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Abstract. Maximum likelihood estimators (MLE’s) are presented for the parame-
ters of a univariate asymmetric Laplace distribution for all possible situations related
to known or unknown parameters. These estimators admit explicit form in all but
two cases. In these exceptions effective algorithms for computing the estimators are
provided. Asymptotic distributions of the estimators are given. The asymptotic
normality and consistency of the MLE’s for the scalé and location parameters are
derived directly via representations of the relevant random variables rather than from
general sufficient conditions for asymptotic normality of the MLE’s.

Key words and phrases: Double exponential distribution, geometric stable law,
Laplace distribution, mathematical finance, random summation, skew Laplace dis-
tribution.

1. Introduction

In the last several decades, various forms of skewed Laplace distributions have ocas-
sionally appeared in the literature, see, e.g.,, McGill (1962), Holla and Bhattacharya
(1968), Hinkley and Revankar (1977), Lingappaiah (1988), Balakrishnan and Ambagaspi-
tiya (1994), Poiraud-Casanova and Thomas-Agnan (2000), Kozubowski and Podgérski
(1999, 2000, 2001), Kotz et al. (2001).

Among these distributions, a three-parameter family with the density

exp (—@(w—9)>, for ©>4,
n o

1+ k2
exp (Q(x — 9)> , for <80,
oK

obtained by means of converting a symmetric Laplace p.d.f. into a skewed one by incor-
porating inverse scale factors in the positive and negative orthants (see Ferndndez and
Steel (1998)), stands out as the class of the asymmetric Laplace (AL) distributions (see
Kozubowski and Podgérski (1999, 2000, 2001), Kotz et al. (2001)). These laws extend
naturally all the basic properties of the symmetric Laplace distribution and have prop-.
erties and features that make them attractive in applications, particularly in financial
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modeling, see, e.g., Madan et al. (1998), Levin and Tchernitser (1999), Kozubowski and
Podgérski (1999, 2001). These features include infinite divisibility, finiteness of moments,
allowance for asymmetry, simplicity, and natural extensions to multivariate setting (the
reader is referred to Kotz et al. (2001) for details).

In this paper we present results on maximum likelihood estimation of the parameters
of an AL distribution. Explicit formulas for the estimators are obtained for almost all
cases (the exceptions being estimation of k when the values of # and o are known and
estimation of x and 0 when o is known). We extend previous results obtained for the cases
when the value of 4 is known (Hartley and Revankar (1974), Kozubowski and Podgérski
(2000)) and when all the three parameters are unknown (Hinkley and Revankar (1977)).

We sumimarize our results in the next section. We omit proofs, except for a deriva-
tion of the asymptotic properties for the case of estimating the location and scale pa-
rameters ¢ and o, which to the best of our knowledge is established for the first time (see
Section 3). A by-product of this derivation is the asymptotic normality and consistency
of the MLE’s of symmetric Laplace parameters (k = 1). Details of derivations of other
new results are available from the authors and some of them appeared in Kotz et al.
(2001).

Since the densities of Laplace distributions have a non-differentiable peak at the
mode, standard maximum likelihood asymptotic theory is not directly applicable when
one of the unknown parameters is 6, and one has to use special results which account for
such an irregularity. The conditions for these results are usually quite complex and we
found it easier to approach the problem of estimating 6 and o directly. Unlike Hartley
and Revankar (1974) and Hinkley and Revankar (1977), who utilized general sufficient
conditions, we use distributional representations of the appropriate variables. This direct
approach has an additional advantage—it shows the “true” reasons for the asymptotic
behavior of asymmetric Laplace random variables. In this work, we present our approach
in the proofs for the case of estimation of the scale o and the location § when & is known.

2. Maximum likelihood estimation

Let X1,...,X,, be aniid. random sample from an AL distribution with the density
fo,0.x given by (1.1), denoted by AL(8, k, o), x1, ..., T, being their particular realization.
The likelihood function is

_ 2n/2 K™ ﬁn ﬁ(ﬂ)
(2.1) L(0,k,0) = Fm exp {_T (na(@) + —)} ,

K
where
1o 1 _
al)=—> (z;—-0)*, pO)==3 (z;-0)7,
J=1 j=1
and et = max(0,a), a~ = (—a)* = —min(0,a). The Fisher information matrix

I(8, k, o) corresponding to an AL(6, k, o) distribution is

1(0,k,0) = {E{[fyi

d
log fe,n,a(X) : 8—,7.103 fO,R,a(X)}} s
J 4,7=1,2,3

where X has an AL(0, k,0) distribution with the vector-parameter v = (y1,72,73) =
(8,k,0) and the density fp . ,. The Fisher information matrix for the vector of inde-
pendent identically distributed random variables each with the distribution AL(8, &, o)
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is given by nI(0, ,0). Routine calculations yield

(2.2)

We summarize our investigations of the seven cases in Tables 1 and 2. Except for the
asymptotic properties in Case 4 (k known) that is discussed in the next section, detailed
derivations of the MLE’s and their asymptotic properties can be found in Hartley and
Revankar (1974), Hinkley and Revankar (1977), Kozubowski and Podgérski (2000), and

Kotz et al. (2001).

I(0,k,0) =

- 9 \/ﬁ 9 -
= Y 0
o? o 1+ k2
V2 o2 1 4 11-k2
o 1+k% k2 (14k2)? okl+k?
0 11— k? 1
. ok 14 kK2 o2

Table 1. Maximum likelihood estimation for asymmetric Laplace distributions—a summary of
the results for Cases 1 through 5. All asymptotic distributions are normal with mean zero.

Case | Parameters | Estimators Asympt. variance
) 0 unknown, On = X(n):n» Where j(n) = [[#’fg]] +1
2
(o,  known) ([[z]] is the integer part of x). o/2
o unknown, ~
2 (9, k known) |97 = V2ra(9) + %gﬁ(o) o2
#r is the unique solution to: ,
1-262/(14 %) + L2 [B(8)/r — al6)r] = 0,
3 x unknown, 1 —n w2(1+s2)?
(o, 8 known) af) =5 Zj=1(xj - o), T+r2) 244k
BO) = 7 2 iy (i =)
bn = Xj(ny:n» Where j(n}) as in Case 1, 2
4 8, o unknown, . R - |7 0
(x known) &n = V2ra(bn) + ‘?ﬁw") = I: 0 02]
B = 2 (14 42)2 [a Z] :
&, o unknown, |Rn = {/ &g),
5 o8 2 1 1-x2
(6 known) a=1/0%c= 7o TIRZ
6n = V23/a(60) 3/B(6)(\/a(8) + /B(8)) ) a2
b=z (1 + uT'Zﬁv)




Table 2. Continuation of Table 1-——cases 6 and 7.
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Case | Parameters Estimators Asympt. variance
Step 1: Fori=1,2,...,n, solve
1- 2% + Z[B(z1:n) /6 — in)s] = 0,
obtaining a unique solution n?.
Step 2: Set
oy — & &9 >1/(n-1),
! ﬁ otherwise,
22 jac
k2 ifk) >n-—1, 2__71+N E
0, k unknown, Kn = .
6 n — 1 otherwise,
(o known) 114s
o =3 + ey
and fori=2,3,...,n—1, 2 k2 Tk
i—1 1+K, — \/_
n— (z 1) lfK' nz(z 1)’ ) b ¢
Kg = Iﬁ? if m S K, < ﬁ,
ﬁ lf N? 2 Tl- %
Step 3: Oy, &y, is the pair z;.n, and k;
that maximizes the expression
log 75y + Y2 [B(zi.n)/ ki — a(Tin)sil-
Step 1: Find 1 < r < n such that
h(xr.n) < h(zj.n) for j=1,2,...,n, where ab e
2
h(6) = 2log(1/(6) + 1/B(0)) + \/e(8)\/B(®). |E=T | de|,
Step 2: Set f
5 — =4,b= Y2(1+x?),
7 0, k, o unknown, On = Xrun, a o (1+K%)
Rn = 3/B6n)/ Y/ o(Bn), = Y2(1-x?),
— = — = 2,2
o0 = V2 al0) ¥/ BBn)(Valln) + /B(6r) |d= “—*:L
where 2.2
f (1+x7)
a(on) _ 1 n 1(3:] "‘on)+ ko ? _2_
ﬁ(on) j= 1(% on)

3. Estimation when k is known

We shall demonstrate that the MLE (6,,5,) of 8 and ¢ when & is known (see
Case 4, Table 1) is consistent, asymptotically normal, and efficient, with the asymptotic

covariance matrix

(3.1)

a%/2 0

Yy =
0 o2
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(cf. (2.2)). Observe that both estimators are linear combinations of order statistics.

Indeed, 6, = Xj(n):n while &, can be expressed as:
. V2 17!
On = n Z (mz m — Tj(n): n) Z (xi:n - -'Ej(n):n)
_..J(n)—}-l =1
J(n) 1 1 _
Z "’m‘— Z “’m+[ )”1)—51'(”)]%(1»):11 )
—J(n)+1 %

where j(n) =n — j(n).
Our main result is stated as follows.

PROPOSITION 3.1. Let (X1,...,X,) be i.i.d. AL(0,k,0) random variables with «
assumed to be known. Then, the MLE (0,,6,) given in Table 1 (Case 4) is consis-
tent, asymptotically normal and efficient, with the asymptotic covariance matriz given

by (3.1).

For its proof we use two distributional representations, one for an asymmetric
Laplace distribution and the other one for the MLE estimators of the scale and the
location.

First, it was shown in Kozubowski and Podgérski (2000) that an AL(6, k, o) random
variable X admits the representation :

d g 1
2 X=0+—1|—-6W, — bW,
(3) +\/§(Kaa, KOp b)y
where W, and W,, are i.i.d. exponential variables with mean one, the zero-one r.v.’s 4,
and 8, 65+ 6p = 1, assume one with probablhtles 1/(1+%2) and K2 /(1+k?), respectively,
and are mdependent of W, and W,
The second representation is stated and proven below.

LEMMA 3.1. Let (W;) and (Y;) be two independent sequences of i.i.d. random vari-
ables having an exponential distribution with mean one, and let B, be a Bernoulli random
variable with parameters n and p = 1/(1 + «2), independent of these sequences. Then,

the following joint distributional representation of (én,ﬁ'n) holds:

i=j(n)+1
Bn J(n)-1 B,
Wi+ > Y+ > 52(%—1)1/1' if j(n) < By,
. d 0} j=1 i=1 i=j(n)
In =719 B. 3(n) Bn
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where B, =n — B, and 2 stands for the equality of distributions.

PRrOOF. Without loss of generality we can assume that § = 0. It follows from (3.2)
that the order statistics of (X3, ...,Xy,) can be written as follows

d 0 - - 1 1

(X];n,. Xnn) % (—KWBn:Bn,...,—HWI:Bn,";Wl;Bn,...,;WBn:Bn) N
where (W;) is another sequence of i.i.d. exponential variables with mean one, independent
of (W;). Thus, we have the following representations for 6, and 6,:

—KWEn—j(n)—f-l:Bn if ](Tl) < Bn,

Iy
V2 | Wa.-jm):B. if j(n) < Bn,—1.
( B, By _ Bn—j(n) )
Z Wj:Bn + Z Wi;Bn - K’2 Z W'L':Bn
j=1 i=Bp—j(n)+2 i=1
40 ~[i(n) ~ 1~ K2j()W5, _jny+1:8, i J(n) < Ba,
a'n = ; 4 B B, 1 Bn—j(n)-1
> Wi, + Y. Wis— Z Wi.B,
j=1 i=B,—j(n)+1 =
1 y = . -
( * [/}5(3 () =1) =3 (")] Wp,—jmy:B, i §(n) < Bn—1.

The well-known representation of the order statistics of exponential random vari-
ables (see, e.g., Balakrishnan and Cohen (1991)) stating that

d Y,
I/Vk:m_zm—l—i-l
=1
leads us (after some algebra) to
1 —n ](n)+1 }_,[ _
R Z P I Im<Bn
On = —= {
ERVOR R
- if j(n)<B,-1
S S
( Bn Bn Bn—'](n)+1 n
W; Y+ k2 -1}y
2 Wi Z ALY (Bn—l+1 ) !
Jj=1 =B, —j(n)+2 =1
L 40 if j(n) < B,
Op = — 4
n

Bn Bx, 1 Bn j(n) n
> Wi b e 3 (Fm)
Jj=1 I=B,~j(n)+1 =1
if j(n) < B,-1,
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where (¥;) is a sequence of i.i.d. exponential variables with mean one, independent of (Y;)
and (W;). Note that by independence of By, from all involved sequences of exponential
random variables, both (Yz __; +1)2r and (Yp,—i+1)2r, have the same distributions as

(Y) - and (Y)fi 1, and we can interchange them in the above representation.
The result now follows from substituting (¥;) by (Y;) and (W;) by (W;), which is
legitimate since B, is assumed to be independent of these sequences. [

We now turn to the proof of the main result.

PRrROOF OF PROPOSTION 3.1. Without loss of generality, we can assume that § = 0
and o = 1. Let us consider the representation of 8,, and 6,, given in Lemma 3.1.

It follows from the central limit theorem and the Skorokhod representation theorem
that there exists a version of By, such that (B, —np)/,/fpq, where ¢ = 1—p, is convergent
almost surely to a standard normal random variable Z, which is independent of the
sequences (Y;) and (W;). Note the following relations:

lim ———B P as. = Z, lim -——————B" — 1 s -7,
n—oo /Mpq n—oo /PG
lm Bn - ](‘Tl) a_-_f- 7 lim Bn - J(n) a_:____5~ _Z:‘

N "novoo  /TP]

where the last two follow from the fact that j(n)/n — g = O(1/n). We need to prove the
convergence in distribution:

A 1
6, 0 0 -0
(3.3) ﬁ([&n}—[liD—»N [0}’[% L as n — oo.

First, we shall show that with probability one,

(34) lin% VnlE(6, | B,) —1] =0.
To prove this fact, let us compute conditional expectation &, given B,:
4 . —
n
. k—J(n)
E(6n | Bn) =4
= - B,
Bn+j(n) Bn (n) ~ 1 .
_ - < — 1.
” 2 K2 Z p if j(n)<B,—1
\ k=j(n)+1
Now, we have
= . B, = .
(35) Pe i ¢ 3% 2 Pardtiid ”(fg) s
n k=i(n) J
and 5
B, k j(n)
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Consider two disjoint events: Ey = {limp—oo(Brn — j(n))//nPq = —Z > 0} and Ep =
{limp,—,00 (B — j(n))/+/7Pq = Z > 0}, each having probability equal to 1/2.

On E;, we shall eventually have B,, > j(n). Thus, using the inequalities (3.5), we
obtain

Bu - j(n) i) +1
gt i “—Z < VA N

—J(n)
The quantities on the left and the right hand sides of the above inequalities converge
almost surely to —Z+/p/q. Thus, almost surely on E;, we have

(3.7) lim v/n Z 1__ Z+\/p/q.

n—00
k—J(n)
Similar arguments applied to E5 leads to the almost sure limit
(3.8) lim /n Z Z/q/p.
k-_7(n)+1

We also get almost surely on Ej:

lim \/_ﬁ(lg'l+—‘j7§7l):—l—1)=\/1—7§Z

n—oo

lim ﬁ_m \/——Z

n-—ro0 n

These relations and (3.7) lead to the almost sure limit on E;:
1}_1_{1;10 VI[E(Gn | Ba) — 1] = \/P4Z + K*/DAZ — £°\/p/qZ = 0.

Using the equality (3.8), an analogous argument produces the convergence on Es, proving
(3.4).
Now, it is sufficient to show that we have the following convergence in distribution
bn

ﬁ([&n—EgéntBn) )“’([3] ’ [% SD

Consider the expression on the left-hand side conditionally on B,,. Assuming first that
we are in the event FE,, ultimately for large n we shall have

B'l

A 11 Y;
=gt > L
ﬁni=§(n)+1 ’
and thus the following inequalities hold
B B
1 Vi & . 1 Vi <
(3.9) =5 Y, YisVab< ==~ 3 Y.
' Ve Bo | S Va3 15
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The left-hand side is equal in distribution (conditionally on B,) to

V2k Br, P ‘"~ 2k By ViPqd  Bn—j(n) -’

The right-hand side of (3.9) is equal to

B.—j(n - —3(n
Ly "GNy VBT 0 By i) DO,

VPI 1 Ba—im) LY,
v2kj(n) mpg  Bn—j(n)

By the Law of Large Numbers applied to the sample mean of (Y;) and by the indepen-
dence of the latter of B,,, we conclude that both sides of (3.9) converge in probability to
Z/V2.

Similarly, we obtain the convergence to Z/v/2 on the set E;. Consequently, condi-
tionally on B,,, we have

lim vnb, = Z/V2,

where convergence is in probability.

