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Abstract. In this paper we discuss the problem of estimating the common mean
of a bivariate normal population based on paired data as well as data on one of
the marginals. Two double sampling schemes with the second stage sampling being
either a simple random sampling (SRS) or a ranked set sampling (RSS) are consid-
ered. Two common mean estimators are proposed. It is found that under normality,
the proposed RSS common mean estimator is always superior to the proposed SRS
common mean estimator and other existing estimators such as the RSS regression
estimator proposed by Yu and Lam (1997, Biometrics, 53, 1070~-1080). The problem
of estimating the mean Reid Vapor Pressure (RVP) of regular gasoline based on field
and laboratory data is considered.

Key words and phrases: Ranked set sampling, relative precision, REML, simple
random sampling.

1. Introduction

The problem discussed in this paper is motivated by the following practical issue in
the context of the attempt by the Environmental Protection Agency (EPA) of the United
States to evaluate the gasoline quality based on what is known as Reid Vapor Pressure
(RVP). Occasionally, an EPA inspector would visit gas pumps in a city, take samples of
gasoline of a particular brand, and measure RVP right at the spot which produces cheap
and quick measurements. Once in a while, the inspector after measuring RVP at the spot
will ship a gasoline sample to the laboratory for a measurement of presumably higher
precision at a higher cost, thus getting the pair (field, lab). Since usually laboratory
measurements (Y') are much more expensive than field measurements (X) because of
special packaging to be used to ship a gasoline sample from a field to a laboratory, not
all the gasoline samples will be shipped to the laboratory and hence the resulting data
would consist of many field measurements with occasional paired measurements obtained
from both the field and laboratory. Therefore, it never happens at least in our context
that we have lab data without field data.
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As both field measurement X and lab measurement Y are referred to the same
chemical (RVP), it is reasonable to assume that the measurements X and Y have the
common mean, denoted by u, but with possibly unequal variances o2 and 52. Moreover,
when a paired measurement (X,Y) is observed, it is natural that X and Y are correlated
so that (X,Y) is distributed with mean vector pls and variance-covariance matrix X,

where
2
22[2— :Z:I’ ézpa,’% 12=<i>

Here, p is the correlation coefficient between X and Y. Of course, when only a field
measurement X is observed, X is marginally distributed with mean p and variance o2.
The goal here is to efficiently estimate the mean RVP p in gasoline consumed by the
public when X and Y follows a bivariate normal distribution.

In practice, a two-phase or double sampling is usually used to collect the above
data. This involves the drawing of a random sample of gas pumps in the first phase,
in which a crude RVP measurement X is obtained from each gas pump (field); and the
drawing of a subsample from the original units in the second phase, in which a more
precise RVP measurement Y is obtained from the laboratory. In this case, this is a
classical double sampling scheme. Recently, Yu and Lam (1997) demonstrated that the
regression estimator is always more efficient when the data are collected using a double
sampling with its second-phase sampling being a ranked set sampling (RSS) rather than
a simple random sampling (SRS). Therefore, it is worthwhile to consider the problem of
point estimation of the common mean g under two double sampling methods where the
first-phase sampling is always simple random sampling and the second-phase sampling
is either simple random sampling or ranked set sampling. Hereafter, we refer these two
sampling methods as SRS-SRS double sampling and SRS-RSS double sampling.

In this paper, we first consider the case of SRS-SRS double sampling scheme. In
Section 2, we discuss the problem of estimating y when X is known. When ¥ is unknown,
various estimators for ¥ are proposed. In Section 3, we discuss the problem of estimating
p when the data are collected using a SRS-RSS double sampling scheme. Other plausible
estimators are proposed in Section 4. Numerical comparisons of the relative precision
of the proposed common mean estimators under the two sampling schemes and other
estimators are discussed in Section 5. We apply the proposed methods to the above
practical EPA problem in Section 6. Section 7 gives some concluding remarks.

2. Estimation of y using SRS-SRS double sampling

In this section we discuss the problem of estimation of y based on the data collected
using a SRS-SRS double sampling scheme. Suppose that a simple random sample of
size n 4+ m is drawn in the first phase (field level) and a subsample of size m is drawn
in the second phase (lab level). After collecting the measurements at the field and
lab, we have two sets of data: the “field only” data {z;,i = 1,...,n}, and the paired
“(field,lab)” data {w; = (z;y;)',j = 1,...,m}. They are summarized by a vector
t= (21,22, ,2n,%1,Y1,%Z2,Y2, - - -, Tm, Ym ). It is easily seen that the vector ¢ has mean
11,12, and variance-covariance matrix V', where

o?I, 0
0 I,0%

V=
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Here ® denotes the Kronecker product, I,,, and I, are identity matrices of orders m and
n, respectively.

