2||Mell o) ]|u—'u||§pR'h,,| e(u) — me(v)] n;Khn(w X;),

which together with Lemma 3.1 a) implies

Tﬁ,n(x) ~ €)4 n . su o () — 7 (0)] -
E{Khn(x——X)}'u(d )S(l-i- ) (2L+2“ elloo) ||u—v|1§pR-h |77 () (V)| - c1.

n
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Because of . € C$°(IR?) this together with h, — 0 (n — co) implies

(39) imsup [ gt ® ) <0
and
(3.10) hrl;l—l—?olipE/ E{K],:G’?f? X)}u(da:) <o0.

Next, we observe

Tr n(z)
Bk, 7( - X)}“(d””)

1 + 6)4 ( Z iy; L - me 12 Khn (SE ) (da:)

E{Kn,(z - X)}"
_ K, (z—-X)

= (1+¢)* (% i Zim — E{Zl,n.}) ,

1==1

The random variables Zy 5,...,Z,  are independent and identically distributed. It
follows from Lemma 3.1 a) that they take, with probability one, only values in an interval
of length ¢;(2L? + 2||m.]|2,). Hence Hoeffding’s inequality together with Borel-Cantelli
lemma imply

1 n
p Z Zin—E{Z1,} >0 (n— o) as.
i=1

This proves

. T n(w)
3.11 lim su : dr) =0 as.
(3.11) mswp | o (o X)}u( )
Furthermore, independence and identical distribution of Z; ,,,..., Z, , imply
T7 n(w)
3.12 E/ u(dz) =0 n € IN).
(312) PR =0 (el

Finally by Lemma 3.1 ¢) and definition of m. we get

Tg’n((L')
E{Kp,(z - X)}
m - m 2 T —
=(1+¢€° Ell e(X; I Kh(é)l_?)"}( X)}M(dx)
< (+9% [ (o) - m(o)Pu(da)

< (14 €)’ce.

p(dz)

This together with (3.7)—(3.12) and the strong law of large numbers implies (3.5) and
(3.6).
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In the fifth step of the proof we show

lim sup E{K’? 7("( z)

lmsup B [ o ?agx x)yHde) <0

u(dz) < and
(3.13) )}

By definition of p,, .
Ton(z) < (1+ 6)35

This together with Lemma 3.1 b) and supp(X) C [~ A, A]¢ implies

TQ’n (SC)

E{Kp (cc—X)}“(dx) <@ +e)3% e A%

which in turn implies (3.13).
In the sixth step of the proof we show

Tl,n(l‘)
(3.14) (K. @ _X)}u(d:c)
gcl( )E{lY YL|}+c11+e)2<1+ ) ZmL Y;|?
+01 (]. -+ E)A Tl(),na
where
(3.15) Tion = sup (E{]YL — f(X)2Kn, (2 — X)}
fEFM(Bn),zeR?

—(1+4¢)- % S Yir — F(X) 2K, (2 — Xi)> .

i=1
We use the decomposition

Tl,n(w)
= E{|Y — po(X)|*Kn, (z = X) | Du} — (1 + E{|Ys — $o(X)* K, (z — X) | Dn}

+(1+€)E{|YL —pz(X)|?Kp, (z—X) | Dn}—(1+€)?L __f:llyi,L — Po(X3) P K, (- X;)
+(1+€)?L V_Zjl|Y L — (X)) PKp (z—X;)—(1+¢€)3L zfjl [Y; — 5z (X)) |2 K, (z— X;).

Bounding the first and third terms on the right hand side as in the fourth step (cf. proof
of (3.7) and (3.8)) we get

T]_’n(w)
E{Ky, (z—-X)}

_<_cl( )E‘{|Y Y2} + er(1+€)? ( ) ZleL Y;[?

p(dz)
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(1+ QE{|Yz — po(X)*Kn, (z — X) | Da}
+/ E{Kn, (@ - X)}

(140 Ty ¥ Be(X0) P, (@ — X0)
- E{Khp,(z - X)}

pldz).