Next, consider /1 [6,, — E(6+, | Bn)] also conditionally on B,,. Assume first that we
are in the set ;. Then, the random variable under consideration can be written as the
sum of three independent random variables as follows:

\/ﬁ[&n — E(6y | Bn)] = Ln+ My, + Ny,
where
B, (m)—
Zj:l(Wj -1 M. — Zi(:g 1(Yk —1)
\/’ﬁ 2 n \/ﬁ ’
2 krimy (n/k = 1) (Y — 1)
K .
Vn
Note that L,, and M, are independent on 6,,. Thus, 6, — E(6n | By) is dependent on 0

only through N,,. But the latter variable converges to zero with probability one. Indeed,
we have the inequalities:

Ly, =

N, =

i1\ SEwYe
N (J‘(n) 1> B,—jm+1 )|’

_ B,
B, —jn)+1 ( n ) Zk:‘(n))k

3.11 N, >k /pg—=—22L — || ——1) | ===

(3.11) A B, B,—j(n)+1

B
(3.10) N, < k*\/pg—

Since _ _
Tetim Y 4 Sy
B,—jn)+1 B,-jn)+1
and the right-hand side converges almost surely to 1 on E; by the law of large numbers,
we conclude that the left-hand side converges in probability to 1 as well. From this and
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the fact that j(n)/n — g, we obtain after computing all limits in the right hand sides of
(3.10) and (3.11) and some elementary algebra that N,, converges in probability to zero.
It remains to compute the distributional limits of L,, and M,,. We have

_ \/—BTan;‘l(Wj —1)

SV VB

o VI =T8N - 1)
" v Vim) -1

Since B, /n converges to p and j(n)/n converges to g, it follows from the central limit the-

orem that lim,_,co(Ln+M,) 4 VaZ1++/pZ2, where Z1 and Z; are independent standard
normal variables. Consequently, conditionally on B,,, the sequence \/n [6,, — E(6, | By)]
converges -in distribution to a standard normal variable and its distribution is indepen-
dent of Z. The same arguments apply to the event Ep. Thus, unconditionally, the
asymptotic distribution of \/n8, is independent of that of \/n (6, — E(6, | Bn))-
Consequently, /7e(0n, 65 — 1) — (Z/V?2, V421 + /PZ3), where Z, Z,, and Z, are
independent standard normal random variables. The above is equivalent to (3.3). O

Ln

In the special case k = 1, Proposition 3.1 leads to the MLE’s (and their asymptotics)
of the parameters of the symmetric Laplace distribution, obtained in Kotz et al. (2001).
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Abstract. In this paper the situation of extra population heterogeneity in the stan-
dardized mortality ratio is discussed from the point-of-view of an analysis of variance.
First, some simple non-iterative ways are provided to estimate the variance of the
heterogeneity distribution without estimating the heterogeneity distribution itself.
Next, a wider class of linear unbiased estimators is introduced and their properties
investigated. Consistency is shown for a wide sub-class of estimators charactererized
by the fact that the associated linear weights are within some positive, finite bounds.
Furthermore, it is shown that an efficient estimator is often provided when the weights
are proportional to the expected counts.

Key words and phrases: Population heterogeneity, random effects model, moment
estimator, variance separation, standardized mortality ratio.

1. Introduction

In a variety of biometric applications the situation of extra-population heterogene-
ity occurs. This is particularly the case if a good reason exists to model the variable
of interest Y through a density of parametric form p(y | #) with a scalar parameter 6.
For a given subpopulation, the density p(y | #) might be most suitable, but the value
of 8 cannot cover the whole population of interest. In such situations we speak of extra
heterogeneity, which might be caused by unobserved covariates or clustered observations,
such as herd clustering when estimating animal infection rates. An introductory discus-
sion can be found in Aitkin et al. ((1990), p. 213) and the references given there; see also
the review of Pendergast et al. ((1996), p. 106). A discussion on extra-binomial variation
(i.e. extra-population heterogeneity if p(y | 6) is the binomial) can be found in Williams
(1982) and Collet ((1991), p. 192). In this paper, it is understood that extra-population
heterogeneity, or in short, population heterogeneity, refers to a situation when the pa-
rameter of interest, 8, varies in the population and sampling has not taken this into

827
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account (e.g. it has not been observed from which subpopulation (defined by the values
of #) the datum is coming from). As will be clear from equation (1.1) below, inference
is affected by the occurrence of extra-population heterogeneity. For example, variances
of estimators of interest are often greatly increased, leading to wider confidence inter-
vals as compared to conventional ones. To adjust these variances the estimation of the
variance of the distribution associated with the extra-heterogeneity is required. The
main objective of this paper is to present a moment estimator for the heterogeneity vari-
ance in a simple manner. To be more precise, if 6 varies in itself with distribution G
and associated density g(¢), the (unconditional) marginal density of Y can be given as
fly) = [op(y | 0)g(9)db. Of interest is the separation of the (unconditional) variance of
Y (e.g. variance of Y with respect to f(y)) into two terms:

(L1) Var(v) = [ Va(v | 0)g(6)ab + [ () - v o(0)ds

where p(0) is the E(Y | 8) and py = [yf(y)dy is the marginal mean of Y. Note that
py = Eg(p(8)). Note that we can also write (1.1) briefly as

Var(¥) = Eg(0%(0)) + Vara (4(0))

In the sequel we will also denote Varg(u(8)) by 72. Thus, in such instances, it can be said
that (1.1) is a partitioning of the variance due to the variation in the subpopulation with
parameter value 8 (and then averaged over 6) and due to the variance in the heterogeneity
distribution G of §. Also, (1.1) can be taken as an analysis-of-variance partition with
a latent factor with distribution G. We have to distinguish carefully between three
distributional schemes when computing moments. For example, Var(Y') refers to the
unconditional or marginal variance and is computed using the marginal density f(y),
Var(Y | ) is the conditional variance and is computed using the conditional density
p(y | 0), and Varg(u(6)) refers to the distribution G of §. The intention is to find
an estimate of 72 without implying knowledge or estimating the latent heterogeneity
distribution G. The idea is very simple: we write (1.1) as

(1.2) Varg (u(9)) = 7§ = Var(Y) — Eg(0*(6))

and replace Var(Y) and Eg(0%(6)) on the right hand side of (1.2) with their respective
sample estimates and obtain an estimate for 72. In the succeeding text, we will use u
as the mean of § and 72 for its variance.

Ezample (Poisson). Let Y1,Ys,...,YnN be a random sample of Poisson counts, e.g.
p(y | ) = exp(—0)6¥/y!. Then, d%(0) = 6, Eg(c%(0)) = Eg(d) = p = E(Y) and
7% = 72. Note that Var(Y) can simply be estimated by $2 = 315 Siv, (¥; — ¥)? and
p by Y. Therefore, according to (1.2), an estimator of 72 is provided as 2 =82_7.
This quantity has also been referred to as a measure of Poisson overdispersion (Béhning
1994). Note, that E(r2) = 2.

Ezample (Binomial). Let Y3,Y2,...,YnN be a random sample of Binomial counts,
eg ply | 0) = (5)0°(1 - 6)("~¥). Then, u(f) = nd and ¢%(6) = nd(1 — 6). Also, 73
= n272. Tt follows that Eg(nd) = nu, Eg(c%(0)) = nEg(0 — %) = n(u — Eg(6?))
= n(p — 72 — p?). Since Var(¥;) = Eg(02(8)) + 72 = nu(l — p) + n(n — 1)72, we
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find 72 = n(nl_l) [Var(Y;) — nu(l — p)], for i = 1,...,N. We can use the estimator,
72 = 7{(53—’17 ~[X@ - X)/(n - 1), with 8% = x1 SN | (¥; — ¥)2. This estimator has

a bias equal to Var(Y;)/[n?(n — 1)N] which is practically negligible even for moderate
values of n. For example, if n = 10 and N = 10, then the bias of 72 ig equal to 1/9000
of the variance of Y;.

The idea to construct a simple moment estimator using equation (1.2) can be found
in various instances in the literature including Marshall (1991) and Martuzzi and Elliot
(1996). The latter considered the case that p(y | 6) is the binomial. However, the way
this moment estimator is constructed is not unique. In this paper, we try to develop a
more general framework for these kinds of estimators.

In the next section, we will consider a generalization of this idea to the standardized
mortality ratio. In Section 3, we will discuss a more general class of linear unbiased
estimators of the heterogeneity variance and provide a closed form expression for its
variance. This enables us to provide a closed form expression for the efficient estimator.
In Section 4, we will provide simple conditions for consistency. Section 5 considers esti-
mating simultaneously the mean and variance of the heterogneity distribution. Section
6 .ends the paper with a discussion of the results.

2. The standardized mortality ratio

We consider a special but important case. Let Y1,Ys,..., Yy be a sample of counts
which can be thought of as a sequence of mortality or morbidity cases. For each Y; there
exists a connected non-random number e;, for ¢ = 1,..., N, which is interpreted as an
expected number of counts and usually calculated on the basis of an external reference
population. With the help of these numbers one can define the standardized mortality
ratio as SMR; = Y;/e; and its expected value E(SMR; | 6;) = 6;, for i = 1,...,N.
Frequently, this sample is coming from N geographic regions or areas. Therefore, this
situation is closely related to the so-called field of disease mapping. For an introduction
to this field see Bohning (2000) or Lawson et al. (1999).

Furthermore, conditionally on the value of 8, a Poisson distribution is assumed for
Y | 6: p(y; | 0,e;) = exp(—0e;)(e;)¥ /y;!. For this case, the partition of variance (1.1)
takes the form

(2.1) Var(Y;) = Eg(02(8)) + Varg(ui(8)) = e;Eq(8) + €2 Varg ()
= e;i+ 6?7’2.

At this point it is important to understand the consequences of the occurrence of
Y:
heterogeneity. Suppose p is estimated using the conventional estimator i = ET

2
Then, we have that Var(i) = ”El_ +T2Z§i£’)~2, so that, depending on the value of 72,

1
its variance might be largely increased. Note also that conventional confidence intervals
use the variance formula Var(i) = uzl—e, which might be too small if heterogeneity is

present.
We write (2.1) as E(Y; — e;u)? = e;u + €272 which draws attention to the variate

W; = (Y’;e’:f;efﬁ Since Var(Y;) = E(Y; — e;u)? we note that it follows from (2.1)

(2.2) EW;) =12
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First, to estimate 72, we can replace Var(Y;) by its ‘estimate’ (¥; — e;)? and solve for
72 and then average over i:

(23) - Z<Y ~ e/l - u; -
Second, in (2.1), we can divide first by e; and then average over ¢ and solve for 72:
iy (Y — esp)?fei =

Z?—Ll €

Third, we can also first average over i in (2.1), and then solve for 72:

N N
(2 5) 7:3 — Zi:l(Y;; - eiﬂ‘)2 - #Zi:l €;
. ~ .
2z e?

Note that all three estimators are identical if the e;’s are all equal (e.g. if e; = e; for all
1,7 =1,...,N). We note in passing that all three estimators are unbiased. In fact, they
are special cases of a more general class of linear unbiased estimators of 72:

(2.4) 2=

N
iz Wi
(2.6) T(W,a) = __z__ﬁ_i_’
i=1 i
for any non-random, non-negative numbers ay, ag,...,an. It is easy to verify that for

a; = 1/N the estimator T(W, o) = 7'12, for a; = e; the estimator T(VV, a) = 72, and
for o; = €? the estimator T(W,a) = 72 is provided. The estimator 72 associated with

= 1/N is mentioned in Bohning (2000). The estimator 7'2 associated with a; = e; is
suggested by Marshall (1991).

The estimator T'(W, o) considered so far requires the knowledge of the overall-mean

u. This assumption is satisfied, if the SM R;s are mdzrectly standardized implying that

.Y/ > e=1

2.1 FEzample 1: Hepatitis B in Berlin

To illustrate the estimators, we consider two examples. Table 1 gives the cbserved
and expected Hepatitis B cases in the 23 city regions of Berlin for the year 1995. Here,
we find that Y, ¥;/ ", e; = 1.019. A conventional x*-test for homogeneity is given by
x? = Y, (Y; — pei)?/(pes). If p is replaced with g = 37, Y;/ 3", e; = 1.019, we will get

x? = 193.52, which clearly indicates heterogeneity For this illustration, assuming that

p is fixed, the following values for 77 can be achieved: 0.5205(j = 1), 0.4810(j = 2),
0.4226(j = 3). This indicates rather high heterogeneity since Var(.S'M R) g 2
(SMR; — SMR)? = 0.6234. The situation is illustrated in Fig. 1 (using 77 to construct
the confidence interval adjusting for heterogeneity). Note that using the “right” estimate
of variance leads to an increased length in confidence interval for p using 14+1.96+/Var(j)
for the construction of a 95%-confidence interval where fi corresponds to the pooled
estimator.
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Table 1. Observed and expected Hepatitis B cases in the 23 city regions of Berlin (1995).

Area i Y; e; Areai Y; e;
1 29 10.7121 13 15 8.3969
2 26 17.9929 143 11 15.6438
3 54 18.1699 15 11  11.8289
4 30 19.2110 16 2 9.9513
5 16 21.9611 17 2 10.8313
6 15 14.6268 18 9 18.3404
7 6 9.6220 19 2 5.1758
8 35 17.2671 20 3  10.9543
9 17 18.8230 21 11 20.0121
10 7 18.2705 22 5 13.8389
11 43 32.1823 23 2 12.7996

12 17 24.5929 - - -

Source: Berlin Census Bureau

incorporating
heterogeneity

R e I fr. A
1 pthitis
0 =41
under homogerjity
-1
JEzoesNoagzazINaansyzrr 7
PO O ETTL2IESEFR2oL0 505 E = e
m&ﬁ;:BEG‘QUxE.mggEmgmxgmg >0
25388338 NeEY 52533225238 w2
82Tl 58 cZ¥2F2 538 oo
3 «Qa J [e) [
g 3% ~ & gz €° 5+ g
a =Y (_g:} = 0_31:
-
(]
q

Fig. 1. SMR estimates of Hepatitis B in 23 Berlin city areas with pointwise 95%-confidence intervals.

2.2 Fzample 2: Perinatal mortality in the North-West Thames Health Region

As another realistic data set the small area data of Martuzzi and Hills (1995) on
perinatal mortality in the North-West Thames Health Region in England based on the
5-year period 1986-1990 is considered. The region consists of 515 small areas. In this

case, »_,Y; = >, e; = 2051. It was found that 7:12 = —0.0272790 which is truncated to
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0, and 7-22 = 0.0167823 as well as 73 =0. 0369576 There is small heterogenelty present

in the data indicated by the ratio ?;’Mrm , where Var(SM R) = 75 Y .(SMR; -
ar

SM R)?, which takes on the values 0, 8 g})gg , g gggg =0,0.0277,0.0611 for the 3 estimators,

respectlvely

3. Efficiency

When investigating the efficiency of the family of estimators T(W, ), we have to
consider its variance:

(3.1) Var(T(W, o)) = 22225 Ver(Wi)

(3 i)

which is completely specified, if Var(W;) is known. It is well-known that the efficient
estimator (i.e. the one with minimum variance in the family T(W, a)) chooses «; pro-
portional to W Consequently, our interest concentrates on Var(W;). We have the

following result.

LEMMA 3.1. Let G be any distribution with finite moments to the power of four.
Then:

Var(W;) = pe]® + (2u2 + 7r2)e; 2 +2(3u® — 7pur? — 3u8)e; ! + 3
+u® — 74 4 672 — 4pp®

with M = Eg(6") forl = 3,4.

PROOF. Note that W; = e; %(Y; —e;u)?—e; ' u, where y is non- random and known.
Congequently we have

(3.2) Var(W;) = e Var{(¥i — e;n)?}
= e [E{(Vi — ein)*} — (E{(Yi — ei)?})?].

Note that for fixed 6; the random variable Y; is distributed according to the Poisson
distribution with parameter 6;e; : Y; | §; ~ Po(6;e;). The moments up to the order of
four for a Poisson distributed variable Y are needed here to use (3.2). These can be
easily derived by the factorial moments. In Haight ((1967), p. 5-6) the moments are
given up to the order of ten. In our application it follows

E(Y; | 6;) =eb;, E(Y?|6;) =eb;+e202, E(Y?|6;) =eb; +3e262 + 363,

e

E(Y2 | 6;) = e.0; + 7e26? + 6363 + e}6}.

Furthermore, for each 7 the expected value of the SMR, §;, is to be interpreted as a
realisation of the heterogeneity distribution G : ; ~ G. Therefore, we have E(Y}) =
Ec{E{Y}|6;}},1=1,2,3,4. From this fact, the moments of ¥; up to the power of four
follow using the notation ,u(l) =Eg(6"), u= u(l) 72 = Varg(8) = u® —

E(Y) =eip, E(Y?)=eip+ef(p’+17%),
E(Yz3) =e;u+ 36?(;1,2 + 7-2) + egu(3),
E(Y2) = eip+Te2(u? +12) + 6e3 ) + efp®.
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Consequently, we have:
(3:3) E{(Y; = eip)?} = e+ €272,
(3.4) E{(Y: — eip)*} = E(Y;! — de;uY? + 6ep2Y7 — 4e3p°Y; + ef )
= eip+ e2(3u% + 772) + 62 (u® — 2ur? — k%)
+ef (b — 4up® + 6p77% + 3u).

From (3.2), (3.3) and (3.4), we obtain the expression for Var(W;) stated above. This
ends the proof.

As a consequence from the expression for the variance of W; derived above, it follows,
that for large e;, Var(W;) behaves like a linear function in ] '. To see this, note that

7]
5T Var(W;) = 3ue; 2 +2(2p% + 77 e + 64 — 14p7? — 643
k3
Consequently, we have
7]
5-T Var(W;) — 2(3u® — 7ur® —3u%) for ¢! - 0.

T

This fact implies that, if we consider any fixed set of moments (y,72,u(®, ) and
Var(W;) as a function in e;, then Var(W;) increases approximately linearly with e;* for
large e;. This result can be summarized in the following corollary.

COROLLARY 3.1.
Var(W;) =~ e;'  for large e;.

A further demonstration of this efficiency result is given below.

Lemma, 3.1 above provides a closed form expression for the variance of W;. However,
this variance involves the first 4 moments of G, which are usually unknown. Therefore,
it is not possible to give a closed form solution for the efficient estimator. Corollary
3.1 provides support that—for large e;—72 should be close to the efficient estimator.
However, largeness is a vague term and it might be valuable to investigate the efficiency
of these estimators for real non-random data sets {e;}. Now, given any distribution G we
are able to compare any linear unbiased estimator to the efficient estimator avoiding any
kind of simulation approach. Below, we compare the three estimators %j?, for j =1,2,3
to the efficient estimator, where the e;’s stem from the two data sets of Example 1 and
Example 2, respectively. We choose as heterogeneity distribution G two cases, namely

0.5 1.5 0.8 0.9 1.1 1.2 : 01 o Ok 1
Gy =105 0.5) and Gy = (0‘2 0.3 0.3 0.2). Here, the notation G = (pi p:) indicates

a discrete probability distribution G giving weights py,...,pr to a finite number & of
mass points 01, ...,0, respectively. Then, the variance of W; is computed for each
i,i = 1,..., N leading to optimal weights o; = Var(W;)~!. These optimal weights are
compared with the weights used by the three estimators, namely 1/N, e;, and e? by
means of scatterplots a; versus 1/ Var(W;). The closer this relationship is to a straight
line with positive slope, the closer is the associated estimator to the efficient one. The
results are provided in Fig. 2 and Fig. 3. There is some evidence that 77 is often close
to the efficient estimator, since the relationship between the optimal weights and the
weights used by this estimator (e;) appear to be the most linear. This provides some
evidence for using 73.
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4. Consistency

We are interested in the asymptotic behavior of the estimator T(W,«). For this
purpose we require the following two conditions:

(A1) There exists the moment to the power of four for the heterogeneity distribution
G:u® < 0. ‘
(A2) There exist constants 0 < a < A < 00,0 < ¢ such that

a<o <A e<e forall i

THEOREM 4.1. Let (Al) and (A2) be fulfilled. Then:
N N
Tn(W,a) = (Z aiWi> / (Z ai> — T2almost surely,
=1 i=1
in other words, the estimator Ty(W, @) is strongly consistent.