2.1 Estimation of u when % is known

When X is known, V' is also known. Without any distribution assumption, a natural
estimator for u is to use the generalized least squares (GLS) method which minimizes
(t = plopom) VIt — plptom), leading to the GLS estimator fisys:

1 -1
n+2mV t

1nyomV 1 lnsom

Hsrs =

n _ .
—Z+mln e
g

%+m1’22-112
2 2
n._ n“-& ., 0" —-§
02z+m(02n2~§2m+02n2_£2y>
3 ;.2

n o +n° -2

3T MT 52 g2

o o%n? ¢

(2.1) -

where Zz=n"1Y", z, @ = (&,§) withZ=m"' 37" z; and g=m~ ' 377, y;.
Obviously fisrs is also the MLE of y under normality assumption, and is always
unbiased with variance

1 1
(2.2) Var(fisrs) = = .
TR pmyst, kP2
[2) 0-2 0—2772 —_ 52

2.2 Estimation of ¥

n 52
Let 52 = —Z—F(—;‘L(—_zl)—z) and

A= i(“’f — W) (w; — W) = [au am} = (m~1) [ - 32”]

=1 a12 G22 Szy Sy
where
§2 — 221 (:17, — i')z &2 — 2111 (yi - ﬂ)2 and 8. = 22_1 (l'z - i’)(yz - .77)
i (m-1) ~ ¥ (m—1) “ (m-1) '

A simple unbiased estimator for X is the sample variance-covariance matrix based only
on the paired data w’s, i.e. A/(m —1). As both s2 and s2(= aj1/(m — 1)) are unbiased
for o2, a natural unbiased estimator for ¥ based on all the data is given by

n—1)s2 + (m —1)s? ) R
( ;im(_2 ) .'1:, 77%=3§, él = Sgy-

(2.3) 62 =

However, it does not guarantee that the resulting 31 is always nonnegative definite(nnd).
Below we provide some other estimators for 2.
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2.2.1 REML and ML estimators of &
Under normality, the well known REML of ¥ is obtained by maximizing the marginal
likelihood of s2 and A, which is given by:

1 1 1y (n—1)s2
(2.4) L) x DR =Y exp{ 5 tr(AX ) 52 .

Equating the first derivatives of In L; with respect to the components of ¥ to zero and
solving the resultant equations lead to the following REML estimator 35 for X:

2.5 62 =
(2:5) 2 n+m—2
2 2 .2 2
N 08 8.8, — 8
(2.6) n§=a§§+————z y32 &Y
x x
2 993
(2.7) 2:03—51.
T

Now we discuss ‘the ML estimator for 2. Let

b11 bi2
bi2 bao

Z(p) = Z(Zz' -p)?  Bp= Z(wj — plg)(w; — pls) = {

where by = Y i, (zi — )2, bz = Yo (zi — ) (i — p) and baa = Y7, (ys — ). Then
under normality, the likelihood function is given by

(2.8) Ly x wz)—n/;!glj;/;exp {—% tr(B(W)E~1) — %l;)} .

Note that if we replace n, m, Z(r) and B(u) in (2.8) by (n— 1), (m — 1), (n — 1)s2 and
A respectively, Ly in (2.8) becomes L; in (2.4). So, applying the same steps for L; to
L, we obtain the following equations:

o _ Z(p)+bu
2 _ A\ vl
(2.9) 3=

b3, | buibes — B3
2.10 A2 = 522 12
( ) 3 3 b%] mby1
(2.11) Ey = 63012

11

Equations (2.9), (2.10), (2.11) along with the solution to 59—157[‘2 =0, i.e. (2.1), are the
final equations to be used for solving the ML estimators of x4 and . To obtain the MLE,
we may plug (2.9)—(2.11) into (2.1) to obtain the MLE for p first, then obtain the MLE
of ¥. However, by doing so, it will result in a complicated fifth degree polynomial in p.
Thus closed form expression for the MLE of y seems impossible and subsequent inference
based on it is indeed a difficult task. Hence, we will not consider the ML estimator for
% in this paper.
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2.2.2 Properties of the REML Estimator for ¥
In the following we discuss some properties of the REML estimator 3, for ¥ and
compare it with the ad hoc estimator ¥; in (2.3).

Property 1. Validity. It is easy to see from (2.5)-(2.7) that 63, 73 and 5| =

2 2
&%%2——— are positive with probability 1, thus making 3, a valid estimator for .

Property 2. Bias. Clearly, 62 and &, are unbiased but 2 is not. Using the prop-
erties of normality and applying simple algebra, it can be shown that

2(n —1)(1 - p?)

mim—m-Dm=-3’ ™ *

E@#3) =n*+n*
Therefore, the bias of 72 and hence the bias of 335 will tend to zero for large m.