The difference of the nominators in the integral above is bounded by (1 + ¢€) times Tjg,,.
T10,n doesn’t depend on x, hence the whole integral can be bounded by Ti¢,, times

(I+4e€

1
)| B

Applying Lemma 3.1 b) to the last term yields (3.14).
In the seventh step of the proof we show

(3.16) limsupTion, <0 as. and limsupETio, <O0.

n—oo n—oo

To this end let ¢ > 0 be arbitray. Then

P{Tlo,n > t}

=P{Elfe}'M(ﬂn),ze]Rd:

B{Yz ~ FO P, (2 = X0}~ (14 €)1 30 Vo = F(X) K, (2~ %) > t}

i=1

<P{3f € Fu(Br),z€ Re:

E(V; - fOOPEn, (2~ X)} ~ = Sy Wir — [PKn,(a= X))
i ¥e B{Vs — f(X)PKn.(z - X)} ZT¥e

=PQ3f € Fu(Br),z € RE:

B - seorx (55) } - Lo - roor (S5
t.h;{+E{|YL_f(X)|2K(z;X>} " T+e

€ n
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By Lemma A.1 in the Appendix, which uses the notion of covering numbers introduced
in Definition A.1 in the Appendix, the last probability is bounded by

" t-hd e \?
t-hd € 1+¢

8(1+E),g’(X,Y)1> -€Xp | — 64B,8,,21 )

4-EJ\/’1(

where

u—

P

6= {5 R xR R glo0) = [Ty - F@PK (45 (@) € RO x )
for some u € IRY, f € J:M(,Bn)} .

We will show in the eighth step of the proof that

t-hd n (1+¢) BRAPMAN®
(317) M (g 9 o) < (0 )

for some constants cs and cg which depend only on M, B and d. This implies

(3.18) P{Tm,n > t}

n t-hd e \?
(14¢). B2A2M AN\ e \l+e
< —
=4 (c"" t hd P 64B32

ﬁ2 AZMd
2 nhd . ce log (cs(l+e) ﬁ—"t.h )ﬁi
—_— n € n
=4-exp | —log(n?) - BZ2log(n) | 64B(i4e)? nhi .

The assumptions of Theorem 2.1 imply

nhd

22log(n) (n= o)

and for n sufficiently large

2 A2Md

2 )2
calog(05(1+€) t-hd >ﬁ"<6610g(n)5r2z_,0

< (n — o).
nhd nhg

It follows that the right-hand side of (3.18) is summable for each ¢ > 0, hence the Borel-
Cantelli lemma yields the first part of (3.16). In order to prove the second part, let 6 > 0
be arbitrary. Then

ET]Q’.,,, < / P{Tm,n > t}dt
0
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t-hd e \?
n.—o
e (1+4¢€) - B2A2Md\ % € (1 +e)
6+/& 4(05 5 hd | exp GB 2 dt

IA

. (14¢€)-B2AMAN® 64BB2(1 + €)? n-hd 6-¢
=0+4 (c5 5-hd n-hde o B2 64B(1+¢)?
— 6§ (n— o00)

by the assumptions of Theorem 2.1. With § — 0 the second part of (3.16) follows.

In the eighth step of the proof we show (3.17). Therefore we use arguments from the
proof of Theorem 2 in Krzyzak et al. (1996). We have G = {g1 - g2 : 1 € G1,92 € Ga},
where

G ={g: RxR - R: g(z,v) = |[Try— f(@)|?((z,y) € lex]R) for some f € Fp(Bn)}

and

Uu—
hn

ggz{g:IRdeR——»]R:g(:c,y)=K( )((:v,y)EIRdle) forsomeuEIRd}.

The functions in G; and G are bounded on [—A, A]% x IR in absolute value by
(2L2 + 2(Bn(M + 1)2AM9)?) < 482 (M +1)*? A?M 4
and B, respectively. Hence by Lemma A.2 in the Appendix we get

t-hd

1 IR ) 1 = 1 16(1+6)B

8(1+¢€) ’gl’(X’Y)l)
t-hd

-M (64(1 +€)B2(M + 1)2dA2M.d7g2, (X, Y);l) X

If hi(z,y) = |fi(x) — Try|? for some f; : [-A, A]* — IR bounded in absolute value by
Brn(M +1)2AM4 then