Proor. We have that

(4.1) E(W;) =72
and under (A1)
(4.2) Var(W;) = pe;® + (2u® + 77%)e; % + 2(3u® — 7ur? — 3u®)e;t

+3pt 4 p@ — 7t 6ur? — 4.

With (A2) it follows, that there exists a finite constant W in such a way, that we

have
(4.3) Var(W;) <W  for all 1.

To obtain W, we have to replace e, by el in (4.2) for I = 1,2,3. Let us define the
following double sequence of random variables:

v ._ N i
AR

N .
7=1 a]

W, for N=12,..., i=1,...,N. Note, that

N
1
(4.4) 5 S VI = Tn(W, ).

i=1

For the variables Vz-(N) we have that

(4.5) VI(N), ey VIE,N) are independent for all N,
E(Vi(N)) =N (1\?—1> 72 and with this
ijl &
N
(4.6) Y EW®™) =N,
=1
&5

2
Var(V™) = N? ( ) Var(W;).

N
Zj:l aj
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Consequently, there exists a finite constant, say, W = (A%/a?)W, such that Var(V(N)) <
W foralli=1,...,N and all N > 1. With this, it follows that
N (N) N 2
Var (V ) 1 1
. lim E ——Lt<W 1 E - = E =W
(4.7) Jm 2. WNl_Igo 2 3 Wi=1 3 w 5

According to the strong law of large numbers by Kolmogorov, it follows from (4.5) and
(4.7)

N N

1 N 1 N

N X;Vz( ) _ i ZIE(V%( )} = 0 almost surely.
- 2=

Because of (4.4) and (4.6) this is equivalent to T (W, &) — 72 almost surely.

As a consequence we note that 7:22 and 7:32

positive bounds e, E such that 0 < e < e; < F for all i. For 77 consistency follows from

the fact that in this case we have V(N) W; as well as (4.3), leading to the inequality
(4.7) with W instead of W.

are strongly consistent, if there exist

5. Estimating heterogeneity mean and variance simultaneously

In many situations, however, it is not appropriate to assume that p is known. There-
fore, we have to replace u in W; by some estimate fi leading to

(Yz - eiﬂ)2 — Eéilh

B)
€

(5.1) W) =

Although only linear unbiased estimators 2 might be considered for u, Wi(ii) is not
necessarily unbiased for 72. This fact will cause a bias in T (W (jz),a). The bias will
depend on the form of T(W (i), ) as well as on fi itself. Typically, two mean estima-
tors are considered: the arithmetic mean f; = —11\7 > Yi/e; and the pooled mean fio =

ZE : : In Bohning (2000), the estimators

N
(5.2) (A;) = N 1 {Z(Y eilts)*/e; } "A‘J%Zé
i=1 *

for j = 1,2 were considered. It was shown that 7‘1 2(f1) is unbiased whereas 7‘1 2(fig) is
biased. This property (unbiasedness) might be one reason to consider 7'1 2(f1) at all. For
the Hepatitis B data of Berlin we find the results as given in Table 2.

In the light of Section 3, attention is given to the estimator 7:22(ﬂj) for j =1,2. It
is possible to provide exact expressions for their biases.

Table 2. Estimates of the mean and variance of the SMRs and 1:12 for Hepatitis B cases in the
23 city regions of Berlin (1995).

Estimator i Var(SMRs) 'rAf 7:12 /Var(SMRs)
simple mean  0.9751 0.6214 0.5489 0.883
pooled mean  1.0188 0.6234 0.5470 0.877
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N N ~
3 g (Yi—eifi;)? fei—p; N
e
=1

(53) E(}(in)) = (1 - —) (

- 2
(5.4 B ) = (1- et ) 7 - -i-l—u-

i €i

for i =1,2. Then:

=)’

THEOREM 5.1. Let T}’(pj) =

The proof of this theorem is straightforward.

5.1 Perinatal mortality in the North-West Thames Health Region
For the data of Example 2, the followmg values of the biasing constants have been

found: (1 — %) 0.998058, (1 — ﬁ) 0.997376, and (75, & — 2\:1-) =

€

—0.000206377, = = (0.000487571. This example illustrates that the amount of bias

involved in expressions (5.3) or (5.4) respectively might be very small.
6. Discussion

The results of this paper can be used for several applications. It was mentioned
earlier that the crude SM R has several disadvantages including some instability problems
for small sample size applications (Lawson et al. (1999)). Typical examples are disease
mapping and meta-analysis (Béhning (2000)). In these cases, it is more appropriate

to use an empirical Bayes estimate of the SMR. Often this takes the form i—'ﬁr’l‘;/f;
It can be shown that this is the linear Bayes estimator with respect to the euclidean
loss function and it is also the posterior mean if the prior is assumed to be a Gamma,
distribution (and Y; ~ Po(fe;)) (For details see Bohning (2000)). Clearly, u and 72 need
to be replaced by estimates and those that are proposed in this paper might be used for
this purpose.

The advantage of the proposed estimators lies in their simple and non-iterative na-
ture. Nevertheless, it should be pointed out that there are many other estimators leading
to iterative solutions. One should mention the moment-estimators suggested by Breslow
(1984) and Clayton and Kaldor (1987), or the pseudo-maximum-likelihood estimator
suggested by Pocock et al. (1981), and Breslow (1984). These estimators have been
well motivated when they were suggested, and they might be superior in their efficiency
to the estimators proposed here. However, a thorough investigation and comparison of
these estimators, either in terms of comparing these iterative estimators to each other,
or comparing the iterative estimators to the non-iterative estimators suggested here, has
not been done yet and is expected to be dealt with in future research.
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Abstract. In this paper, the more convenient estimators of both parameters of the
gamma distribution are proposed by using its characterization, and shown to be more
efficient than the maximum likelihood estimator and the moment estimator for small
samples. Furthermore, the distribution of the square of the sample coefficient of vari-
ation is obtained by computer simulation for some various values of the parameters
and sample size, and thus the simulated confidence interval of its shape parameter is
established.

Key words and phrases: Sample coefficient of variation, shape parameter, moment
estimator, gamma distribution.

1. Introduction

The gamma distribution is widely used and plays an important role in the reliability
field and the survival analysis, therefore a successful estimation of its parameters will
be very important. Unfortunately, there exist some difficulties in present estimation
schemes. Maximum likelihood estimation method for its parameters are described in the
literature by Johnson and Kotz (1970), Cohen and Norgaard (1977), Cohen and Whitten
(1982), Harter and Moore (1965), Bowman et al. (1987) and Bowman and Shenton
(1988). Also some difficulties and modified MLEs are mentioned in these papers. On
the other hand, Bai et al. (1991) and Bowman and Shenton (1988) pointed out a high
degree of deviation of the estimators from the parent distribution if one uses the methods
involving the moments.

Hwang and Hu (1999, 2000) proved the independence of sample coefficient of varia-
tion V,, with sample mean X,, when random samples are drawn from gamma, distribution.
In the next section, we use this characterization to derive the expectation and the vari-
ance of V.2, and then propose the new moment estimators of the shape and the scale
parameters of gamma, distribution. Furthermore, by simulation, we compare in Section 3
the new estimators with the maximum likelihood estimator and usual moment estimator
in term of mean square error.

For finding a simulated confidence interval of the shape parameter, the simulated
distribution of V;2 will be derived in Section 4. In Hu (1990), a set of non-linear transfor-
mations of order statistics was devised to derive the sample distribution of V;,; its explicit
probability density function has been obtained only for sample size n = 3,4 and 5. In

*This paper was supported by a grant from the National Sciences Council of R.O.C.
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Hwang and Lin (2000), the detailed c.d.f.s of V;, and V,2 under exponential population
are presented for n = 3,4 and 5 only. Until now it is still difficult to derive explicitly
the sample distribution of V;2, thus simulation is used to find the sample distribution
of normalized V;? for shape parameters = 0.5,1.0,1.5,2.0 and scale parameters = 1,0.5
and 0.25 when n = 5, 10, 15, 20 and 25 respectively; it looks almost like gamma distribu-
tion for the cases mentioned above. Finally, the simulated confidence intervals for shape
parameter are established.

2. New moment estimator of parameters of the gamma distribution

For deriving new moment estimator of parameters of the gamma distribution, we
need the following theorem taken from Hu (1990) and Hwang and Hu (1999).

THEOREM 2.1. Let n > 3 and let X1,A, X, be n positive i.i.d. random variables
having a probability density function f(z). Then the independence of the sample mean
X, and the sample coefficient of variation V,, = S, /X, is equivalent to that f is a gamma
density where S, is the sample standard deviation.

The next result and Theorem 2.1 are useful in deriving the expectation and the
variance of V;2 = (8,,/X,)?, where X,, and S,, are respectively the sample mean and the
sample standard deviation.

THEOREM 2.2. Letn > 3 and let X1,A, X, be drawn from a population having a
gamma density

g(z;a, ) = F( ) z% e BT £>0,a>0,8>0.
Then
- (na + L)na
E(X’IZL) = n2,82
and

where X,, and S2 are respectively their sample mean and sample variance.

Proor. It is easy to prove that

_a ar 2 _ Var(X) _1
E(X)—ﬁY Vi (X) ,62’ |4 E2(X) a7
2.1) B(xk) = @tE- 1)ﬁ'k' (et e g k>,

and that X, has the following p.d.f.

o) = O o o

and moments

(na+k—1)--- (na+1)(na)

T for k>1.

(2.2) E(Xy) =
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Thus (2.1) and (2.2) together give the following relation:

E(S7) = (n—il‘)-E [Z(Xi - Xn)Q}
=1

= —[B(X?) - B(X2)]
a4

B2
and Theorem 2.2 is established.
Theorem 2.2 implies that the sample mean X, and the sample variance S2 are

respectively the unbiased estimator of population mean «/3 and population variance
a/B?, a property also possessed by the normal population. Thus we have the moment

estimators &, and Bm of & and S as follows:

THEOREM 2.3. Let n > 3 and let X1, A, X,, be drawn from a population having a
gamma density

{27
g(z;0,0) = %(x—)wa_le_ﬁm, z>0,a>0,6>0.

s2 n
E(2n)y_-_"
(X,%) 1+na

where X,, and S2 are respectively their sample mean and sample variance.

Then

Proor. By Theorem 2.1, we have

2 S g S 72

B _ B
Xz)  E(X2)

Applying Theorem 2.2, to the above identity yields that

S2 n
E(}‘z‘g)—Hna

and hence

and Theorem 2.3 is established.

Note that E(S2/X2) — 1 as n — oo and that 1 is the square of the coefficient
of variation. Thus S2/X?2 is an asymptotically unbiased estimator of the square of the
coefficient of variation.
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By Theorem 2.3 , V;2 is the unbiased estimator of TT5a, thus it seems reasonable to

propose Vl - ;1; as the estimator of @, namely

1 1

Qe = —-‘V2 o
n

It is easy to show that &, > 0. Therefore, by the identity E(X,) = % and moment
estimation method approach, it seems also reasonable to propose

N Ge 1 1 1
b= = (55-2)-
Xn X \VZ2 n
Note that &, — &, and ﬁc — 3,,, as n — 00, and their differences get bigger when
the sample size r2 gets smaller.
The fact that &. and ﬂc are more convenient to be computed than the maximum
likelihood estimators &z, and ,B ;, of o and S is quite trivial. For comparing the efficiency

of &, and ﬂc with &, and (g, respectively, we apply the next theorem to derive the
normalized behevior of V,,.

THEOREM 2.4. Let n > 3 and let X1, A, X,, be drawn from a population having a
gamma density

g9(z;0,8) = F(a) %7 le P £>0,a0>0,8>0.
Then
2y @ | 2na 6
(2.3) Var(S;) = iz [-———(n —1y + n]
and )
24) Var (:S’i) 2a(a+1)
: T2

(n—1) (a+%>2(a+%> (a+%>'

Proor. Since Mx(t) = (1 —t/3)™*, we have

E(X)=0a/B

E(X?) = a(a+1)/6°

E(X® = a(a+1)(a+2)/8°

E(XY = ala+1)(a+2)(a +3)/8*

and Mg (t)=(1- ﬁ,—t)‘"a gives
E(X,)=a/B

E(X§)=a(a+-1-> /ﬁ2
(o) (o2
s =a(arl) () (as2) /5"
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By using the above identities, we obtain

4 2] 2 1 2
E(S;) = Bl 1) [(n ——1)a+6(\/_— %) }

and combing the above identity and Theorem 2.2, we have
2no 6
Var(§2) = o | —o 4 2|
w58 = 5 [
Next, the independence of (52/X2)? and (X,,)? gives

E (5_4) _ B g

X:)  E(X%)
2
E(S_2>2 By M beds (v~ =)
R CHICH [C)
ar (;g—{—?é) = 20(a +1)

N2
(n——l)(a—i——) (a+g> (a+§>
n ') )
and Theorem 2.4 is established.

Theorem 2.4 implies that both Var(S2) and Var(Vz) tend to zero as n — 00. Thus
S2 and V2 are respectively consistent estimators of £; el and - for large samples. After
some computations, we find the following inequality:

4

Var(VZ) ( n8 \'_[_8
Var(S2) < <na+1) N o+ 1
n

Var (V2) < Var(S2), fB<a+ %

Furthermore, the fact that Var(V;2) — 0 as n — oo also confirms the reason: why
V,, can always considered approximately as constant for large samples, and it can be
used in checking experiment results and in estimating the standard deviation.

3. The comparison with previous estimators

In this section, the comparison of our estimators (&, ﬁc) with maximum likehihood
estimators (&r, B1) and moment estimators (Gun, Bm) would be done in terms of mean
square error by using the simulation procedures proposed by Greenwood and Durand
(1960) which improved Thom (1958). Note that (dr, Br) are more difficult to compute
than (&, Bc) and (@, Brm)-

We have done more than 100,000 times simulation for o = 0.5,1,1.5,2and § = 1,2,4
when n = 5,10, 15,20 and 25, and obtain the following conclusions:

(1) (ac,ﬁc) is the best estimators of (o, 3), (aL,,BL) the next and (G, Bm) the
worse for n < 25, and the smaller n the better (&, ﬂc)

(2) (61,Br) is the best estimators of (a, B), (6, B.) the next and (&m,Bm) the
worse for n > 25, and the larger n the better (Gy, BL)-



NEW MOMENT ESTIMATOR OF GAMMA PARAMETERS 845
4. The confidence interval for shape parameter

For deriving the confidence interval of the shape paramter, we need to study the
behavior of V,2.

By Theorem 2.3 and Theorem 2.4, we construct the normalized distribution of
V.2 under gamma distribution with various parameters values: o = 0.5,1,1.5,2 and
B =1,2,4 when n = 5,10,15 and 20 by 100,000 simulations . Its simulated c.d.f. are
presented in Hwang (2000). Comparing our simulated results with the results presented
in Hwang and Lin (2000) for @ = 1 and 8 = 1 when n = 5, they are quite same; for
example P(VZ < 1.10) = 0.7599 in Hwang and Lin (2000) while it is equal to 0.7630
in this paper. From the simulated results we conclude that V;2 looks almost like a
gamma, distribution for any «, B and any n. This conclusion is justified by both of the
Kolmogorov-Smirnov test and x? test.

Furthermore, we obtain also by simulations the frequencies of V;? falling in one
standard deviation; two standard deviation and three standard deviation interval (with
its mean as their center) respectively from Hwang (2000) for a = 0.5,1.0,1.5,2.0 and
B=1,2,4when n =5,10,15,20,25 and 30. The results are presented in Table 1. The

Table 1.

n o" 1o 20 3o

5 0.5 72.620 94.710 98.870
1.0 75.680 95.153 98.297
1.5 76.010 95.313 98.220
2.0 75.943 95.310 98.300

10 0.5 T76.920 95.340 98.287
1.0 76.323 95.530 98.440
1.5 75.717 95.467 98.433
2.0 74897 95.833 98.707

15 0.5 77.160 95.550 98.443
1.0 75.800 95.593 98.487
1.5 74.853 95.773 98.553
2.0 73.843 95.760 98.627

20 0.5 77.010 95.577 98.353
1.0 75.047 95.967 98.700
1.5 74.027 95.983 98.723
2.0 72993 95.827 98.657

25 0.5 76.813 95.657 98.410
1.0 75.037 95.977 98.647
1.5 73.227 95.680 98.730
2.0 72450 95953 98.957

30 0.5 76.233 95.623 98.460
. 1.0 73.780 95.820 98.683

1.5 72173 95.647 98.763

2.0 71990 95.697 98.803
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behavior of sample mean of V;2 is also investigated, and the conclusion is the same as
central limit theorem; this fact can be justified by any of the Kolmogorov-Smirnov test
and x? test.