Property 3. Mean squared error (MSE). To derive the MSE of 335, we first repre-
sent X, ¥1 and Y in vectorized forms:

O = (01,0,03) = (0%, 1%, &)

O, = (611,012, 013) = (62,72, &)

O = (01,022, 023) = (63,73,&)’-
The MSE of 3y, denoted by MSE(©), is defined as E[(©; — ©)(©; — ®)'] and the
expression for MSE of 33 is similar. It is shown in Appendix I that

0.4 52 0.25
N —2)—(n—1)d —1)(1—p?
(2.12) MSE(@Q) _ 2 52 (nt+m ) (n ) (p)n4 (1+ (n 17l(_lap ))57]2

n+m-—2

- Ao 1?4 (m—n—2)£2
o2 (1+ {n 1)(1311 ))‘5772 (n+ 4)62(nmi—§;m n—2)¢

where

B 4 7(m — 1)(n +m — 2) — 4(n + 4m — 5)
dlp) = p* = =3 P* (1= ") - (n+m — 2)(m — 1)(m — 3)(m — 5) (1-

2)2
Of course, it is assumed that m > 5.

Comparison of REML estimator 3, with ad hoc estimator 21

We now compare the MSE of the REML estimator ¥, with that of the ad hoc
estimator 33;. Although 33, is not always a valid estimator in the sense of not being nnd,
component-wise comparison however makes sense. It is shown in Appendix I that the
MSE of 3; is given by

\ 0,4 52 2 5
€2 ntm—2 "74 n+m =2 577

MSE((:31) = m m—1

2£ nj;:': 2€n2 n+m 2(0,2,’72+£2)
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and hence
00 O
MSE(©1) - MSE(©,) = mrm—a |0 722 s
0 723 733
where
_ (n—1)d(p) 4 _ (n— 1)5772 2 2
Y=o 1, Y=g P _1)’

_ (n—1)(m—2)o’n? 1
18 = T —1)(m - 3) (”2 - "—) '

m—2
Therefore, for m > 5, we have the following observations: A
(a) If p2 > =15, then 33 > 0, i.e., MSE(&) > MSE(&,), implying that the

m—2?

REML estimator of £ is preferred to s;,. Note that both are unbiased for £.
(b) If p2 > A/(1 + A), where

Ao 2 [ ju, 1 (7T m-3 3m-3
 m-3 4 m-5\2 m-1 n+m-2/|’
then d(p) > 0 and p? > ﬁ, i.e., v22 > 0, 33 > 0, implying that the REML estimators

of £ and 72 are better than s, and sZ, respectively.

(c) To have M SE(@l) - M S’E((':)z) as nnd, Y227733 — 725 should be positive. It can
be shown that

Yo27/33 — Va3 = ntm :4_022)2(25:: __12))2(m -3) [pG +0 (fﬁ)} .

Hence, for large m, we expect it to be positive.

In conclusion, we note that, for large m, the REML estimator 335 for ¥ has a smaller
MSE compared to the ad hoc estimator 3;. Therefore in our subsequent analysis, we
will use the REML estimator 3l» with its subscript dropped for notational simplicity.

2.3 Estimation of u when 3 is unknown o
When ¥ is unknown, substituting the REML estimator ¥ = 3, into (2.1) gives

n . Y B il SO it
—Z+ml'S g2eTm 52ﬁ2_ézx 62ﬁ2_£2y
~ _a' _
(213)  fiars = 2> ——— = T Ew Y .
A—2+m122 12 n mU' +1 3
g ~n b An | 26
&2 &2772_52

Since 3, is independent of Z and @, fisrs is unbiased for p with variance given by

Var(fisys) = E{\I’(é)’ )}

where )
R . _7_7/% + m12’f]‘12f)‘112
(2.14) U(0,0) = Var(jisrs | X) = g

n 2
(% + m12'2—1 12)
g
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An exact expression for Var(fis,s) is usually very difficult to obtain. However, for infer-
ence purpose what is really needed is an estimate of Var(fisys), for which some approxi-
mation methods described below can be used.

_ Method 1. A naive estimator for Var(fisrs) is obtained by plugging an estimator
¥ of ¥ in Var(fisrs | X) given by (2.14), leading to

- e 1
(2.15) ME) = - —
}—2-+m12'2“112

As pointed out by many investigators, this method is likely to underestimate Var(fis,s),
a phenomenon discussed later in this section.

Method 2. Here we first approximate \II(@, ©®)bya second-order Taylor expansion:

¥(6,0) ~ ¥(0,0) + (6 - 0) (ag) é_e+2(@ 0)'®(6 — 0)

where @ = ( ag ;é )|e—e, the matrix of second derivatives of ¥ with respect to © evaluated
at ©. It can be shown by direct derivation that

1 ov
¥(©,0) = M(X) = : (55) 1600
02 +mlyR-11, 90

and ® = (Olij)gx;g where

ap = h(@) T _{nlo?(o?n? — €2)(c®n? — 262) + £4(0 + n? — 26)] + ma®(n? — £)?}
:27"02(5“02){[42_2 262 4 3]+ 42— €)
12 ——h(G) nlo'n o I3 mo*(n £ }
Q13 = W{n[a‘inZ _ 30.252 + 263] + m0_4(,’72 _ 02)}
L 2m(ntm)od(e? = )
29 = 7(©)
mot(o? —
O3 = 2moto” —§) hg@)) §) {n|o®n? — 202 + €] + ma?(n? — 02)}

2mo* 2, 2/ 2 2 200 2 2 20 2 2\2
a33=m{n[0 n°(o% +n* — 6€) + £%(30° + 3n* — 26)] + mo*(0” — n°)°}
h(®) = [n(a’n® — £%) + ma®(o® +7° — 26)°.