%_anlhl(Xi,Yi) — ho(X;, V)2

i=1

= %Z lfl(X'L) - TLK + f2(X1,) - TLY;! . |f1(Xz) — fz(Xz)I

i=1

1 n
< (2L + 2B, (M + 1)2AM 9. - Z |f1(Xs) — fo(X3)]
i=1
which implies

N, _t'_h;ii_g (X, V)7
"\16(1+ 9B’ 7"\ )i

t-hd .
<M (16(1 +€)B (2L + 28, (M + 1)dAM~d)"7:M(IBn):X1> .
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Next we need the notion of VC dimension, which is introduced in Defintion A.2 in the
Appendix. Far(8r) is a subset of a linear vector space of dimension (M + 1)¢, hence by
Lemma A.4 in the Appendix

Ve S(M+1)%44+1< (M + 2)d

This together w1th Lemma A.3 in the Appendix implies
2(M+2)¢
4e(M +1)46,AMd
t-hd
16(1 + €)B (2L + 23,(M + 1)2AM-d)

(14 €)p2 4204 20042
(- 0—)

N —t'—h—g‘——g (X, )7} <2
1 16(1+6)B7 1, ? 1 =

<

where ¢7 is a constant which depends only on M, B and d.
Next we bound

t-hd .
M (64(1 +€)B2(M + 1)2dA2M~d’g2’ (X, Y)l) .

By Lemma A.3 in the Appendix we get

t-hd
M (64(1 +€)B2(M +1)2dA2M: 592, (X, Y)1>

2V
2

4eB
<2
- t-hd
64(1 + €)BZ(M + 1)22APMd

2 A2M-dN 2V+
< CB.ME_A_ %2 ,
t-hd '

where cg is a constant which depends only on M, B and d. Hence it suffices to derive a
bound on the VC dimension of the class of all subgraphs of

gz={y:1Rd><lR—>1R=g(x,y)

=K (”—“—;%@E> ((z,y) € R x IR) for some u € ]Rd} .

Since K is left continuous and monotone decreasing we have

— > <
K ( 73 t if and only if ——— h ¢(t)

where ¢(t) = sup{z : K(z) > t}. Equivalently, (z,y,t) must satisfy

2Tz - 2uTz +uTu - h2¢(t) < 0.
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Consider now the set of real functions

Gs={gaprs RIXBRXR—R: gopqs(2,98) =aziz+plz+ys+6
((z,y, ) € R? x R x IR) for some a,7,8 € R, € R%}.

If for a given collection of points {(z;, ¥i, ti) }i=1,..,n & set {(z,y,t) : g(x,y) > t}, g€ Go
picks out the points {(zi,,¥i;,ti,),-- -, (%i,, Yir» i)} then there exist «, B, -y, 6 such that
{(xv Y, 3) : ga,ﬂ,’y,&(x: Y, 8) 2 0} picks out exactly {(IL‘“ s Yiys ¢(ti1))’ RS (1‘1;” Yiys ¢(t‘il))}
from {(z1,v1,9(t1)),---,(%n,Yn,d(tn))}. This shows Vg; < Vi{(y,5):9(2,y,5)>0}:9€G5} -
G5 is a linear vector space of dimension d + 3, hence we can conclude from Lemma A.4
in the Appendix Vg; < d + 3. Summarizing the above results we get

. pd
Nl( t hn ga(XaY)?)

8(1+¢€)’

(o (o QBAPMANTAEDT 1y o) gp pnd D

=\ t-hd c8 t-hd
(L+€)ppAPMa®

= <c5 o tRE

for constants cs and ¢g which depend only on M, B and d.
In the ninth and last step of the proof we finish the proof by summarizing the above
results. By the results of the first and second step we have

[ 1ma(@) = m(o)Pu(da)

Tjn(z)
E{Kp, (z - X)}

4
< cale+ APM4B2h,) +4) p(de).
j=1

Using the results of steps three to seven and $2h,, — 0 (n — c0) one gets

tim sup / (M () — m(z)Pu(dz)

n—o0
<ce+4((1+¢)° — D ElY —m(X)?
+8c1(1+1/e)(1 + ) *E|Y — Y |2 4 4¢;(1 + €)®¢
+4e1(1+1/E)Y — Yz |> + 4c:(1 + €?(1 + 1/)E|Y — Yz|?> as.