By Theorem 2.1 and Theorem 2.3, we have the mean and the variance of V;? as

follows: 5
n
In) =
E (X,%) 1+ no
Sz

o2 = Var (—-—- 2alo+ 1)

X?) -1 (a#%) (‘”;22) (a+%>‘

For finding the confidence interval of a, we need to manipulate the following probabilities
for various values of « and n,

and

n 52 n
P —ko < =% < .
1”(na-i—l U‘Xﬁ‘na+1+ka>

Since it is quite difficult to derive, we present its approximate probabilities in Table 1
and the conclusions would be drawn for some values of « = 0.5,1.0,1.5,2.0, and n =
5,10,15,20,25 and 30 as follows:

n 2
P —g < 2L = (.
I‘(ncH-l 7= X2~ na+1+a\) 0.75,
n 52
- < et < (.
Pr(na+1 20_X,%‘na+1+2a> 0.95

and

na+1 -

n 52 n
P — < == <L = ().98.
r( 30‘_X% na+1+30) 0.98

Here 0.75, 0.95 and 0.98 will be assumed to be the mean probabilities respectively
for various «,8 and n. Thus the approximated 75.5%, 95% and 98% confidence intervals
for o could be concluded respectively as follows:

(

1 1 1 1 1 1 1 1 and

g2 o 52 BN I q2 o2 R
L - n 26 "’f—%—za n
Xn Xn Xn Xn

( 1 1 1 1
52 n’ S2 n
== 4+ 36 —= — 36
X2 X2

where 62 = 26o(dct1)

= DA 1) (6t E) (3.7 E) and &, is the new moment estimator of a pro-
posed by using Theorem 2.3. "
After simplification of the following probability, we write

n S2 n
P —ko <2<
1r(na+1 ka“X,%‘na+1+k0)



NEW MOMENT ESTIMATOR OF GAMMA PARAMETERS 847

X2 k 1 X2 k 1
PriZn({1- —=—)-~-<a<Z{1-—=)-=
(82( n—l) n—“—sz( n—l) n)

and the approximate 75%, 95% and 98% confidence intervals for o are

X2 k 1 X2 k 1
ket O RS Nt R SR k=1,2,3
(5 () w5 (o y) 5) Fmree

respectively for large sample.
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Abstract. The problem of estimating linear functions of ordered scale parameters
of two Gamma distributions is considered. A necessary and sufficient condition on
the ratio of two coeflicients is given for the maximum likelihood estimator (MLE)
to dominate the crude unbiased estimator (UE) in terms of mean square error. A
modified MLE which satisfies the restriction is also suggested, and a necessary and
sufficient condition is also given for it to dominate the admissible estimator based
solely on one sample. The estimation of linear functions of variances in two sam-
ple problem and also of variance components in a one-way random effect model is
mentioned.

Key words and phrases: MLE, unbiased estimator, admissible estimator, variance
estimation.

1. Introduction

In this paper, we discuss the problem of estimating linear functions of scale pa-
rameters of Gamma(a;, A;), ¢ = 1,2, when ¢4, @ = 1,2 are known and the restriction
A1 < Az is given. We note that a special case of this general problem is given in two
samples problem with different but ordered variances. Estimation of smaller or larger
variance has been discussed by Kushary and Cohen (1989). Among the linear functions
of variances estimation of those with positive coefficients is especially important since
they are the variances of linear functions of two random variables.

Consider, for another example, a one-way random effects model given by

yij:M+ai+€ij, ’i=1,...,I, j:]-y"'a‘]’

where a; ~ N(0,0%) and €;; ~ N(0,0). Letting S1 = 32, > .(yij — 5:.)* and Sz =
I (@ —5.) for g, =J 7! dovi and g = (IJ)71 Y, >_; Yij» one has that Si/a? ~
x2,,i=1,2 forng =I(J—1), ny =I1—-1and 06 = g7 + Jo. In this situation, of
great interest is to estimate the between component of variance 0%, being represented by
0% = J71 (6% — 0%), which is a linear function of two ordered Gamma scale parameters
0% and o3.

There has been considerable interest in the estimation of the parameters when there
are linear restrictions among parameters. Typical types of the restrictions are positivity,

848
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simple ordering and simple tree ordering. See, for example, Barlow et al. (1972) and
Robertson et al. (1988). Many papers focus on normal mean estimation and on compar-
ing the maximum likelihood estimator (MLE) which satisfies the order restriction with
the unbiased estimator (UE) coordinately (Lee (1981), Kelly (1989)). However, MLE
does not always improve UE (Lee (1988)), and it is not always true that every linear
function of MLE dominates the one of UE in terms of mean square error (MSE) (see
also Hwang and Peddada (1994) and Ferndndez et al. (1999)). In recent years, Rueda
and Salvador (1995) have considered the problem of estimating general linear function
of normal means when two linear inequality constraints are given, and have shown that
MLE gives an improvement for any coefficients. In estimating linear functions of positive
normal means, Shinozaki and Chang (1999) have given a necessary and sufficient condi-
tion on the coefficients so that linear function of MLE dominates the one of UE in terms
of MSE. Thus they show that MLE dominates UE for any choice of coefficients if and
only if the number of means is less than 5. Independently, Ferndndez et al. (2000) have
discussed the same problem under a symmetric unimodal location model. Other than
normal distribution, there are also many papers dealing with the estimation of param-
eters under order restrictions. Kushary and Cohen (1991) considered the estimation of
ordered Poisson parameters. Kaur and Singh (1991) considered the estimation of ordered
means of two exponential population with the same sample sizes. They compared MLE
with UE coordinately and showed that MLE dominates UE. This is a special case of
the estimation problem of Gamma, scale parameters when order restriction is given. See
Hwang and Peddada (1994) and Kubokawa and Saleh (1994) for general scale parameter
estimation under order restriction.

Here we first compare MLE with UE in estimating linear functions of ordered scale
parameters of two Gamma distributions. To evaluate the difference of MSE of two es-
timators we give some useful lemmas in Section 2. We give a necessary and sufficient
condition on the ratio of coefficients for MLE to dominate UE in terms of MSE. We also
numerically obtain the upper bounds of the ratios for some typical values of o;,i = 1,2.
All these results are given in Section 3. Other than UE, there is another standard esti-
mator of \; which we can obtain by replacing «; by o; -+ 1 in UE. This estimator is an
admissible one based solely on one sample under quadratic loss. In Section 4, we sug-
gest a modified MLE which satisfies the restriction and give a necessary and sufficient
condition on the ratio of coefficients for the modified MLE to dominate the unrestricted
one. The lower bounds of the ratios are also given for some typical values of a;,i = 1,2,
We give some concluding remarks in Section 5.

2. Preliminaries
Let X;, i = 1,2 be independent Gamma(a;, A;) random variables, having density
(2.1) Prolm) = a2 I\ e/ D (),  0< ;<00

where a;(> 0) is known and X;(> 0) is unknown but satisfying 0 < Ay < A2 < co. We
note that even if we have more than one observations, we can reduce the case to the
above one by considering the sufficient statistics which also follow Gamma distributions.
The MLE of ); is given by

(aa X1 — o Xo)t
fo= Xy qpleXizae) oy
a; ai(ag + az)
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where a™ = max(0,a) and X;/a; is the unbiased estimator (UE) of A;.

The best estimator of ); of the form ¢X; under squared error loss is X;/(a; + 1),
which is an admissible estimator of \; based solely on X;. We also consider a modified
MLE that satisfies the restriction 0 < A; < Ay < o0 given by

- X; :
i = ~1)*
A ai+1+( )

((02 + 1)X1 — (Ol1 -+ 1)X2)+
(ai + 1)(a1 + oo + 2) ’

i=1,2,

which we can obtain by replacing o; by a; + 1 in the MLE Xi. We note that Kubokawa
and Saleh (1994) have proposed another improving estimator of A; by their general
argument.

Let ¢, ¢ be given constants and we want to estimate ¢ A1+ c2Xa. We first compare
two estimators, UE, E?zl ¢iX;/a; and, MLE, Z?zl c;A\; by their mean square error
(MSE) and give a condition on ¢; and cp for MLE to dominate UE. We also compare
Zle ¢; X;/(a; + 1) with modified MLE Z?zl ¢ihi, and give a condition on ¢; and c; for
the modified MLE to dominate the competitor.

We should first mention that the domination depends only on the ratio ca/¢;. This
is generally true so far as we are concerned with estimation of linear functions Z?zl c;;
of parameters #; and 05 and compare two estimators of the form E?=1 ¢;0; by their MSE,
since MSE is a quadratic function of ¢; and c¢s.

To evaluate the difference of MSE between the estimators, we need the following
lemmas. The following Lemma 2.1 is well known and we can show it by applying inte-
gration by parts (Berger (1980)).

LeEMMA 2.1. Let X be a Gamma(a, \) random variable and assume that g(z) is
absolutely continuous on (0,00) with ¢'(z) = é%(_ww_) satisfiying
(i) EllXg'(X)]] < ccand E[|g(X)|] < o0
(ii) limg_o g(x)z%*/* = limg_,o g(x)z%e~%/* = 0, for A > 0.
Then
E[Xg(X)] = MaE [9(X)] + E [Xg'(X)]}.

LEMMA 2.2. Let X;, i = 1,2 be independent Gamma(a;, ;) random variables
having density (2.1). For any constant b > 0, I, >ps, denotes indicator function of the
set {(z1,72) | z1 > bz2} and p=0b/(b+1). Then

EXoIx,>0x,] o Eo[Xolxi>ox,] _ a1toe 1—I(a,09)
E[X1Ix,>bx,] ~ Eo[X1Ix,>bx5) ar 1—Ij(oa+1as) 7’

where Eo[-] denotes the expectation when Ay = Xy and I(a, 8) = [y u®~ (1 —u)?~'du/
B(a, 8), where B(a, f3) is the beta function.

The proof is rather technical and we give it in Appendix A.l. We note that
Eo[XoIx,>bx,]/EolX11x,>bx,] is independent of the common value of A; and A,.

3. MSE reduction by MLE in estimating linear functions of Gamma scale parameters

Here we evaluate the difference of MSE between MLE and UE in estimating ¢; A1 +
¢ )2, Where ¢1, ¢g are constants. The difference of squared errors between MLE and UE
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is given by

o0 {Fa(Z ) (S (B o) - tizmn (o))

i=1

N - 2
= ( e ) {22511(Xi = 0idi) (02 X1 — 0n X))
i=1

a1 + o
€1
_ X, —
(a1+a2)[(a2 LX) ] }

where & = ¢;/0y, i = 1,2. Without loss of generality we assume that ¢; > ¢ and also
for simplicity we denote Iy, x,>a,x, by I, hereafter.
To evaluate the expected value of (3. 1) we use Lemma. 2.1 and have

E[Xl(OQXl - a1X2)+] = Al{alE[(agXl - a1X2)+] + E[OthlI]}

and
(3.2) E{XQ(QQX]_ - a1X2)+] = Az{azE[(agXl - a1X2)+] - E[a1XQI]}.

Thus we see that the expected value of the quantity in the braces of (3.1) is given by
(33) 251/\1E[a2X1I] - 252)\2E[&1X2[]
¢
- (i‘ﬁ‘) {aaz(A1 = Ao)El(@2 X1 — a1 X2) "]
+a2/\1E'[a2X1[] + C\!1A2E’[O£1X21]}.

We first show that (3.3) is negative for sufficiently large A if &, > 0. Since the third
term in (3.3) is non-positive we see from Lemma 2.2 that (3.3) is less than or equal to

_ a1 Eo[X2 | aaX1 > 04 X5
2F (o X1 1 A Ag—
[o2 1 ].{Cl 1= > Eo[X1 | apX1 > a1 X>)

which is negative for sufficiently large Ap if ¢ > 0. This means that MLE does not
improve UE if ¢ > 0. Thus we see that é; must be non-positive when &; > & in order
for MLE to dominate UE. In addition to the condition & > & we assume that &3 < 0in
the following and give a condition on ¢; and ¢y for MLE to dominate UE.

Since (3.2) is non-negative, we have

agE[(agXl - a1X2)+] 2 E[OlezI],
and we see that (3.3) is greater than or equal to
(34) 2&1)\1E[02X1H - 252A2E{01X21]
¢
(ai+ >{a1(/\1 A2)Eloy X, 1)
+a2)\1E[a2X11} + al)\gE[angI]}

= )\1 (251 — M) E[Oszlf]
o1+ o
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_ ( A2 i+ 252,\2> Elon X1
a1 + az

A1
Z
a1 + ag

{(51 (2011 + ag) + Ezaz)E[agXl.[]
—-(51051 + 62(&'1 -+ 20(2))E[Q1X2[]},

since A2 > A; and & < 0. We can easily see that if ¢; (20 + a2) + é202 > 0, then (3.4) is
non-negative since E{asX1I] > Elog XoI] and & > &. Even if ¢ (204 + ag) + é202 < 0,
(3.4) is non-negative if

EXol] | az(a1/e)2+ az/on) +1
E[le] %1 (cl/cz)+(2+a1/a2) ’

(3.5)

We note that for fixed a; and s, the right-hand side of (3.5) is an increasing function
of ¢1/ca. Thus we see that for fixed a; and oy if some ¢; and ¢p satisfy (3.5) then any
c; and ¢ such that ¢1/co > ¢)/c, satisfy (3.5).
Putting R = {1 — Iy(oq +1,a2)}/{1 — I,(c1,2)}, we have from Lemma 2.2
Eo{XQI] o +agl

= =1
EoX11] ag R 7

o
aj+ta2

where p = . Thus the inequality (3.5) is true if

atapl 1> %cl(2+a2/a1)+02
a R Toma+ 2+a/az)e’

which is equivalent to
a(l—p)+c(2-p)

R< g
p+C2

1
The above inequality is also equivalent to the one

a__p 2—-p—R

cg " 1—p R—p

It should be noted that R > 1 > p, since I,(a; + 1, a2) < I (04, o).

Thus we have shown that MLE dominates UE if ¢; and ¢y satisfy ¢;/c2 < p(2—p—
R)/{(1 — p)(R — p)}. Conversely, we see that this conditions is also necessary for MLE
to dominate UE by examining each step of the above evaluation for the case A\; = Ag. If
we denote the MSE of an estimator ¢ of E?=1 ¢\ by MSE(p), we have the following
theorem.

THEOREM 3.1. MSE(Y2_, ¢;iXi/oi) > MSE(X2, ei)i) for any 0 < Ay < Ag <
oo if and only if

< p 2—-p—R

(3.6) TR

Sl

including the case ¢ = 0.
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Table 1. Upper bounds of ¢; /c2.

ai\az| 0.1 0.3 0.5 0.8 1 1.5 2 2.5 3 5 8 12 100
0.1 |~0.277 —0.152 —0.104 —0.070 —0.057 —0.039 —0.030 —0.024 —0.020 —0.012 —0.008 —0.005 —0.001
0.3 |—0.275 —0.188 —0.142 —0.103 —0.086 —0.062 —0.048 —0.039 —0.033 —0.021 —0.013 —0.009 —0.001
0.5 {—0.208 —0.153 —0.120 —0.090 —0.077 —0.057 —0.045 —0.037 —0.031 —0.020 —0.013 —0.008 —0.001
0.8 |—0.086 —0.066 —0.054 —0.042 —0.036 —0.027 —0.022 —0.018 —0.016 —0.010 —0.006 —0.004 —0.001

1 0 0 0 0 0 0 0 0 0 0 0 0 0

1.5 | 0.220 0.178 0.149 0.120 0.106 0.082 0.067 0.056 0.049 0.031 0.021 0.014 0.002
2 0.444 0.364 0.308 0.250 0.222 0.174 0.143 0.121 0.105 0.069 0.045 0.031 0.004
25 | 0.670 0.552 0.471 0.385 0.344 0.271 0.224 0.191 0.167 0.110 0.073 0.050 0.006

3 0.896 0.743 0.636 0.524 0.469 0.372 0.309 0.264 0.231 0.154 0.102 0.071 0.069

5 1.803 1.512 1.306 1.089 0.981 0.790 0.662 0.571 0.502 0.340 0.230 0.161 0.021

8 3.167 2.673 2.322 1.949 1.764 1.432 1.210 1.049 0.928 0.637 0.436 0.308 0.042

12 | 4.987 4.225 3.681 3.103 2.815 2.298 1.949 1.697 1505 1.044 0.721 0.512 0.071

100 |45.043 38.403 33.658 28.586 26.058 21.483 18.386 16.131 14.406 10.216 7.220 5.244 0.797

When ¢; = 0(c; = 0) and oy = a5 is a positive integer, the above theorem reduces
to Theorem 2.1. (a) (Theorem 2.2. (a)) due to Kaur and Singh (1991). See Kushary
and Cohen (1989) for another improving estimator of smaller variance and also Hwang
and Peddada (1994) for related results.

We have calculated the values of the right-hand side of (3.6) for some typical values
of a; and @ and have given them in Table 1. We see that the range of the value of ¢; /c;
for which MLE dominates UE is rather small. Especially when we are concerned with
the case with positive coefficients it is quite small. If ¢; = as = 2, we need ¢; Jea <0.143
and MLE does not dominate UE for most of the choice of coefficients with the same sign.
We notice that the range of ¢;/ce for which MLE dominates UE becomes larger if oy or
o gets larger. Rather than as, a; seems to be important to make the range larger.

The case when ¢; = 0 corresponds to the estimation of Az and is of particular
interest. From Table 1 it is almost obvious that MLE dominates UE for ¢; = 0 if and
only if oy > 1. We formally give it in the following corollary whose proof is given in
Appendix A.2.

COROLLARY 3.1. MSE(Z?=1 ¢iXifow) > MSE(Z?=1 cz;\z) for any 0 < A <
Ao < 00 and for any ¢; > 0 and ca < 0 (and also for any ¢; < 0 and cz > 0) if
and only if o1 > 1.

4. MSE reduction of an admissible estimator based solely on one sample

In this section, we compare two estimators of c1A; + ¢z, Z?:l ¢;X;/(a; + 1) and
Z?zl ¢;\;, by their mean square errors and give a condition on ¢; and c; for the latter
to dominate the former. R

The difference of squared errors between Z?zl ¢; Xi/(a;+1) and Z?:l ¢iA; is given
by

(41) (alia +2> {2ZC(X (s + )A)[(az + 1) X1 — (o + )Xot

_ (—i———-éé—) {llaz + 1)X; — (aa + 1)X2]+}2 } J

a1+ as+2
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where & = ¢;/(a; +1),i = 1,2. Without loss of generality we assume that & > &, and
also for simplicity we denote I(q,41)x,>(as+1)X, bY I’, hereafter. By applying Lemma 2.1
we see that the expected value in the braces of (4.1) is given by

(4.2) 26’1/\1E{(a1 + ].)XQII] - 252)\2E[(012 + 1)X1[’]
_ (ﬁg-;%) {(02 -+ 1)/\1E[(a1 -+ 1)X21/] -+ (a1 + 1)A2E[(a2 -+ 1)X1I,]
+(011 + 1)(a2 —+ 1)(/\1 - )\Q)E[{(az + 1)X1 — (Oll + 1)X2}+]}.