Thus we get

(2.16) Var(jiors) ~ M(E) + %E{(é) —0)5(6 - 0)} = M(Z) + %tr{@[MSE(@)]}.

It is obvious that (2.16) will always give a larger estimator for Var(fisrs) than M(Z).
In fact in a general mixed linear model setup, which covers our linear model for ¢ as



868 PHILIP L. H. YU ET AL.

a special case, Kackar and Harville (1984) proposed a similar approximation expression
for the variance of estimators of fixed and random effects. It is evidenced by their sim-
ulations that (2.16) approximates well the actual variance of jis.,. Therefore, Var(fisrs)
is estimated by

(217) Va(fers) = M(5) + 5 tr{$[MSE(O)])

where M(X) is given by (2.15), ® and ]V_TSA\'E(@A) respectively refer to ® and MSE(0O,)
in (2.12), with elements of ¥ replaced by X = 3.

3. Estimation of u using SRS-RSS double sampling

In this section we explore the use of a ranked set sampling (RSS) in place of a simple
random sampling in the second-phase of a double sampling. RSS, originally introduced
by Mclntyre (1952) for efficient estimation of a population mean in a purely nonpara-
metric setup, has been found to be fairly effective in various problems of parametric
estimation (see Chuiv and Sinha (1998) and Patil et al. (1994) and references therein).
In our specific problem, we propose to use the field-only data and paired (field, lab) data
in a modified form described as follows.

For a simple random sample of size r units (gas pumps), we collect X-values (field)
from all the units. We identify the unit with the smallest X-value and send the corre-
sponding sample to the laboratory to record the Y-value (lab). We next draw another
simple random sample of r units, and collect their X-values (field). We identify the unit
with the second smallest X-value and send the corresponding sample to the laboratory
to record the Y-value (lab). This process is continued in r steps and at the last stage
after collecting X-values (field) from all the r units, we identify the unit with the largest
X-value and send it to the laboratory to record the Y-value (lab). At the end of this
process, what we have collected is a sample of r? field measurements and a suitably
selected RSS of r lab measurements. The entire process is now repeated N cycles to
yield eventually a sample of N72 field measurements and a suitably selected RSS of Nr
lab measurements. Denote the measurements recorded in the i-th cycle by

(@) (@) ()
Xy Xan Yy
() (&) 1)
Xy > Xz Viza
(2 @& 3-0)
X(:'l)’ T 7X(:'7‘)’ Y'[ri']
where X((;L) is the k-th order statistic (field measurement) in a simple random sample

of size r arising out of the j-th sample in the i-th cycle,i=1,...,N, j,k=1,...,7r and
Y[S,Z] is the lab measurement corresponding to the field measurement X ((,?k) obtained in
the i-th cycle,i=1,... ,N, k=1,...,7,

Denote the overall mean of X by X = YN, i1 k=1 X ((;L) /(Nr?), and the
sample means of X and Y based on the ranked set sample obtained in the second phase

by X,es = Zéil Y=t X((;z) /(NT) and Y,z = Zfil Z;zl Ylyy)] /(NT) respectively. Note

that X and X, are always unbiased for y but ¥,,, may be biased. Suppose X and Y
follows the linear model (see David (1973) and Stokes (1977)):

(3.1) Y=p+pB(X—p)+e
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where 3 = pn/o =&¢/0% and e has zero mean and variance n%(1 — p?) and is independent
of X. It is easy to show that Y;,, is unbiased for . Since X and Y follow a bivariate
normal distribution, the linear model in (3.1) is satisfied and hence Y;,; is unbiased.

3.1 Estimation of u when X is known

As discussed in Section 2, the SRS-SRS double sampling involves drawing of a large
random sample of size n+m and a subsample of size m. Based on this sampling method,
we derived the MLE for y when ¥ is known as shown in (2.1). Under a SRS-RSS double
sampling setting, n = Nr(r — 1) and m = Nr. After making some obvious changes:

21_1 ZE];HC (Jk) Nr2X — NrX,qs

z= X'rss and = Yrss,

£= Nr(r-1) - Nr(r-1)
we propose the following estimator for p when ¥ is known:
Nr?X — NT‘XTSS 7’]2 I3 g% — £ o
. 02 + N 1:0_2 B) 52 ers + —:'ijfrss
Hrss =
Nrir — —
T 2
o on? - ¢
2
r oS o° — - =
?X + D) _652 (Y'rss - %ers)
(3.2) = /)

1 2 #\2
= ()

Of course, the above estimator for u is far from being the MLE under a SRS-RSS
sampling. Interestingly enough, it is shown in Appendix II that when (3.1) is satisfied,
firss given by (3.2) is the best linear unbiased estimator (BLUE) for x based on X, Xrss
and Y., and the variance of ji,s; is given by

o? 1
(3:3) Var(firss) = N_r R
Tt o
o*n?—¢

Therefore when ¥ is known, firs is more efficient than X, X,ss and Yigs.