With L — oo and € — 0 this implies [ [m,(z) — m(z)]?u(dz) — 0 (n — o0) a.s. The
proof of E [ |my(z) — m(z)]?u(dz) — 0 (n — oo) follows in an analogous way from the
previous results. O

i

PrOOF OF THEOREM 2.2. By definition of m,
[ ma@) ~ m(@) Putdo)
— [ Im(e) ~m(@)Pu(da) + [ m(z)u(do).
[-An,AR]d R [

nyin
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Because of 4, — 0o (n — 00) and [ |m(z)[?u(dz) < co we have
/ Im(@)2(dz) =0 (n— oo).
RA\[-An,An]¢
Hence it suffices to show
/ (@) — m(@)2u(dz) >0 (n— oo)
[_An: n d

a.s. and in L;. This can be done by replacing in the proof of Theorem 2.1 A by A, and
J... by f[_ A An]d " Then one has to show in the seventh step

lim sup Aﬁ ‘T, <0 as. and limsup Ai -ETin <0.

n—o0 n—0o0

To this end one uses

P{A% Ty > t}

t
:P{Tmm > zz}

t-hd e\’
. A2 AZM-dN ©6 ne—g ( )
<afes (I1+¢€)-B2Az exp | - Ade 1+e
(t/A%) - b 64B2;

and proceeds otherwise as before. O
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Appendix

A. Some results of empirical process theory

In this section we list the definitions and results of empirical process theory which
we have used in Section 3. An excellent introduction to most of these results can be
found in Devroye et al. (1996).

We start with the definition of covering numbers of classes of functions.

DEFINITION A.1 Let F be a class of functions f : IR — IR. The covering number
Ni(e, F, 2}) is defined for any € > 0 and 27 = (21,...,2,) € IR*™ as the smallest integer
k such that there exist functions gy, ..., g : R — IR with

1 n
min = " |f(z;) — gi(z;)| < e

1<i<k n 4
Jj=1

for each f € F.
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If ZP = (Zy,...,Zy) is asequence of IR%valued random variables, then N; (¢, F, Z7')
is a random variable with expected value EN; (¢, F, Z7).

LEMMA A.1 (Haussler (1992), Th 2)) Let F be a class of functions f : R? —
[0,B), and let ZP = (Z4,...,2Zy,) be R%-valued i.i.d. random variables. Then for any a,
e>0

LS 1) - Bf ()
P }sup

feF a+ Ef(Z;)

| <ap (N (.7 27) ) e (- 20,

The following lemma is useful for bounding covering numbers of products of func-
tions.

LEMMA A2 (Devroye et al. (1996), Th. 29.7) Let G; and Gy be two families of
real functions on IR® with Igl(z)l < By and |g2(2)| < By for all z € R?, gy € G, and
g2 € Go. Then for any 27 € R%™ and € > 0 we have

Ni(e,{g1- 92 : 91 € G1,92 € G2}, 27") <M (23 ,gl,z?> - M (23 ,92,Z1>

To bound covering numbers we use the following definition of the VC dimension.

DEFINITION A.2 Let D be a class of subsets of IR? and let F C IR%. One says
that D shatters F if each subset of F' has the form D N F for some D in D. The VC
dimension Vp of D is defined as the largest integer k£ for which a set of cardinality k
exists which is shattered by D.

A connection between covering numbers and VC dimensions is given by the following
lemma, which uses the notation Vr+ for the VC dimension of the set

Ft={{(z,t) e R xR : t < f(z)}: f € F}
of all subgraphs of functions of F.

LEMMA A.3 (Haussler (1992) Th. 6) Let F be a class of functions f : R* —
[=B, B]. Then one has for any 2} € IR*™ and any e > 0

Nile, F,28) < 2 (@1 (4653))

The following result is often useful for bounding the VC dimension.

LeMMA A4 (Dudley (1978)) Let F be a k-dimensional vector space of functions
f:IR® = IR. Then the class of sets of the form {x € R : f(z) > 0}, f € F, has VC
dimension less than or equal to k.
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