Here we notice that (4.2) is negative for sufficiently large Ay if &, > 0, since the third
term in (4.2) is non-positive and E[(ag + 1)X1I'] > E[(cq + 1)X2I']. This implies that
Z?zl ciAi does not dominate Z?zl ciXif(oi+1)if & > & and & > 0 (or & < & and
&, < 0). Therefore in the following we only consider the case where & > & and ¢; <0
to find the conditions on & and &, for Z?zl ;A to dominate Z?zl ciXi/(a; +1).

We first show that (4.2) is non-negative if (a7 + 1)é&; + (o1 + 22 + 3)& < 0. Since
&y > & and A1 < Ag, (4.2) is greater than or equal to

201 + ag + 3)& + (az + 1)
(4.3) (( ! 2&1 +)a; +(2 2 )62) AME[(oq + 1) XaI']

3 ((al + 1) + (o1 + 202 + 3)&,
g + g + 2

) /\QE[(ag + 1)X1I’].

Since M < Az, E[(a1+1)X2I'] < E[(a2+1)XlI’] and (2a1+a2+3)6'1+(a2+1)6’2 > (a1+
1)&} +(a1+2a2+3)c, we see that (4.2) is non-negative if (a1 +1)&; + (a1 +2a2+3)& < 0.
In the following we assume that (oq + 1)&] + (a1 + 2a3 + 3)&, > 0. Using the
inequality
E[{(a2 + 1)X1 — (a1 + 1) X2}t > E[X I,

we see that (4.2) is greater than or equal to

AL

4.4 —_—
(4.4) ay+as+2

{l(2en + a2 + 3)¢) + (a2 + 1) E[(an + 1) X2I']
—[(a1 + 1)& + (o1 + 202 + 3)&] E[(02 + 1) X11']}.
(4.4) is non-negative if and only if

E[X,I'] > as+1c + {2 + (a1 + 1)/{(az + 1)}eo
EXiI') " a1 +1{2+4 (2 +1)/(aa+ D)}er + ¢

(4.5)

Now we denote p' = (a; +1)/(a1+ a2 +2) and R = (1 — Iy(oaq + 1,0))/(1 —
Iy (a1, az)). Then from Lemma 2.2, we see that the inequality (4.5) is true if

oy + oo > 2(01 + Cz)

4.6 .
(4.6) R~ (p+ Der + plea

Since the right-hand side of (4.6) is a decreasing function of ¢;/ca, we see that if
a1 R [{oa + 0o2) < (p' +1)/2, then Z?:l ¢;A; dominates E?=1 ¢ Xi/(a; + 1) for any
¢1 and ¢z such that —oco < ¢1/¢a < (a1 +1)/(a2+1) including the case ¢c; = 0. Similarly
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Table 2. Lower bounds of ¢ /c2. (A blank means that lower bound does not exist).

ai\az 0.1 0.3 0.5 0.8 1 1.5 2 2.5
0.1 —3.610 —5.315 —9.856
0.3 —3.784 —-5.312 —8.806  —302.000
0.5 —3.966 —5.384 —8.320 —43.602
0.8 —4.251 —5.564 —8.037 —23.911
1 —4.444 -5.714 —8.000 —20.000
1.5 —4.938 —6.145 —8.159 -16.197  —47.793
2 —5.438 —6.619 —8.500 —15.000 —31.000
2.5 —5.943 —7.118 —8.929 —14.654 —25.934
—6.450 —7.630 —9.407 —14.692  —23.800
5 —8.490 —-9.746  —11.541 —16.242  —22.594
—-11.565 —12.993 —14.972 -19.779 —25.500 —105.36
12 —15673 —17.363 —19.663 —25.021 —-30.974 —83.649
100 —106.18 -114.15 —124.71 —147.56 -170.11 —291.02 —1292.8

in the case when a;y R'/(c + ap) > (p' +1)/2, Y7, ¢;A; dominates Z?=1 i Xi/(a; + 1)
for any ¢; and ¢ such that {(a; +a2)p’ — 201 R'} /{201 R’ — (cq +a2)(p' +1)} < e1/eq <

(a1 + 1)/(a2 +- 1).
By examining each step of the above evaluation for the case A\; = A2 we see that
this condition is also necessary. Thus we have shown the following theorem.

THEOREM 4.1. MSE(Y2 | ¢;Xi/(0s +1)) > MSE(Y2_ ¢;X) for any 0 < N <

A2 < oo if and only if

o — 2pR’ a _oa+1 Ly
_ L = h 20R 1
20R' ~ (p/ +1) T c2 T az+1 when 2pR >0+

and
when 2pR' <p' +1

including the case ca = 0.

We have calculated the lower bounds of ¢; /¢s if they exist for some typical values
of a; and as and have given them in Table 2. ~

The case when ¢; = 0 corresponds to the estimation of A; and A; dominates
Xi1/(oq + 1) if and only if 2pR' < p’ + 1. Although it seems clear from Table 2 for
what values of o; and a; this condition is satisfied, we give the following analytical
result which is not the best possible in any sense.

COROLLARY 4.1. MSE(X1/(e1 + 1)) > MSE(X;) for any 0 < A\ < Xy < 00 if
a; < ag and ag > 1.

The proof is given in Appendix A.3.

From Table 2 it seems that oy > 2.5 is sufficient for 5\1 to dominate X;/(a; +1) for
any o, although by Corollary 4.1 we show that A\; dominates X; [(a1+1) if g < a9 and
ag > 1. The range of positive coefficients for which Z?zl ¢;\; dominates Z?=1 ¢ X [(o+
1) is completely determined by the ratio (a1 + 1)/(a2 + 1). If (a1 + 1)/(ag + 1) gets



856 YUAN-TSUNG CHANG AND NOBUO SHINOZAKI

larger, the range gets larger. Thus if «; is large compared with a we can get the uniform
improvement for wide range of positive coefficients.

5. Concluding remarks

A comparison of the results given by Theorems 3.1 and 4.1 (or Tables 1 and 2) may
be in order. Although we cannot give clear explanation, we will also point out possible
reason of the difference of the two regions of ¢; /co.

(i) For any ¢; and ¢p with opposite sign both MLE and modified MLE give uniform
improvement over their competitors except for the case when «; is quite small (in case
of MLE) or a3 is quite small (in case of modified MLE). This implies that we can use
these estimators safely to estimate between component of variance in a one-way random
effects model.

(ii) Both MLE and modified MLE have larger MSE than their competitors for larger
ci/ca (e1/ca > ai/as in case of MLE and ¢;1/c2 > (a1 + 1)/(a2 + 1) in case of modified
MLE) when A2/); is sufficient large.

(iii) MLE has larger MSE than UE for the case Ay = A2 if p(2—p—R)/{(1-p)(R~
p)} < c1/ea < aq/as. We note that MLE expands UE in this case, but this does not
explain the possible improvement for the case ¢; = 0.

(iv) Modified MLE has larger MSE than its competitor for the case A\ = Ay if
—o00 L eyfea < (p —2pR')/{2pR' — (p' +1)} when 2pR’ > p’ +1. We note that modified
MLE shrinks 37, ¢;X;/(a + 1) although X;/(c; + 1) itself is a shrinkage of the UE
X i / [0 78

Next, we give some results on the comparison of the two estimators Zf___l cihi and
Z?zl ci;\i without proof. We have restricted ourselves to the case a; = ag = & because
of a technical difficulty in evaluating the risk difference by the same sort of calculations
given in Sections 3 and 4.

(1) MSE(Z?=1 cidi) > MSE(E;‘.":1 cidi) for any 0 < Ay < A if |y /ea| < 1.

(ii) For Ay = Ao, MSE(Y7_, c;ihi) < MSE(Y2_, ¢i);) if and only if

—(40? + 20 — 1) — 2(2a — 1)c1cp + (4a? + 6a + 5)c2
¢y
Eo[X21]

Eo[X11] {(402 + 60+ 5)c2 — 2(2a — 1)cicz — (40® + 2a — 1)c3} < 0.

+

In particular MSE()\) < MSE();) for A\, = g if and only if EO.(XgI)/Eo(Xll) <
(402 +2a—1)/(4a%+6a+5). By numerical evaluation we have found that this inequality
is satisfied for oy = ap > 1. Thus we see that E?zl ¢iAi does not improve Z?=1 e if
|c1/e2] is sufficiently large and oy = a2 is moderately large.

(iii) For any ¢; and ¢, MSE(Y 2, cidi) > MSE(Y2, e;h) if M1/ is sufficiently
small. Thus z;;l ¢;\; does not improve Ef___l ¢\ for any ¢; and cp.

Finally, we should mention the case of more than two populations. In case of two
populations we have partitioned the sample space into two subregions and have given
the expressions of the estimators. Even in case of three populations we have to partition
the sample space into six subregions and the expressions of the estimators become much
more complicated. Although we believe that the technique used in this paper will be
useful, we have not succeeded in obtaining explicit results unfortunately.
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Appendix
A.l. Proof of Lemma 2.2.
Let ,
X1
_ X X _ M
W—A1+>\2 and Z—£1.+)_(2.
A1 A

Then W and Z are independent random variables having Gamma(ay +oz, 1) distribution
and Beta(ay,as) one, respectively. The random variables X; and X3 can be expressed
as

Xi=MWZ, and Xo=MW({1-2)

respectively.

We first note that X; > bX, if and only if Z > bAg/(bAa + A1). If we set v =
ba/(bA2 + A1), we see that Ay < Aq if and only if v > b/(b+ 1).

Thus we have

EbX;y | X1 > bXs] =bMEW(1 - 2)|Z >+
= (g +a2)bE[l—-Z|Z>+] and
E[X; | X1 2 bXo] = MEWZ | Z > ]
= (a1 +a2)(bra+ M)A —~Y)E[Z | Z > 4].

Therefore

EpXolx,>ex,] _ EbXs | X2 2bX3] _ v BA-Z|Z>19] _ ()
EXiIx;>bx,]  E[X1|X12bXo] 1-v E[Z|Z2z2q] — 7

Since we show that T'(y) is an increasing function of - it is minimal when v =b/(b+ 1)
or A\; = A and

E[bX2 I X1 2 bXQ] > Eo[sz , X]_ Z ng] _ E{l -7 l A 2 p]
E[X:1 | X1 2 bXa] = Eo[X1| X1 > bXy] E[Z|Z > p]

Since Z is random variable with Beta distribution Beta{a;, az), we have

1
/ 2% (1 — 2)*2 14z
ElZ|Z>p =%

221711 — z)2~1gy
p

1 1
za1+1—1 1—2 a2_1dz
B(og + 1,a9) Bay +1,a3) /,, ( )

1
Bler, a2) 1 / 22711 = 2)*2 714y
B(oa,a2) J,

a;r 1-1I (01 +1,a0)
ay+oag 11— Ip(a1,a2) ’
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To show that T'(vy) is an increasing function of -y, we express it as

1
/ b 221711 — 2)*2d2
v 1=

T(1) = =1
/zal(l—z)“z_ldz

In both integrals we make the change of variable v = (1 — z)/(1 — ) and have
1
i ay,oz—1
e {1 — (1 — y)v}* 0™ N dy

T('Y) = 1
‘/0 {1—(1—~w}erv*2"dy

If we put
{1 - (1 =)o

1
/ {1 -1 =ywi*v*2tdy
0

then f(v;<) is a density function with parameter v, and T'(7y) is the expected value of
©(v;Y) = 1=(i =y and we denote it as E,[p(V;7)]. We show that f(v; <) has monotone

likelihood ratio in v. Suppose that v > +'. Then
fo37) ( 1 (1= )
floiy)  \1-(1—7)

is an increasing function of v. Furthermore, since (v;) is an increasing function of =,
we have

flu;y) =

T(y) = Ey[e(V;7)] 2 Ey[p(V5)] > Ey[p(Viy)] = T(Y).
This completes the proof.

A.2.  Proof of Corollary 3.1.
From Theorem 3.1 we see that it is enough for us to show that

p 2—-p—R
Al A S
(A1) ' l-p R-p 20
or R < 2—pif and only if oy > 1, where p = a;/(a1 + a2) and R = {1 — I,(a1 +

L a2)}/{1 — Ip(au, a2)}.
By applying an integration by parts we can easily show that

p(1 — p)°e

(o +1,p) = Ip(aly ag) — (a1 +a2)B(ag + 1,09)°

Thus we see that (A.1) is equivalent to

1 P (1 — p)oe <
1-— Ip(al,ag) (Oll +C¥2)B(Ozl -+ 1,&2) T ooy + Otg'

(A.2)
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We note that
(a1 + ag)B(al + 1,a2){1 - Ip(al,az)}

1
=0y / :c"“—l(l —x)* g
)

1 oy ~—1
1 —
= (a1 + a2)p™ (1 — p)*2 / (1 + ; pu> (1 —u)*2~1du,
0

if we make the change of variable
z—p

1=, =u.
Therefore we see that (A.2) is equivalent to the condition
1 a1 —1
1- 1
(A.3) f (1 + ”u) (1 —u)2dy > —,
0 P ()]

Since (1 + -l—;;ﬂu)"‘l‘l > 1 if and only if a3 > 1 and since

! 1
/ (1 - w)e Ly = —,
0 Q2
we see that (A.3) is true if and only if a; > 1.

A.3. Proof of Corollary 4.1.
We need only to show that if @y > @y and ag > 1, then

(A4) pR < (o' +1)/2.

By the same argument given in Appendix A.2 we can show that the inequality (A.4) is
equivalent to the one

! 1-p el 2(a1.+ 1)
A5 1 1 —u)*2 " 1dy > )
(A5) /0 ( * P u> (- u_a2(a1 +og+3)—m

If we express the left-hand side of (A.5) as :f;E[(l + 1—;fL,U)°‘1‘1], where U is a
random variable having Beta distribution Beta(l, az), then we see that the inequality
(A.5) is equivalent to the one

oA Ql—l
(A.6) E (1 + L7£U> > 2ag(a1 +1) )
0(2(0&1 + o + 3) — Q1

When oyq > 1, the left-hand side of (A.6) is greater or equal to 1, and the right-hand
side of (A.6) is less than or equal to 1, if ay > ;. When oy < 1, we first note that
1+ 1—;,31-u)"‘1‘l is a decreasing function of u. Thus we see that for as > 1 the left-hand
side of (A.6) is minimized when ay = 1. Since the right-hand side of (A.6) is a decreasing
function of ap, we need only to show the inequality (A.6) for the case az = 1. In this
case it reduces to the one {(a1 + 3)/(ay +1)}** > a; + 1 which is true for 0 < oy < 1.
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Abstract. In this paper we discuss the problem of estimating the common mean
of a bivariate normal population based on paired data as well as data on one of
the marginals. Two double sampling schemes with the second stage sampling being
either a simple random sampling (SRS) or a ranked set sampling (RSS) are consid-
ered. Two common mean estimators are proposed. It is found that under normality,
the proposed RSS common mean estimator is always superior to the proposed SRS
common mean estimator and other existing estimators such as the RSS regression
estimator proposed by Yu and Lam (1997, Biometrics, 53, 1070~-1080). The problem
of estimating the mean Reid Vapor Pressure (RVP) of regular gasoline based on field
and laboratory data is considered.

Key words and phrases: Ranked set sampling, relative precision, REML, simple
random sampling.

1. Introduction

The problem discussed in this paper is motivated by the following practical issue in
the context of the attempt by the Environmental Protection Agency (EPA) of the United
States to evaluate the gasoline quality based on what is known as Reid Vapor Pressure
(RVP). Occasionally, an EPA inspector would visit gas pumps in a city, take samples of
gasoline of a particular brand, and measure RVP right at the spot which produces cheap
and quick measurements. Once in a while, the inspector after measuring RVP at the spot
will ship a gasoline sample to the laboratory for a measurement of presumably higher
precision at a higher cost, thus getting the pair (field, lab). Since usually laboratory
measurements (Y') are much more expensive than field measurements (X) because of
special packaging to be used to ship a gasoline sample from a field to a laboratory, not
all the gasoline samples will be shipped to the laboratory and hence the resulting data
would consist of many field measurements with occasional paired measurements obtained
from both the field and laboratory. Therefore, it never happens at least in our context
that we have lab data without field data.

*The research of Philip L. H. Yu was substantially supported by a grant from the Research Grants
Council of the Hong Kong Special Administrative Region (Project No. HKU7171/97H). The research
of Bimal K. Sinha was funded by a grant under ‘Presidential Research Professorship’ at UMBC.

**Now at Quintiles Inc., 1801 Rockville Pike, Suite 300, Rockville, MD 20852, U.S.A.
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As both field measurement X and lab measurement Y are referred to the same
chemical (RVP), it is reasonable to assume that the measurements X and Y have the
common mean, denoted by u, but with possibly unequal variances o2 and 52. Moreover,
when a paired measurement (X,Y) is observed, it is natural that X and Y are correlated
so that (X,Y) is distributed with mean vector pls and variance-covariance matrix X,

where
2
22[2— :Z:I’ ézpa,’% 12=<i>

Here, p is the correlation coefficient between X and Y. Of course, when only a field
measurement X is observed, X is marginally distributed with mean p and variance o2.
The goal here is to efficiently estimate the mean RVP p in gasoline consumed by the
public when X and Y follows a bivariate normal distribution.

In practice, a two-phase or double sampling is usually used to collect the above
data. This involves the drawing of a random sample of gas pumps in the first phase,
in which a crude RVP measurement X is obtained from each gas pump (field); and the
drawing of a subsample from the original units in the second phase, in which a more
precise RVP measurement Y is obtained from the laboratory. In this case, this is a
classical double sampling scheme. Recently, Yu and Lam (1997) demonstrated that the
regression estimator is always more efficient when the data are collected using a double
sampling with its second-phase sampling being a ranked set sampling (RSS) rather than
a simple random sampling (SRS). Therefore, it is worthwhile to consider the problem of
point estimation of the common mean g under two double sampling methods where the
first-phase sampling is always simple random sampling and the second-phase sampling
is either simple random sampling or ranked set sampling. Hereafter, we refer these two
sampling methods as SRS-SRS double sampling and SRS-RSS double sampling.