3.2 Estimation of p when ¥ is unknoun

When ¥ is unknown, a standard practice is to start from fi,ss given in (3.2) and
use a suitable estimator for . In the context of SRS-SRS double sampling discussed
in Section 2, it is found that the REML estimator of ¥ has some nice properties than
other estimators. It is clear that in our context, due to the complicated nature of the
likelihood function (due primarily to RSS nature), it is extremely difficult to derive the
REML estimator for ¥. In what follows, we adopt the REML estimator for ¥ even in
our context. Define

N _

52 _ Zi:l Z;:l ZZ:I‘HHB(X((;L) )2

z Nr(r-1)—-1

I ket (KX = Krao)?
Nr—-1

52 =
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S She (Vi — Pros)?

2

Sy B Nr—-1

S = 21_1 Zk_l [(X(kk) rss)(Y[kk] Yrss)]
W Nr-1 )

Then our proposed estimator for ¥ is given by 3,55 Where

~2 Q2
o-rss_‘s’z

2 2Q2 _ Q2
A2 2 S-Ty S-"?SZ'J Sfb‘y

Nrss 88 TSTZ' + Sg

It may be noted that these estimates are well-defined and valid in the sense of the
estimated dispersion matrix being nnd, irrespective of the underlying model. After
substituting 3,4, into (3.2), the resultant estimator of p is denoted by firss.

To prove the unbiasedness of [i,.ss, we first notice that fi,.ss can be expressed as
4+ [i* where i* is the fi,ss with X and Y replaced by X* = X —pand Y* =Y — 1,
respectively. Since 3,5 is an even function of X* and Y*, replacing X* and Y* by — X*
and —Y™* in g* implies E[3*] = E[—i*]. It follows that E[3*] = 0 and hence fi,ss is
unbiased.

It is clear that the exact variance of fi,ss is difficult to obtain, and in what follows
we therefore employ the variance of fi,ss given in (3.3) as a large sample approximate of
Var(firss) for large N.

4. Other estimators for u

Note that when the data are collected using a double sampling scheme, a regression
estimator is usually used to estimate the population mean of Y based on a covariate X
no matter X and Y have common mean or not. Recently, Yu and Lam (1997) proposed
a RSS regression estimator based on a SRS-RSS double sampling scheme mentioned in
Section 3:

(41) /Jf'reg - 1/1'58 + ﬂ(X 7‘88)
where g
(42) B= grss/agss = %

is an estimator for the slope 8 in (3.1). If (3.1) is satisfied and hence normality holds,
Yu and Lam (1997) showed that fi .4 is unbiased and its variance is given by:

_ g2 2
(4.3) Va'r(ﬁreg) Z ZQN d 1+ Al+ 25\[ 2
where Nr(X X)?

T\ Arss —
(44 Sl

and we take p = 0 and o =1 in the computation of A. Obviously, A is a fixed constant
depending only on N and r.
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Of course, a similar SRS regression estimator based on a SRS-SRS double sampling
scheme can also be proposed here. However, Yu and Lam (1997) found that under nor-
mality, the RSS regression estimator is always superior to the SRS regression estimator
for all p.

Finally, since X, X,ss and Y,s, do not utilize all the available data and they are
inferior than fi.ss when ¥ is known, we do not intend to consider these estimators
although they are unbiased.

In next section, we will compare the two proposed common mean estimators with
the RSS regression estimator.

5. Numerical comparisons

Assuming that (X,Y’) follows a bivariate normal distribution with common mean
u = 0, we compute the variances of the two proposed common mean estimators fisrs, firss
and the RSS regression estimator fires. Since these three estimators are unbiased, we
use the variance ratio as a measure of relative precision (RP). The set size examined is
r = 3, the numbers of cycles are N = 5,10, and the values of p are 0,0.1,0.2,...,0.9.
It is easy to see that the RP can be expressed as a function of /0 and p. Without
loss of generality, we assume o = 1 and consider various choices of § = n/o. As the lab
data is expected to be more precise than the field data, 8 is usually less than 1. Here,
we consider four values of #: 0.9,0.7,0.3,0.1. The variance of fi.g is evaluated using
(4.3). Because the variances of fisrs and firss have no exact analytical expressions, their
variances are evaluated by a simulation of size 100,000.

(a) SRS CM vs ASS REG (m=5} {b). SRS CM vs RSS REG (m=10)
° theta=0.1
« a theta=0.3 o
+ theta=0.7
x theta=0.9 §
é o~ S~
a
: :
s s
T [ " W,
?\'y
L] o
T
00 02 04 08 08 10 00 02 04 08 08 10
{c) RSS CM vs RSS REG (m=5) {d) RSS CM vs RSS REG (m=10)
o™ o™
] i
g o~ o~
; H
5 B
2 _ :‘m k] - M
% gy o ~+
o o
0.0 02 0.4 06 08 1.0 0.0 0.2 04 08 08 1.0

Fig. 1. The relative precision of SRS and RSS common mean estimators relative to RSS
regression estimator.
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5.1 Comparison of common mean estimators with RSS regression estimator

Figure 1 depicts the relative precisions of the two proposed common mean estimators
fisrs, firss relative to the RSS regression estimator firey. It can be seen that the RSS
common mean estimator is almost superior to the RSS regression estimator but not
for the SRS common mean estimator. However when 6 is large (> 0.7 say) and p is
not too large, both common mean estimators perform significantly better than the RSS
regression estimator.

It is not surprising that the RPs of fi; ;s to fireg are close to 1 when 0 is close to 0.
Note that when 6 is close to 0, X is too variable and becomes nearly useless in estimating
1. Therefore the RSS regression estimator, which aims to estimate the mean of Y, will
perform similarly to the RSS common mean estimator. In fact, it can be shown that the
RSS common mean estimator fi,ss can be rewritten as a weighted sum of two unbiased
estimators X and fi,e, with random weights:

1—p6
r62(1 — p?) + (1 — p)?

(5.1) firss = (1 — @)X + dfireg Where &=

with 6 = Tirss/Orss and p = f,.ss/(ﬁ,.ssérrss) = ﬁ/é Note that @ = 1 if and only ifd=0
or 8 = p/[r(1 — p?) + p?] = 6. Table 1 lists the values of 8 for various choices of j and
r = 3. Thus if § is close to 6y, @ is close to 1 and hence the RSS regression estimator is
approximately equivalent to the RSS common mean estimator.

As analogy to fiss in (5.1), fisrs can also be expressed as a weighted sum of X and
the SRS regression estimator with weight b having the similar form to 4. Therefore,
when @ is close to 0, bis likely close to 1 and hence the SRS common mean estimator is
close to the SRS regression estimator. Since Yu and Lam (1997) showed that the SRS
regression estimator is always less precise than the RSS regression estimator, the SRS
common mean estimator perform poorer than the RSS regression estimator when @ is
close to 0.

Table 1. The values of g for various choices of p and r = 3.

p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
6 0 0.034 0.068 0.106 0.149 0.200 0.263 0.347 0.465 0.652 0.795 0.952

(a) RSS CM vs SRS CM.(m=5) (b) ASS CM vs SRS CM (m=10)
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Fig. 2. The relative precision of RSS common mean estimator relative to SRS common mean
estimator.
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Table 2. The ratios of the approximate variance to the actual variance of firss.

N=5 N =10 N=15

roop ) 9 ]
p1 03 07 09 01 03 07 09 01 03 07 09

3 0.0 097 096 095 095 099 098 098 098 099 099 099 099
03 097 095 095 095 098 097 097 097 099 098 099 0.99
06 096 095 095 095 098 098 098 098 099 098 099 0.99
09 096 096 095 096 099 098 097 098 1.00 098 098 0.99

5 0.0 098 097 097 098 099 098 099 099 099 099 099 1.00
0.3 099 098 098 099 1.00 099 099 099 1.006 100 100 1.00
06 098 097 098 099 100 099 099 100 0.99 099 099 1.00
09 099 098 098 099 098 099 100 1.00 100 099 099 100

5.2 Comparison of RSS common mean estimator with SRS common mean estimator

Figure 2 depicts the relative precision of the RSS common mean estimator fiygs
relative to the SRS common mean estimator fis-,. It is easily seen that the RSS common
mean estimator always performs better than the SRS common mean estimator. It should
be noted that the values of RPs mainly depends on the value of 0 only and they are
significantly greater than 1 for large 6. This indicates that when the variances of X and
Y are close, a double sampling scheme with its second stage being a ranked set sampling
can provide a more precise common mean estimator than the one with its second stage
being a simple random sampling.

5.3 Comparison of the approrimate variance and the actual variance for RSS common

mean estimator

Table 2 presents the ratios of the approximate variance to the actual variance for the
RSS common mean estimator fi,ss for various combinations of § and p. The approximate
variance is computed by using (3.3) while the actual variance is obtained from the above-
mentioned simulation based on a bivariate normal distribution. The set size examined
is r = 3,5 and the number of cycles is N = 5,10,15. It can be seen from Table 1
that although the ratios are all less than 1, they vary in a very narrow range from
0.95 to 1.00. This indicates that the approximate variance a little bit underestimates
the actual variance of fi.ss. The ratios are very close to 1 when the ranked set sample
size is moderately large, says Nr > 30. This concludes that the approximate variance
expression given in (3.3) provides a robust and close-form expression for the variance of
firss even the ranked set sample is of moderate size.