In this paper, we first consider the case of SRS-SRS double sampling scheme. In
Section 2, we discuss the problem of estimating y when X is known. When ¥ is unknown,
various estimators for ¥ are proposed. In Section 3, we discuss the problem of estimating
p when the data are collected using a SRS-RSS double sampling scheme. Other plausible
estimators are proposed in Section 4. Numerical comparisons of the relative precision
of the proposed common mean estimators under the two sampling schemes and other
estimators are discussed in Section 5. We apply the proposed methods to the above
practical EPA problem in Section 6. Section 7 gives some concluding remarks.

2. Estimation of y using SRS-SRS double sampling

In this section we discuss the problem of estimation of y based on the data collected
using a SRS-SRS double sampling scheme. Suppose that a simple random sample of
size n 4+ m is drawn in the first phase (field level) and a subsample of size m is drawn
in the second phase (lab level). After collecting the measurements at the field and
lab, we have two sets of data: the “field only” data {z;,i = 1,...,n}, and the paired
“(field,lab)” data {w; = (z;y;)',j = 1,...,m}. They are summarized by a vector
t= (21,22, ,2n,%1,Y1,%Z2,Y2, - - -, Tm, Ym ). It is easily seen that the vector ¢ has mean
11,12, and variance-covariance matrix V', where

o?I, 0
0 I,0%

V=
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Here ® denotes the Kronecker product, I,,, and I, are identity matrices of orders m and
n, respectively.

2.1 Estimation of u when % is known

When X is known, V' is also known. Without any distribution assumption, a natural
estimator for u is to use the generalized least squares (GLS) method which minimizes
(t = plopom) VIt — plptom), leading to the GLS estimator fisys:

1 -1
n+2mV t

1nyomV 1 lnsom

Hsrs =

n _ .
—Z+mln e
g

%+m1’22-112
2 2
n._ n“-& ., 0" —-§
02z+m(02n2~§2m+02n2_£2y>
3 ;.2

n o +n° -2

3T MT 52 g2

o o%n? ¢

(2.1) -

where Zz=n"1Y", z, @ = (&,§) withZ=m"' 37" z; and g=m~ ' 377, y;.
Obviously fisrs is also the MLE of y under normality assumption, and is always
unbiased with variance

1 1
(2.2) Var(fisrs) = = .
TR pmyst, kP2
[2) 0-2 0—2772 —_ 52

2.2 Estimation of ¥

n 52
Let 52 = —Z—F(—;‘L(—_zl)—z) and

A= i(“’f — W) (w; — W) = [au am} = (m~1) [ - 32”]

=1 a12 G22 Szy Sy
where
§2 — 221 (:17, — i')z &2 — 2111 (yi - ﬂ)2 and 8. = 22_1 (l'z - i’)(yz - .77)
i (m-1) ~ ¥ (m—1) “ (m-1) '

A simple unbiased estimator for X is the sample variance-covariance matrix based only
on the paired data w’s, i.e. A/(m —1). As both s2 and s2(= aj1/(m — 1)) are unbiased
for o2, a natural unbiased estimator for ¥ based on all the data is given by

n—1)s2 + (m —1)s? ) R
( ;im(_2 ) .'1:, 77%=3§, él = Sgy-

(2.3) 62 =

However, it does not guarantee that the resulting 31 is always nonnegative definite(nnd).
Below we provide some other estimators for 2.
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2.2.1 REML and ML estimators of &
Under normality, the well known REML of ¥ is obtained by maximizing the marginal
likelihood of s2 and A, which is given by:

1 1 1y (n—1)s2
(2.4) L) x DR =Y exp{ 5 tr(AX ) 52 .

Equating the first derivatives of In L; with respect to the components of ¥ to zero and
solving the resultant equations lead to the following REML estimator 35 for X:

2.5 62 =
(2:5) 2 n+m—2
2 2 .2 2
N 08 8.8, — 8
(2.6) n§=a§§+————z y32 &Y
x x
2 993
(2.7) 2:03—51.
T

Now we discuss ‘the ML estimator for 2. Let

b11 bi2
bi2 bao

Z(p) = Z(Zz' -p)?  Bp= Z(wj — plg)(w; — pls) = {

where by = Y i, (zi — )2, bz = Yo (zi — ) (i — p) and baa = Y7, (ys — ). Then
under normality, the likelihood function is given by

(2.8) Ly x wz)—n/;!glj;/;exp {—% tr(B(W)E~1) — %l;)} .

Note that if we replace n, m, Z(r) and B(u) in (2.8) by (n— 1), (m — 1), (n — 1)s2 and
A respectively, Ly in (2.8) becomes L; in (2.4). So, applying the same steps for L; to
L, we obtain the following equations:

o _ Z(p)+bu
2 _ A\ vl
(2.9) 3=

b3, | buibes — B3
2.10 A2 = 522 12
( ) 3 3 b%] mby1
(2.11) Ey = 63012

11

Equations (2.9), (2.10), (2.11) along with the solution to 59—157[‘2 =0, i.e. (2.1), are the
final equations to be used for solving the ML estimators of x4 and . To obtain the MLE,
we may plug (2.9)—(2.11) into (2.1) to obtain the MLE for p first, then obtain the MLE
of ¥. However, by doing so, it will result in a complicated fifth degree polynomial in p.
Thus closed form expression for the MLE of y seems impossible and subsequent inference
based on it is indeed a difficult task. Hence, we will not consider the ML estimator for
% in this paper.
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2.2.2 Properties of the REML Estimator for ¥
In the following we discuss some properties of the REML estimator 3, for ¥ and
compare it with the ad hoc estimator ¥; in (2.3).

Property 1. Validity. It is easy to see from (2.5)-(2.7) that 63, 73 and 5| =

2 2
&%%2——— are positive with probability 1, thus making 3, a valid estimator for .

Property 2. Bias. Clearly, 62 and &, are unbiased but 2 is not. Using the prop-
erties of normality and applying simple algebra, it can be shown that

2(n —1)(1 - p?)

mim—m-Dm=-3’ ™ *

E@#3) =n*+n*
Therefore, the bias of 72 and hence the bias of 335 will tend to zero for large m.

Property 3. Mean squared error (MSE). To derive the MSE of 335, we first repre-
sent X, ¥1 and Y in vectorized forms:

O = (01,0,03) = (0%, 1%, &)

O, = (611,012, 013) = (62,72, &)

O = (01,022, 023) = (63,73,&)’-
The MSE of 3y, denoted by MSE(©), is defined as E[(©; — ©)(©; — ®)'] and the
expression for MSE of 33 is similar. It is shown in Appendix I that

0.4 52 0.25
N —2)—(n—1)d —1)(1—p?
(2.12) MSE(@Q) _ 2 52 (nt+m ) (n ) (p)n4 (1+ (n 17l(_lap ))57]2

n+m-—2

- Ao 1?4 (m—n—2)£2
o2 (1+ {n 1)(1311 ))‘5772 (n+ 4)62(nmi—§;m n—2)¢

where

B 4 7(m — 1)(n +m — 2) — 4(n + 4m — 5)
dlp) = p* = =3 P* (1= ") - (n+m — 2)(m — 1)(m — 3)(m — 5) (1-

2)2
Of course, it is assumed that m > 5.

Comparison of REML estimator 3, with ad hoc estimator 21

We now compare the MSE of the REML estimator ¥, with that of the ad hoc
estimator 33;. Although 33, is not always a valid estimator in the sense of not being nnd,
component-wise comparison however makes sense. It is shown in Appendix I that the
MSE of 3; is given by

\ 0,4 52 2 5
€2 ntm—2 "74 n+m =2 577

MSE((:31) = m m—1

2£ nj;:': 2€n2 n+m 2(0,2,’72+£2)
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and hence
00 O
MSE(©1) - MSE(©,) = mrm—a |0 722 s
0 723 733
where
_ (n—1)d(p) 4 _ (n— 1)5772 2 2
Y=o 1, Y=g P _1)’

_ (n—1)(m—2)o’n? 1
18 = T —1)(m - 3) (”2 - "—) '

m—2
Therefore, for m > 5, we have the following observations: A
(a) If p2 > =15, then 33 > 0, i.e., MSE(&) > MSE(&,), implying that the

m—2?

REML estimator of £ is preferred to s;,. Note that both are unbiased for £.
(b) If p2 > A/(1 + A), where

Ao 2 [ ju, 1 (7T m-3 3m-3
 m-3 4 m-5\2 m-1 n+m-2/|’
then d(p) > 0 and p? > ﬁ, i.e., v22 > 0, 33 > 0, implying that the REML estimators

of £ and 72 are better than s, and sZ, respectively.

(c) To have M SE(@l) - M S’E((':)z) as nnd, Y227733 — 725 should be positive. It can
be shown that

Yo27/33 — Va3 = ntm :4_022)2(25:: __12))2(m -3) [pG +0 (fﬁ)} .

Hence, for large m, we expect it to be positive.

In conclusion, we note that, for large m, the REML estimator 335 for ¥ has a smaller
MSE compared to the ad hoc estimator 3;. Therefore in our subsequent analysis, we
will use the REML estimator 3l» with its subscript dropped for notational simplicity.

2.3 Estimation of u when 3 is unknown o
When ¥ is unknown, substituting the REML estimator ¥ = 3, into (2.1) gives

n . Y B il SO it
—Z+ml'S g2eTm 52ﬁ2_ézx 62ﬁ2_£2y
~ _a' _
(213)  fiars = 2> ——— = T Ew Y .
A—2+m122 12 n mU' +1 3
g ~n b An | 26
&2 &2772_52

Since 3, is independent of Z and @, fisrs is unbiased for p with variance given by

Var(fisys) = E{\I’(é)’ )}

where )
R . _7_7/% + m12’f]‘12f)‘112
(2.14) U(0,0) = Var(jisrs | X) = g

n 2
(% + m12'2—1 12)
g
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An exact expression for Var(fis,s) is usually very difficult to obtain. However, for infer-
ence purpose what is really needed is an estimate of Var(fisys), for which some approxi-
mation methods described below can be used.

_ Method 1. A naive estimator for Var(fisrs) is obtained by plugging an estimator
¥ of ¥ in Var(fisrs | X) given by (2.14), leading to

- e 1
(2.15) ME) = - —
}—2-+m12'2“112

As pointed out by many investigators, this method is likely to underestimate Var(fis,s),
a phenomenon discussed later in this section.

Method 2. Here we first approximate \II(@, ©®)bya second-order Taylor expansion:

¥(6,0) ~ ¥(0,0) + (6 - 0) (ag) é_e+2(@ 0)'®(6 — 0)

where @ = ( ag ;é )|e—e, the matrix of second derivatives of ¥ with respect to © evaluated
at ©. It can be shown by direct derivation that

1 ov
¥(©,0) = M(X) = : (55) 1600
02 +mlyR-11, 90

and ® = (Olij)gx;g where

ap = h(@) T _{nlo?(o?n? — €2)(c®n? — 262) + £4(0 + n? — 26)] + ma®(n? — £)?}
:27"02(5“02){[42_2 262 4 3]+ 42— €)
12 ——h(G) nlo'n o I3 mo*(n £ }
Q13 = W{n[a‘inZ _ 30.252 + 263] + m0_4(,’72 _ 02)}
L 2m(ntm)od(e? = )
29 = 7(©)
mot(o? —
O3 = 2moto” —§) hg@)) §) {n|o®n? — 202 + €] + ma?(n? — 02)}

2mo* 2, 2/ 2 2 200 2 2 20 2 2\2
a33=m{n[0 n°(o% +n* — 6€) + £%(30° + 3n* — 26)] + mo*(0” — n°)°}
h(®) = [n(a’n® — £%) + ma®(o® +7° — 26)°.

Thus we get

(2.16) Var(jiors) ~ M(E) + %E{(é) —0)5(6 - 0)} = M(Z) + %tr{@[MSE(@)]}.

It is obvious that (2.16) will always give a larger estimator for Var(fisrs) than M(Z).
In fact in a general mixed linear model setup, which covers our linear model for ¢ as
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a special case, Kackar and Harville (1984) proposed a similar approximation expression
for the variance of estimators of fixed and random effects. It is evidenced by their sim-
ulations that (2.16) approximates well the actual variance of jis.,. Therefore, Var(fisrs)
is estimated by

(217) Va(fers) = M(5) + 5 tr{$[MSE(O)])

where M(X) is given by (2.15), ® and ]V_TSA\'E(@A) respectively refer to ® and MSE(0O,)
in (2.12), with elements of ¥ replaced by X = 3.

3. Estimation of u using SRS-RSS double sampling

In this section we explore the use of a ranked set sampling (RSS) in place of a simple
random sampling in the second-phase of a double sampling. RSS, originally introduced
by Mclntyre (1952) for efficient estimation of a population mean in a purely nonpara-
metric setup, has been found to be fairly effective in various problems of parametric
estimation (see Chuiv and Sinha (1998) and Patil et al. (1994) and references therein).
In our specific problem, we propose to use the field-only data and paired (field, lab) data
in a modified form described as follows.

For a simple random sample of size r units (gas pumps), we collect X-values (field)
from all the units. We identify the unit with the smallest X-value and send the corre-
sponding sample to the laboratory to record the Y-value (lab). We next draw another
simple random sample of r units, and collect their X-values (field). We identify the unit
with the second smallest X-value and send the corresponding sample to the laboratory
to record the Y-value (lab). This process is continued in r steps and at the last stage
after collecting X-values (field) from all the r units, we identify the unit with the largest
X-value and send it to the laboratory to record the Y-value (lab). At the end of this
process, what we have collected is a sample of r? field measurements and a suitably
selected RSS of r lab measurements. The entire process is now repeated N cycles to
yield eventually a sample of N72 field measurements and a suitably selected RSS of Nr
lab measurements. Denote the measurements recorded in the i-th cycle by

(@) (@) ()
Xy Xan Yy
() (&) 1)
Xy > Xz Viza
(2 @& 3-0)
X(:'l)’ T 7X(:'7‘)’ Y'[ri']
where X((;L) is the k-th order statistic (field measurement) in a simple random sample

of size r arising out of the j-th sample in the i-th cycle,i=1,...,N, j,k=1,...,7r and
Y[S,Z] is the lab measurement corresponding to the field measurement X ((,?k) obtained in
the i-th cycle,i=1,... ,N, k=1,...,7,

Denote the overall mean of X by X = YN, i1 k=1 X ((;L) /(Nr?), and the
sample means of X and Y based on the ranked set sample obtained in the second phase

by X,es = Zéil Y=t X((;z) /(NT) and Y,z = Zfil Z;zl Ylyy)] /(NT) respectively. Note

that X and X, are always unbiased for y but ¥,,, may be biased. Suppose X and Y
follows the linear model (see David (1973) and Stokes (1977)):

(3.1) Y=p+pB(X—p)+e
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where 3 = pn/o =&¢/0% and e has zero mean and variance n%(1 — p?) and is independent
of X. It is easy to show that Y;,, is unbiased for . Since X and Y follow a bivariate
normal distribution, the linear model in (3.1) is satisfied and hence Y;,; is unbiased.

3.1 Estimation of u when X is known

As discussed in Section 2, the SRS-SRS double sampling involves drawing of a large
random sample of size n+m and a subsample of size m. Based on this sampling method,
we derived the MLE for y when ¥ is known as shown in (2.1). Under a SRS-RSS double
sampling setting, n = Nr(r — 1) and m = Nr. After making some obvious changes:

21_1 ZE];HC (Jk) Nr2X — NrX,qs

z= X'rss and = Yrss,

£= Nr(r-1) - Nr(r-1)
we propose the following estimator for p when ¥ is known:
Nr?X — NT‘XTSS 7’]2 I3 g% — £ o
. 02 + N 1:0_2 B) 52 ers + —:'ijfrss
Hrss =
Nrir — —
T 2
o on? - ¢
2
r oS o° — - =
?X + D) _652 (Y'rss - %ers)
(3.2) = /)

1 2 #\2
= ()

Of course, the above estimator for u is far from being the MLE under a SRS-RSS
sampling. Interestingly enough, it is shown in Appendix II that when (3.1) is satisfied,
firss given by (3.2) is the best linear unbiased estimator (BLUE) for x based on X, Xrss
and Y., and the variance of ji,s; is given by

o? 1
(3:3) Var(firss) = N_r R
Tt o
o*n?—¢

Therefore when ¥ is known, firs is more efficient than X, X,ss and Yigs.

3.2 Estimation of p when ¥ is unknoun

When ¥ is unknown, a standard practice is to start from fi,ss given in (3.2) and
use a suitable estimator for . In the context of SRS-SRS double sampling discussed
in Section 2, it is found that the REML estimator of ¥ has some nice properties than
other estimators. It is clear that in our context, due to the complicated nature of the
likelihood function (due primarily to RSS nature), it is extremely difficult to derive the
REML estimator for ¥. In what follows, we adopt the REML estimator for ¥ even in
our context. Define

N _

52 _ Zi:l Z;:l ZZ:I‘HHB(X((;L) )2

z Nr(r-1)—-1

I ket (KX = Krao)?
Nr—-1

52 =
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S She (Vi — Pros)?

2

Sy B Nr—-1

S = 21_1 Zk_l [(X(kk) rss)(Y[kk] Yrss)]
W Nr-1 )

Then our proposed estimator for ¥ is given by 3,55 Where

~2 Q2
o-rss_‘s’z

2 2Q2 _ Q2
A2 2 S-Ty S-"?SZ'J Sfb‘y

Nrss 88 TSTZ' + Sg

It may be noted that these estimates are well-defined and valid in the sense of the
estimated dispersion matrix being nnd, irrespective of the underlying model. After
substituting 3,4, into (3.2), the resultant estimator of p is denoted by firss.

To prove the unbiasedness of [i,.ss, we first notice that fi,.ss can be expressed as
4+ [i* where i* is the fi,ss with X and Y replaced by X* = X —pand Y* =Y — 1,
respectively. Since 3,5 is an even function of X* and Y*, replacing X* and Y* by — X*
and —Y™* in g* implies E[3*] = E[—i*]. It follows that E[3*] = 0 and hence fi,ss is
unbiased.

It is clear that the exact variance of fi,ss is difficult to obtain, and in what follows
we therefore employ the variance of fi,ss given in (3.3) as a large sample approximate of
Var(firss) for large N.