6. Application to an EPA data set

In this section, we return to the practical problem of estimating the mean of Reid
Vapor Pressure (RVP) of the new reformulated gasoline in the U.S. Since the laboratory
analyses are costly, a SRS-RSS double sampling scheme is adopted to reduce the quantity
of laboratory analyses and hence save cost. Here a SRS-RSS double sampling scheme
with set size r = 3 and number of cycles N = 5 is used to draw the sample and the field
(X) and lab measurements (Y) in the sample are then collected. Table 3 presents the
data on X and Y and their summary statistics are shown in Table 4.
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Table 3. The field and lab data on RVP for new reformulated gasoline* (bold numbers indicate
the selected X in the second phase).

X Y
8.03 8.09 846 8.28
737 8.64 8.80 8.63
7.59 862 9.14 9.28
7.86 T7.88 798 7.85
747 8.70 890 8.62
851 8.69 9.28 9.14
786 793 7.96 7.86
745 7.83 8.02 7.90
732 T7.45 8.60 8.52
7.83 7.86 7.88 7.92
739 7.88 8.03 7.89
731 744 8.56 8.48
7.83 795 7.92 7.95
753 T7.99 8.01 8.32
716 7.31 17.56 7.60

* Data Source: Private Communication

Table 4. Summary statistics for the crude RVP measurement X and the accurate RVP mea-
surement Y.

T N )_( }_’1'-33 )_(7'33 Sg Sg Sg Smy
3 5 7997 8.283 8.239 0.252150 0.284778 0.245392 0.256838

Table 5. Point estimates, standard errors and relative precisions of estimators for p.

Benchmark estimators RSS regression RSS common mean
Xras Yrss X estimator, fireg estimator, fipss
Point estimate 8.239 8.283 7.997 8.064 8.035
Standard error  0.0937  0.0898 0.0749 0.0741 0.0727
RP* 100%  109.0% 156.8% 160.0% 166.0%

* RP = relative precision with X,ss as the base

Using the summary statistics in Table 4, we have 62, = 0.252, 7#2,, = 0.219, £,,, =
0.227, ,3 = 0.902, 6 = 0.932 and p = 0.968. Based on these statistics, we can compare
the performance of RSS common mean estimator [i,ss and the RSS regression estimators
fireg.- Three unbiased estimators X, Y,s, and X, are also considered as benchmarks.
Table 5 shows their point estimates, standard errors, and relative precisions.

It can be seen from Table 5 that the RSS common mean estimator fi,s; attains
the smallest precisions (about 66% increase over the worst benchmark and 6% increase

over the best benchmark). This result is not surprising because since in this example
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& = 0.566, firss is approximately an average of X and fire;. Simply using either X or
fireg cannot beat firss.

7. Concluding remarks

In this paper, we proposed two common mean estimators and showed that the pro-
posed RSS common mean estimator is more precise than the other estimators including
Yu and Lam’s (1997) RSS regression estimator, McIntyre’s (1952) RSS naive estimator
and the proposed SRS common mean estimator. Simulation study performed in Sec-
tion 4 shows that the approximate variance expression given in (3.3) provides a robust
estimate for the actual variance of the RSS common mean estimator even when the
sample size is moderate large.

Apart from the problem of estimating the common mean u, it is also of interest to
consider the problems of constructing hypotheses testing and a confidence interval (CI)
for 1. As long as the tests and confidence intervals based separately on the ‘field-only’
data and the paired data are available, we can adopt various combination techniques
described in Yu et al. (1999) to combine the tests and hence construct a confidence
interval for p by converting the acceptance region of the combined test. For example
using the sample drawn by a SRS-SRS double sampling scheme as in Section 3, it is well
known that based on (2, s2) only, we can use the one-sample t-test to test for Hp : p = po
against Hj : u # po, where o is a given constant, and its test statistic is given by

which follows a t distribution with n — 1 d.f. under Hp and its associated 100(1 — o)%

CI for p is
_ s2 52
{po: [t1] <tajzn-1} = | Z —tajzm-1 7[’2 +ta/2,n-1 -Tf

where to /9,1 is the upper a/2-point of the ¢,_; distribution. Similarly, based on
the paired data (z;,y;)’s, we can derive a likelihood ratio test (LRT) for Hy and the
equivalent test statistic is given by

USyy
U — po — 2
ty = %
vh
where
_ ZTH+Yy I TR 1 1
i=—0=, U=, sﬁzZ(si+2swy+s§), sﬁ=z(sﬁ—2swy+s§),

H

1,, o 1 [(m-1 2\ (s2s2-3s2)
SH”ZZ(Sm_sy) and h=m(——7h——+§g —us—%—ﬂ

which follows a t distribution with m—2 d.f. under Hy and its associated the 100(1—a)%
Clof pis
_ vs _ 'Dsuv
{po : It2] < tajz,m—2} = (U - s;w - ta/2,m—2\/ﬁ’u - + ta/2,m—2\/—h—) .