4. Other estimators for u

Note that when the data are collected using a double sampling scheme, a regression
estimator is usually used to estimate the population mean of Y based on a covariate X
no matter X and Y have common mean or not. Recently, Yu and Lam (1997) proposed
a RSS regression estimator based on a SRS-RSS double sampling scheme mentioned in
Section 3:

(41) /Jf'reg - 1/1'58 + ﬂ(X 7‘88)
where g
(42) B= grss/agss = %

is an estimator for the slope 8 in (3.1). If (3.1) is satisfied and hence normality holds,
Yu and Lam (1997) showed that fi .4 is unbiased and its variance is given by:

_ g2 2
(4.3) Va'r(ﬁreg) Z ZQN d 1+ Al+ 25\[ 2
where Nr(X X)?

T\ Arss —
(44 Sl

and we take p = 0 and o =1 in the computation of A. Obviously, A is a fixed constant
depending only on N and r.
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Of course, a similar SRS regression estimator based on a SRS-SRS double sampling
scheme can also be proposed here. However, Yu and Lam (1997) found that under nor-
mality, the RSS regression estimator is always superior to the SRS regression estimator
for all p.

Finally, since X, X,ss and Y,s, do not utilize all the available data and they are
inferior than fi.ss when ¥ is known, we do not intend to consider these estimators
although they are unbiased.

In next section, we will compare the two proposed common mean estimators with
the RSS regression estimator.

5. Numerical comparisons

Assuming that (X,Y’) follows a bivariate normal distribution with common mean
u = 0, we compute the variances of the two proposed common mean estimators fisrs, firss
and the RSS regression estimator fires. Since these three estimators are unbiased, we
use the variance ratio as a measure of relative precision (RP). The set size examined is
r = 3, the numbers of cycles are N = 5,10, and the values of p are 0,0.1,0.2,...,0.9.
It is easy to see that the RP can be expressed as a function of /0 and p. Without
loss of generality, we assume o = 1 and consider various choices of § = n/o. As the lab
data is expected to be more precise than the field data, 8 is usually less than 1. Here,
we consider four values of #: 0.9,0.7,0.3,0.1. The variance of fi.g is evaluated using
(4.3). Because the variances of fisrs and firss have no exact analytical expressions, their
variances are evaluated by a simulation of size 100,000.

(a) SRS CM vs ASS REG (m=5} {b). SRS CM vs RSS REG (m=10)
° theta=0.1
« a theta=0.3 o
+ theta=0.7
x theta=0.9 §
é o~ S~
a
: :
s s
T [ " W,
?\'y
L] o
T
00 02 04 08 08 10 00 02 04 08 08 10
{c) RSS CM vs RSS REG (m=5) {d) RSS CM vs RSS REG (m=10)
o™ o™
] i
g o~ o~
; H
5 B
2 _ :‘m k] - M
% gy o ~+
o o
0.0 02 0.4 06 08 1.0 0.0 0.2 04 08 08 1.0

Fig. 1. The relative precision of SRS and RSS common mean estimators relative to RSS
regression estimator.
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5.1 Comparison of common mean estimators with RSS regression estimator

Figure 1 depicts the relative precisions of the two proposed common mean estimators
fisrs, firss relative to the RSS regression estimator firey. It can be seen that the RSS
common mean estimator is almost superior to the RSS regression estimator but not
for the SRS common mean estimator. However when 6 is large (> 0.7 say) and p is
not too large, both common mean estimators perform significantly better than the RSS
regression estimator.

It is not surprising that the RPs of fi; ;s to fireg are close to 1 when 0 is close to 0.
Note that when 6 is close to 0, X is too variable and becomes nearly useless in estimating
1. Therefore the RSS regression estimator, which aims to estimate the mean of Y, will
perform similarly to the RSS common mean estimator. In fact, it can be shown that the
RSS common mean estimator fi,ss can be rewritten as a weighted sum of two unbiased
estimators X and fi,e, with random weights:

1—p6
r62(1 — p?) + (1 — p)?

(5.1) firss = (1 — @)X + dfireg Where &=

with 6 = Tirss/Orss and p = f,.ss/(ﬁ,.ssérrss) = ﬁ/é Note that @ = 1 if and only ifd=0
or 8 = p/[r(1 — p?) + p?] = 6. Table 1 lists the values of 8 for various choices of j and
r = 3. Thus if § is close to 6y, @ is close to 1 and hence the RSS regression estimator is
approximately equivalent to the RSS common mean estimator.

As analogy to fiss in (5.1), fisrs can also be expressed as a weighted sum of X and
the SRS regression estimator with weight b having the similar form to 4. Therefore,
when @ is close to 0, bis likely close to 1 and hence the SRS common mean estimator is
close to the SRS regression estimator. Since Yu and Lam (1997) showed that the SRS
regression estimator is always less precise than the RSS regression estimator, the SRS
common mean estimator perform poorer than the RSS regression estimator when @ is
close to 0.

Table 1. The values of g for various choices of p and r = 3.

p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99
6 0 0.034 0.068 0.106 0.149 0.200 0.263 0.347 0.465 0.652 0.795 0.952

(a) RSS CM vs SRS CM.(m=5) (b) ASS CM vs SRS CM (m=10)
Q o J
™~ o~
o |
s |7 —* §7 [Ty
4 WH—H_N E
52 g 2 jo—o 2=p
£ £
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L't (]
< A theta=0.3 o
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) ]
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Fig. 2. The relative precision of RSS common mean estimator relative to SRS common mean
estimator.
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Table 2. The ratios of the approximate variance to the actual variance of firss.

N=5 N =10 N=15

roop ) 9 ]
p1 03 07 09 01 03 07 09 01 03 07 09

3 0.0 097 096 095 095 099 098 098 098 099 099 099 099
03 097 095 095 095 098 097 097 097 099 098 099 0.99
06 096 095 095 095 098 098 098 098 099 098 099 0.99
09 096 096 095 096 099 098 097 098 1.00 098 098 0.99

5 0.0 098 097 097 098 099 098 099 099 099 099 099 1.00
0.3 099 098 098 099 1.00 099 099 099 1.006 100 100 1.00
06 098 097 098 099 100 099 099 100 0.99 099 099 1.00
09 099 098 098 099 098 099 100 1.00 100 099 099 100

5.2 Comparison of RSS common mean estimator with SRS common mean estimator

Figure 2 depicts the relative precision of the RSS common mean estimator fiygs
relative to the SRS common mean estimator fis-,. It is easily seen that the RSS common
mean estimator always performs better than the SRS common mean estimator. It should
be noted that the values of RPs mainly depends on the value of 0 only and they are
significantly greater than 1 for large 6. This indicates that when the variances of X and
Y are close, a double sampling scheme with its second stage being a ranked set sampling
can provide a more precise common mean estimator than the one with its second stage
being a simple random sampling.

5.3 Comparison of the approrimate variance and the actual variance for RSS common

mean estimator

Table 2 presents the ratios of the approximate variance to the actual variance for the
RSS common mean estimator fi,ss for various combinations of § and p. The approximate
variance is computed by using (3.3) while the actual variance is obtained from the above-
mentioned simulation based on a bivariate normal distribution. The set size examined
is r = 3,5 and the number of cycles is N = 5,10,15. It can be seen from Table 1
that although the ratios are all less than 1, they vary in a very narrow range from
0.95 to 1.00. This indicates that the approximate variance a little bit underestimates
the actual variance of fi.ss. The ratios are very close to 1 when the ranked set sample
size is moderately large, says Nr > 30. This concludes that the approximate variance
expression given in (3.3) provides a robust and close-form expression for the variance of
firss even the ranked set sample is of moderate size.

6. Application to an EPA data set

In this section, we return to the practical problem of estimating the mean of Reid
Vapor Pressure (RVP) of the new reformulated gasoline in the U.S. Since the laboratory
analyses are costly, a SRS-RSS double sampling scheme is adopted to reduce the quantity
of laboratory analyses and hence save cost. Here a SRS-RSS double sampling scheme
with set size r = 3 and number of cycles N = 5 is used to draw the sample and the field
(X) and lab measurements (Y) in the sample are then collected. Table 3 presents the
data on X and Y and their summary statistics are shown in Table 4.
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Table 3. The field and lab data on RVP for new reformulated gasoline* (bold numbers indicate
the selected X in the second phase).

X Y
8.03 8.09 846 8.28
737 8.64 8.80 8.63
7.59 862 9.14 9.28
7.86 T7.88 798 7.85
747 8.70 890 8.62
851 8.69 9.28 9.14
786 793 7.96 7.86
745 7.83 8.02 7.90
732 T7.45 8.60 8.52
7.83 7.86 7.88 7.92
739 7.88 8.03 7.89
731 744 8.56 8.48
7.83 795 7.92 7.95
753 T7.99 8.01 8.32
716 7.31 17.56 7.60

* Data Source: Private Communication

Table 4. Summary statistics for the crude RVP measurement X and the accurate RVP mea-
surement Y.

T N )_( }_’1'-33 )_(7'33 Sg Sg Sg Smy
3 5 7997 8.283 8.239 0.252150 0.284778 0.245392 0.256838

Table 5. Point estimates, standard errors and relative precisions of estimators for p.

Benchmark estimators RSS regression RSS common mean
Xras Yrss X estimator, fireg estimator, fipss
Point estimate 8.239 8.283 7.997 8.064 8.035
Standard error  0.0937  0.0898 0.0749 0.0741 0.0727
RP* 100%  109.0% 156.8% 160.0% 166.0%

* RP = relative precision with X,ss as the base

Using the summary statistics in Table 4, we have 62, = 0.252, 7#2,, = 0.219, £,,, =
0.227, ,3 = 0.902, 6 = 0.932 and p = 0.968. Based on these statistics, we can compare
the performance of RSS common mean estimator [i,ss and the RSS regression estimators
fireg.- Three unbiased estimators X, Y,s, and X, are also considered as benchmarks.
Table 5 shows their point estimates, standard errors, and relative precisions.

It can be seen from Table 5 that the RSS common mean estimator fi,s; attains
the smallest precisions (about 66% increase over the worst benchmark and 6% increase

over the best benchmark). This result is not surprising because since in this example
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& = 0.566, firss is approximately an average of X and fire;. Simply using either X or
fireg cannot beat firss.

7. Concluding remarks

In this paper, we proposed two common mean estimators and showed that the pro-
posed RSS common mean estimator is more precise than the other estimators including
Yu and Lam’s (1997) RSS regression estimator, McIntyre’s (1952) RSS naive estimator
and the proposed SRS common mean estimator. Simulation study performed in Sec-
tion 4 shows that the approximate variance expression given in (3.3) provides a robust
estimate for the actual variance of the RSS common mean estimator even when the
sample size is moderate large.

Apart from the problem of estimating the common mean u, it is also of interest to
consider the problems of constructing hypotheses testing and a confidence interval (CI)
for 1. As long as the tests and confidence intervals based separately on the ‘field-only’
data and the paired data are available, we can adopt various combination techniques
described in Yu et al. (1999) to combine the tests and hence construct a confidence
interval for p by converting the acceptance region of the combined test. For example
using the sample drawn by a SRS-SRS double sampling scheme as in Section 3, it is well
known that based on (2, s2) only, we can use the one-sample t-test to test for Hp : p = po
against Hj : u # po, where o is a given constant, and its test statistic is given by

which follows a t distribution with n — 1 d.f. under Hp and its associated 100(1 — o)%

CI for p is
_ s2 52
{po: [t1] <tajzn-1} = | Z —tajzm-1 7[’2 +ta/2,n-1 -Tf

where to /9,1 is the upper a/2-point of the ¢,_; distribution. Similarly, based on
the paired data (z;,y;)’s, we can derive a likelihood ratio test (LRT) for Hy and the
equivalent test statistic is given by

USyy
U — po — 2
ty = %
vh
where
_ ZTH+Yy I TR 1 1
i=—0=, U=, sﬁzZ(si+2swy+s§), sﬁ=z(sﬁ—2swy+s§),

H

1,, o 1 [(m-1 2\ (s2s2-3s2)
SH”ZZ(Sm_sy) and h=m(——7h——+§g —us—%—ﬂ

which follows a t distribution with m—2 d.f. under Hy and its associated the 100(1—a)%
Clof pis
_ vs _ 'Dsuv
{po : It2] < tajz,m—2} = (U - s;w - ta/2,m—2\/ﬁ’u - + ta/2,m—2\/—h—) .

2
v Sy
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Let Fy = t? and F) = t2 so that Fy ~ Fy,_1 and F; ~ F ;2. Define the p-values
based on the two F-statistics as P; = [ ;.f fin-1(z)dz and P = [, ;: f1,m—2(z)dz, where
f1,k denotes the pdf of the F ;. distribution. Following Yu et al. (1999), we can combine
these two t;’s or F;’s or P;’s to test for Hy and hence construct confidence intervals for

.
Appendix I: MSEs of 3, and 3,

MSEs of )M
Following the notations in Section 2, we first note that
ail
63 __m(n—l)sﬁz n+m—2
A |l ol |nt+m- a2
6, = 121 - 0 + m—1
& 0 _G12_
: m—1
Since 52 is independent of A and ©, is unbiased,
ai
@___1_)_‘?;_ n+m—2
R R — a
MSE(6,) = Var(®y) = Var | [ "T7 72 | | 4+ Var e
0 aiz
m—1

Using the result from Muirhead ((1982), p. 90) that if H = (hi;) ~ Wp(2,m), then
Cov(hij, hit) = m{oikoj + 010,k), Where 0;; is the ij-th element of ¥ and the fact that
Var(s?) = 20%/(n — 1) and A ~ W5(Z,m — 1), the expression for MSE(®) is then
obtained.

MSEs of 35
Using Theorem 3.2.10 of Muirhead (1982) and basic properties on conditional mo-
ments, we first obtain some preliminary results:
(a) a12 | @11 ~ N(&ayy,n*(1 - p*)air).
2.2
() Blads | an) = a1~ ) + b 21

. ——-—-———2 1 _ ?
(i) Var(al, | a11) = 2af;n* [(1 — %)+ 2an 8 ( 0? £ )] :

2
(b) aze — 22 ~n*(1 — p*)x7,—» and is independent of a1y and ap,.

2,2
() Elaz | an) = (m— (1 - o) +an .
. 2 1— 2
(ii) Cov(afy,aze | an1) = Var(aiy | an1)/an = 2an7n* [(1 — P2 + 201, ( o2 . )] .

(iii) Var(ags | a11) = 2n* l:(m — 1)1 - p*)? + 2011 1)2%;'82_)] :
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To derive the MSE of 3, we first note that

o - 5 2(n—1)(1 - p°)
Esy =0, E&=¢ Eng—nz(lJr(n+m—2)(m—1)(m—3)>.

So,
e MSE(53) = Var(62) = Var(6%) = n+m4 5
o MSE(£) = Var(i}) + [E(72) — n]*
e MSE(&) = Var(&s).
e E(65— 0'2)(772 n°) = E‘72772 — o*Eij3
. E(Uz -0 )(52 —§) = E02§2 - o%¢.
e E(Uz 2)(52 -&) = COV(n2a§2)-

The rest of the derivation of M SE(éz) follows by using the previous preliminary results.

Appendix H: The BLUE of u based on X, Xpss and Yigs
Consider a linear estimator of u:

(A.l) L= aX + bX'rss + CY,-SS with a+b+c=1.

We can write Var(L) = Var[E(L | X)] + E[Var(L | X)]. Under (3.1), we get (taking
i = 0 without any loss of generality)
E[L| X] = aX + bX,ss + cBXrss
=aX + (b+cB) Xrss
(A.2) Var[L | X] = 2n?(1 - p?)/(NT).
To compute Var(E[L | X]), we first condition on all X, denoted as S, and treat the

selection of RSS as random and then uncondition on X. Since, given S, X is fixed, we
get Var(E[L | X] | S) = (b+ ¢B)? Var(X,ss | ) and hence

a3)’ Var(E[L|X])=Var{E(E[L}X]|S)}+E[Var( (L]X]]8)]
= (1-c+eB) 5 Ot (b4 B E[Var(Xes | ).

Combining (A.2) and (A.3), we get Var(L). Clearly, for a given ¢, Var(L) is minimized
when b = —c¢f and Var(L) becomes

2 2(1 — 2
(A4) Var(L) = (1 — ¢ + cf)? 1\22 PLLA i p)
The optimum value of ¢ is easily obtained by minimizing the above quadratic function in ¢
and turns out to be copr = (—1—339—1%2—2— Substituting @ = 1—bopt — Copt, bopt = —CoptB

and copt into (A.1) and (A.4), the resulting optimum linear unbiased estimator of 4 is
precisely fi,ss with variance as shown in (3.3).
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Abstract. Regression function estimation from independent and identically dis-
tributed data is considered. The L2 error with integration with respect to the design
measure is used as an error criterion. It is shown that suitably defined local polyno-
mial kernel estimates are weakly and strongly universally consistent, i.e., it is shown
that the L, errors of these estimates converge to zero almost surely and in Ly for all
distributions.

Key words and phrases: Local polynomial kernel estimates, regression estimates,
weak and strong universal consistency.

1. Introduction

1.1 Nonparametric regression function estimation

Let (X,Y), (X1,Y1), (X2,Y2),... be independent identically distributed IR? x IR-
valued random vectors with EY? < oco. In regression analysis we want to estimate ¥
after having observed X, i.e. we want to determine a function f with f(X) “close” to Y.
If “closeness” is measured by the mean squared error, then one wants to find a function
f* such that
(1.1) E{|f"(X)-YP}= min E{|f(X) — Y%}

Let m(z) := E{Y | X = z} be the regression function and denote the distribution of X
by u. The well-known relation which holds for each measurable function f

(1.2) E{|f(X) - Y|’} = E{lm(X) - Y|’} + / |f (z) — m(z)[* u(de)

implies that m is the solution of the minimization problem (1), and for an arbitrary f,
Ly error [|f(z) — m(z)|?u(dz) is the difference between E{|f(X) — Y|?} and
E{|m(X) — Y|?*}—the minimum of (1.2).

In the regression estimation problem the distribution of (X,Y") (and consequently m)
is unknown. Given a sequence D,, = {(X1,Y1),...,(Xn, Yn)} of independent observations
of (X,Y), our goal is to construct an estimate m,(z) = my(z,D,) of m(z) such that
the Ly error [ |my(z) — m(z)|?u(dz) is small.