2
v Sy
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Let Fy = t? and F) = t2 so that Fy ~ Fy,_1 and F; ~ F ;2. Define the p-values
based on the two F-statistics as P; = [ ;.f fin-1(z)dz and P = [, ;: f1,m—2(z)dz, where
f1,k denotes the pdf of the F ;. distribution. Following Yu et al. (1999), we can combine
these two t;’s or F;’s or P;’s to test for Hy and hence construct confidence intervals for

.
Appendix I: MSEs of 3, and 3,

MSEs of )M
Following the notations in Section 2, we first note that
ail
63 __m(n—l)sﬁz n+m—2
A |l ol |nt+m- a2
6, = 121 - 0 + m—1
& 0 _G12_
: m—1
Since 52 is independent of A and ©, is unbiased,
ai
@___1_)_‘?;_ n+m—2
R R — a
MSE(6,) = Var(®y) = Var | [ "T7 72 | | 4+ Var e
0 aiz
m—1

Using the result from Muirhead ((1982), p. 90) that if H = (hi;) ~ Wp(2,m), then
Cov(hij, hit) = m{oikoj + 010,k), Where 0;; is the ij-th element of ¥ and the fact that
Var(s?) = 20%/(n — 1) and A ~ W5(Z,m — 1), the expression for MSE(®) is then
obtained.

MSEs of 35
Using Theorem 3.2.10 of Muirhead (1982) and basic properties on conditional mo-
ments, we first obtain some preliminary results:
(a) a12 | @11 ~ N(&ayy,n*(1 - p*)air).
2.2
() Blads | an) = a1~ ) + b 21

. ——-—-———2 1 _ ?
(i) Var(al, | a11) = 2af;n* [(1 — %)+ 2an 8 ( 0? £ )] :

2
(b) aze — 22 ~n*(1 — p*)x7,—» and is independent of a1y and ap,.

2,2
() Elaz | an) = (m— (1 - o) +an .
. 2 1— 2
(ii) Cov(afy,aze | an1) = Var(aiy | an1)/an = 2an7n* [(1 — P2 + 201, ( o2 . )] .

(iii) Var(ags | a11) = 2n* l:(m — 1)1 - p*)? + 2011 1)2%;'82_)] :
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To derive the MSE of 3, we first note that

o - 5 2(n—1)(1 - p°)
Esy =0, E&=¢ Eng—nz(lJr(n+m—2)(m—1)(m—3)>.

So,
e MSE(53) = Var(62) = Var(6%) = n+m4 5
o MSE(£) = Var(i}) + [E(72) — n]*
e MSE(&) = Var(&s).
e E(65— 0'2)(772 n°) = E‘72772 — o*Eij3
. E(Uz -0 )(52 —§) = E02§2 - o%¢.
e E(Uz 2)(52 -&) = COV(n2a§2)-

The rest of the derivation of M SE(éz) follows by using the previous preliminary results.

Appendix H: The BLUE of u based on X, Xpss and Yigs
Consider a linear estimator of u:

(A.l) L= aX + bX'rss + CY,-SS with a+b+c=1.

We can write Var(L) = Var[E(L | X)] + E[Var(L | X)]. Under (3.1), we get (taking
i = 0 without any loss of generality)
E[L| X] = aX + bX,ss + cBXrss
=aX + (b+cB) Xrss
(A.2) Var[L | X] = 2n?(1 - p?)/(NT).
To compute Var(E[L | X]), we first condition on all X, denoted as S, and treat the

selection of RSS as random and then uncondition on X. Since, given S, X is fixed, we
get Var(E[L | X] | S) = (b+ ¢B)? Var(X,ss | ) and hence

a3)’ Var(E[L|X])=Var{E(E[L}X]|S)}+E[Var( (L]X]]8)]
= (1-c+eB) 5 Ot (b4 B E[Var(Xes | ).

Combining (A.2) and (A.3), we get Var(L). Clearly, for a given ¢, Var(L) is minimized
when b = —c¢f and Var(L) becomes

2 2(1 — 2
(A4) Var(L) = (1 — ¢ + cf)? 1\22 PLLA i p)
The optimum value of ¢ is easily obtained by minimizing the above quadratic function in ¢
and turns out to be copr = (—1—339—1%2—2— Substituting @ = 1—bopt — Copt, bopt = —CoptB

and copt into (A.1) and (A.4), the resulting optimum linear unbiased estimator of 4 is
precisely fi,ss with variance as shown in (3.3).
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