*Research supported by DAAD.
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1.2 Universal consistency

A sequence of estimators (my,)nen is called weakly universally consistent if
E [ |mn(z) — m(z)]?u(dz) — 0 (n — oo) for all distributions of (X,Y) with EY? < oo.
It is called strongly universally consistent if [ |m,(z) — m(z)|?u(dz) — 0 (n — o0)
a.s. for all distributions of (X,Y) with EY? < oo.

Stone (1977) first pointed out that there exist weakly universally consistent estima-
tors. He considered k,-nearest neighbor estimates

k(3
(1.3) mn(z) = Wni(z) Y
i=1
where
(14) Wn,,-(a:) = Wn’i(ﬁﬂ, X1, ey Xn)
is one if X; is among the k,-nearest neighbors of z in {X3,...,X,} and zero otherwise,

and where k, — o0 and k,,/n — 0 (n — 00). The strong universal consistency of nearest
neighbor estimates has been shown in Devroye et al. (1994).

Estimates of the form (1.3) with weight functions (1.4) are called local averaging
estimates. Kernel estimates belong to the class of these estimates. There

. X (:c ;an>

n IE——XJ'
Pk ()

(0/0 = 0 by definition) for some kernel function K : IR — IRy and bandwidth A, > 0.
Another example of local averaging estimates are partitioning estimates, which depend
on a partition P, = {A, 1,An2,...} of IR®. There the weights (1.4) are defined by

T4, (2)(X3)
i1 Lan @) (X5)’

where An(z) = An,j if z € An; and I, ; denotes the indicator function of A, ;.

The weak universal consistency of kernel estimates has been shown under certain
conditions on h, and K independently by Devroye and Wagner (1980) and Spiegelman
and Sachs (1980). The corresponding result for partitioning estimates has been obtained
by Gyorfi (1991). The strong universal consistency of kernel and partitioning estimates
for suitably defined kernels, sequences of bandwidths and sequences of partitions has
been shown by Walk (2002). Various results concerning consistency of variants of kernel
and partitioning estimates can be found in Devroye and Krzyzak (1989), Nobel (1996),
Gyorfi and Walk (1996, 1997) and Gyorfi et al. (1998).

It is easy to see that the partitioning estimate minimizes the so—called empirical Lo

Wn’,'(.’b) =

risk
1 n
(15) =S - VP
i=1
over the class of all real-valued functions f which are piecewise constant with respect

to P,. Least squares estimates are defined by minimizing the empirical Ly risk over
general classes of functions (consisting e.g. of piecewise polynomials). The weak and
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strong universal consistency of various least squares estimates has been shown in Lugosi
and Zeger (1995) and Kohler (1997, 1999).

Instead of minimizing the empirical Lo risk (1.5) over some small class of functions
one can also add a penalty term to (1.5) which penalizes the roughness of a function
(e.g. a constant times the squared integral of the second derivative of f) and minimize
the resulting sum over basically all functions (see Eubank (1988) or Wahba (1990) for
details). The strong universal consistency of such smoothing spline estimates has been
shown in Kohler and Krzyzak (2001).

1.3 Local polynomial kernel estimates
It is easy to see that the kernel estimate

s K (x X; ) Y,
my(z) = ngle( J)

satisfies for each z € IR%

3 2o - YiPK () = g S e v (T,

Instead of fitting locally a constant to the data, the local polynomial kernel estimate fits
locally a polynomial of some fixed degree M to the data, i.e., it is defined by

(1.6) Mn(z) = P ()
where

(1‘7) ﬁw() = ﬁz(:Dn) €Fum

= Z js,.oeja” (x(l))jl teeet (‘L'(d))jd 2 Q4y,.05a € R
0<j1,e. i faSM

satisfies
]. i ~ 2 :L""X»L . 2 X — X
(18) E;Ipx(Xz)—KlK(T) pxg;%ZIpm vex (S30).

Local polynomial kernel estimates have been considered by many authors, see e.g. the
monographs Héirdle (1990), Korostelev and Tsybakov (1993) and Fan and Gijbels (1996)
and the literature cited therein.

1.4 Main results

As defined in the previous subsection, local polynomial kernel estimates are in gen-
eral not weakly consistent, even if the regression function is smooth and the distribution
of X is nice (Devroye (1998), personal communication): Let X be uniformly distributed
on [0,1], Y be uniformly distributed on {—1,1} and assume that X and Y are indepen-
dent. Then it can been shown that the local linear estimate m,, defined by (1.6)—(1.8)
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with M = 1 and K = I;_y  satisfies E [ |my(z) — m(z)[*1(dz) = oo for all n and all
hn > 0. The proof of this fact uses that if an interval of length h,, contains exactly two
of the X;’s, if the corresponding Y;’s are different and if all other X;’s are more than
hn away from this interval, then the estimate will be on this interval equal to the line
which interpolates the two data points with z-values in this interval. This line can have
an arbitrary large slope and therefore also the estimate can take arbitrary large values
on this interval.

In this paper we modify the definition (1.6)—(1.8). We minimize in (1.8) only over
those polynomials whose coeflicients are bounded in absolute value by some constant
which depends on n and tends to infinity for n tending to infinity. We show that this
modified local polynomial kernel estimate is, under some mild conditions on the kernel
and the bandwidths, weakly and strongly consistent for all distributions of (X,Y) with
X bounded and Y square integrable. Furthermore we show, that if we set this estimate
to zero outside of some cube which depends on n and tends to IR? for n tending to
infinity, then the resulting estimate is weakly and strongly universally consistent.

1.5 Main idea in the proof

Let g : R? — IR be a square integrable function. Under some regularity conditions
on the kernel the generalized Lebesgue density theorem implies that for py-almost all x
the pointwise error |g(z) — m(z)|? can be approximated for sufficiently small A > 0 by

Flate) = ma)P o (252 ) i)
fomk (52w
The nominator in the above integral is equal to
£ {1900 - meoP gk (257 ) ]
o{soe ()] e (5))

By the strong law of large numbers this term is close to

}l—zZﬂYi - 9(X) — |Yi - m(Xi)|2)%K (m —th> ’
i=1

if n is large. In the definition of the local polynomial kernel estimate the function g is
chosen such that the last term is small.

The main difficulty in the proof is to show that the previous approximations also
hold if g is chosen in some data—dependent way from some fixed set of polynomials.

To prove that in this case the Lebesgue density theorem still holds we use that in the
definition of the estimate we consider only polynomials, whose coefficients are bounded
by some data independent constant. This implies that these polynomials satisfy some
Lipschitz condition for some constant, which doesn’t depend on the data.

To prove that in this case also something similar to the strong law of large numbers
holds, we use techniques from empirical process theory.
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1.6 Notation

IN, IR and IR, are the sets of natural, real and nonnegative real numbers, respec-
tively. I4 denotes the indicator function, card(A) the cardinality of a set A. The natural
logarithm is denoted by log().

The euclidean norm of z € IR® is denoted by ||z||, the components of z are denoted
by 20, ..., (9. For a function f : IR — IR set

Ifllo = sup |f(z)] and |£]|? =/]Rd |f ()| u(dz).

zeR4

For h> 0, z€ R? and K : IR? — IR define

)= 5 (3)

Cg°(IRY) is the set of all real-valued functions on IR? which are infinitely often differ-
entiable and have compact support, supp(X) is the support of the distribution of the
random variable X.

1.7 Outline
The main results are stated in Section 2 and proven in Section 3. In the appendix

a list of some results of empirical process theory, which are used in the proofs, is given.

2. Main results

Let M € INg and B, h,, > 0. Set

Fu(Bn) = Yoo ay,g @Y (@ DY ey, < Ba

0<j1,....Ja<M

For given data D, and z € IR¢ choose

such that
1 <& A
(2:2) = 1Yi = pa(X0) K, (z ~ Xi)
i=1

< f (L §n: IY; — p(X) 2K, (z — Xi) + = ),

T peFM(Ba) \ M ™ n
and set
(2.3) Ma(T) = po(z).

THEOREM 2.1. Let K : Ry — R, be a monotone decreasing and left—continuous
function which satisfies

b- Iz (v) < K(v) < B-Io,py(v) (v € Ry)
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for some 0 <r < R <00, 0<b< B<oco. Define the kernel K : IR — IR by
K@ =K(Jul®) (ueR?).

Let M € INg. For n € IN choose 3,,, hy, > 0 such that

(2.4) Bn— 00 (n— o0),
(2.5) hn B2 —0 (n— o)
and 1
n - hS
(2.6) 7 Tog(n) — 00 (n— o00).

Let the estimate m,, be defined by (2.1)—(2.3). Then

/ |mn(z) — m(z)Pu(dz) -0 (n—00) a.s.
and

E { / (@) — m(:c)|2u(da:)} 50 (n—oo)
for every distribution of (X,Y) with || X|| bounded a.s. and EY? < oco.

In Theorem 2.1 we need boundedness of || X|| to ensure that the estimate is weakly
and strongly consistent. This assumption can be avoided, if we set the estimate to zero
outside of a cube which depends on the sample size n and tends to IR? for n tending to
infinity:

THEOREM 2.2. Let K : R, — IR, be a monotone decreasing and left-continuous
function which satisfies

b-Ijp2(v) < K(v) < B-Ip pe(v) (v €Ry)
for some 0 < r < R < 00, 0<b< B < 0o. Define the kernel K : R® — IR by
K(u) = K(Jul*) (u€R%.

Let M € Ng. For n € N choose Ay, Bn, hy > 0 such that

(2.7) A, — 00 (n—00),

(2.8) Brn— 00 (n— 00),

(2.9) ho-B2-A2M4 0 (n— o0)
and P

(2.10) n by, (n — ).

AL B2 log(n) O

Define my, by (2.1)~(2.3) and set Mn(x) = ma(z) - I_ 4, 4,1¢(z). Then

/]mn(m) —m(z)|?u(dr) -0 (n—oc0) a.s.

and
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B{ [ irn@) - m@)Putda) | -0 (0= o0)

for every distribution of (X,Y) with EY? < oo, i.e., T, is weakly and strongly univer-
sally consistent.

Remark 1. We want to stress that in Theorem 2.2 there is no assumption on the
underlying distribution of (X,Y’) besides EY? < co. In particular it is not required that
X have a density with respect to the Lebesgue-Borel measure or that m be (in some
sense) smooth.

Remark 2. Tt is well-known that one cannot derive a non—trivial rate of conver-
gence result for the Ly error of any estimate without restricting the class of distributions
considered, e.g. by assuming some smoothness property on m (see, e.g., Theorem 7.2
in Devroye et al. (1996) and Section 3 in Devroye and Wagner (1980)). Stone (1982)
showed that local polynomial kernel estimates achieve, in probability, the optimal rate
of convergence if the regression function is k-times continuously differentiable, M > k
and and the distribution of X has a density with respect to the Lebesgue-Borel measure
which is bounded away from zero and infinity.

Remark 3. It follows from the proofs given below that Theorems 2.1 and 2.2 also
hold if the bandwidth A of the estimate is chosen in an arbitrary data-driven way from
some deterministic interval [Rmin(R), hmaz(n)], where hpin(n), Amaz(n) € R4 satisfy
(2.5) and (2.9) with h,, replaced by ha,(n) and (2.6) and (2.10) with h,, replaced by

Remark 4. Let M = 0. Then the kernel estimate satisfies (1.6)—(1.8). It is easy
to see that if one truncates the kernel estimates at height +3,, then this truncated
kernel estimate satisfies (2.1)—(2.3). Hence Theorem 2.2 implies that a modified kernel
estimate, which is truncated at height 43, and is set equal to zero outside of some cube
tending to IR? for n tending to infinity, is weakly and strongly universally consistent. Tt
follows from Devroye and Wagner (1980) and Spiegelman and Sachs (1980) that these
modifications are not necessary in order to get weak universal consistency. Walk (2001)
shows that under suitable assumptions on the kernel and the bandwidth (including the
assumption that the bandwidth doesn’t change for every n) these modifications are also
not necessary to prove strong universal consistency.

3. Proofs
In the proof of Theorems 2.1 and 2.2 we will apply the following lemma.

LEMMA 3.1. Assume that the kernel K satisfies the assumptions of Theorem 2.1.
Then there exists a constant ¢; € IRy such that for oll h > 0 and all distributions p of
X the following three inequalities are valid:

a) For all z € R%:

K h((l) — Z)
= p(dz) < ¢.
B{Ea(z - X0} #) <

b) For all A>1:

1
/[—A,A]d m“(dx) <e - AL
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c) Forall f :R* - R,:

E{f(X)Kn(z — X)}
/ E{Ky(z - X)} p(dz) < e - /f(m)u(dx)

PROOF. a) follows from Lemma 1 in Devroye and Wagner (1980). In order to
prove b) choose z1,...,2x € IR? such that the union of all balls S,.. n(z;) of radius r - h
around z; cover [—A A]? and K < ¢- A% - h=? for some constant ¢ which depends only
on d. Then

1
/[_A,A]d I ACED ) Z/ 5ot BRG]

1 Kp(z — z;)
<Ly [ e s
=5 " 2 s, o Bl — 01
This together with a) implies the assertion of b). ¢) follows from a) and

B(X)Kne-X)} . Kie-z)
/ E{Kh(:l: - X)} 'u'(dx) - /'f(z) E{Kh(z — X)}”(d )ﬂ(d ) O

ProoF oF THEOREM 2.1. Choose A € R4, A > 1 such that supp( 6) C[-A, A}
Let L, ¢ > 0 be arbitrary. Then there exists m. € C§(IR*) such that
J Ime(z) — m(z)|?p(dz) < e. For z € IR set

L if z2>1L
TLzz{z if —-L<z<1L,
~L if z< L.

Set Y =T,Y and YV, = TpY; (i = 1,...,n). Without loss of generality we assume
that n is so large that ||¢]lco < B and L < S,,.
In the first step of the proof we show

(3.1) / Imn(z) — m(z)Pu(dz)

. (XK (£ —
<4. / E{|p=(X) E{[((f)éxlihé)} X) | Dn}p(da:) +c2-(e+ AM4g2  p )

for some constant ¢, which depends only on M and d.
We have

(32) / Imn(z) — m()u(dz)

<2 [ 1pa(z) - ma(o)Pulde) + 2 [ 1e(z) = m(z)Putao)
o E{po(X) — mo(X)PKn. (¢ — X) | Do}
<2c3 [ (o) - mlol - E{Ri (o~ X)) )
B{[pe(X) — m(X)PK, (& — X) | Do}
wf B, (o~ X)) )
E{jm(X) — i (X) K, (z — X) | Du}
wf Bl (o~ X)) o)

p(dz)
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By Lemma 3.1 ¢) the last integral is bounded by ¢; - [ |m(z) — me(z)?p(dz) < cre.
In order to bound the first integral on the right-hand side of (3.2) observe that the
first derivative of any f € Fp(By) is on the cube [~A, A]¢ bounded (with respect
to the euclidean norm) by d- M - (M + 1)2AM'43,. Hence by mean value theorem
|f(z) — f(u)] < c3- AM4B, . ||z — u| for all f € Far(B,) and all z, u € [—A, A]%. Here
c3 is a constant which depends only on M and d. Furthermore by definiton of Far(8,)

sup |f(z)| < (M +1)%-AM2. 8, (f € Faur(Bn))-
ze[—A,Al4d

Because of m, € C§°(IRd) we can assume without loss of generality that these two
relations also hold for f = /.. We conclude that for all z, u € [~ A4, A]¢ with ||z — u <
R h, and all f € Fp(Bn)

[1£(2) — me(z)? — | f(w) — me(u)?|
= [(f(z) — f(w)) + (Me(u) — me(2))] - |f(2) + f(u) — Me(u) — Me()]
<2-c3- AMB, |z —ul-4- (M +1)¢. AM4. 8,
<y APMAB2

From this, together with K}, (xz —u) =0 for ||z — uf| > R - hy,, we get

p —m 2 T — -

_ /E{(lﬁm(w) — () > = pe(X) — Mme(X)|*) Kp, (z — X) | Dn}
E{K,(z - X)}

E{Kp (z—X)|D

E{Kp, (z - X)}

p(dz)

< g AZMd . B2 hy,- n},u(d:c)

=g APM4. B2 h,.

This proves (3.1).

In the second step of the proof we bound E{|p,(X) — m(X)|?Ky, (z — X) | Dn} by
a sum of several terms. For z € IR? define §, € Fr(B,) by Po(u) = me(z) (u € RY).
Then

E{|pz(X) ~ m(X)[*Kh,,(z — X) | Dn}
= E{[Y — po(X)PKp, (¢ — X) | Dn} — E{]Y — m(X)]*Kn, (z — X)}

= B{Y = o(X)PKn, (5~ X) | Da} = (14 = D [¥i ~ pu(X0) P K, (2 — Xo)

i=1
H1+ e (% S 1% = e X P K (5= X0) = = 3 [¥s = £e(X0) P (0 x»)
i=1 i=1

HL+ 9SS e = B0 K (& = X) = (L4 P B{Y — m(X) K (o - X0}

i=1

+((1+€)° = DE{Y — m(X)|*Kp, (z - X)}
1
= ZTJ,n(x)
G=1
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In the next steps we give an upper bound for

Tj,n(x)

B, @ - 201

(3.3)

( €{1,2,3,4}).
In the third step of the proof we show

T4,n($)
E{Kh,(z - X)}

(3.4) u(dz) < (1 +6° = 1) -aE{]Y —m(X)}.

By Lemma 3.1 c¢) we get

T4 ()
B(R. (o = D)

Y TR NS

<(@+9°=1)-er [ E(Y -m(X)P | X = c}u(do)
— (1 + ¢ = 1) B{Y —m(X)P},

which proves (3.4).
In the fourth step of the proof we show

(3:5) lim sup E{Kfs’?x(x—) X)}

< 2¢ (1 + %) 1+ )E{lY - Y} +a(l+e)’ as.

pn(dz)

and

(3.6) liﬂsolipE/ E{ng”(iwz X)}u(da:)

< 2¢y (1 + %) (14 E{lY = Y1’} + c1(1 + €)%

We use the decomposition

T3’n(£17)

=(1+ 6)3;1; 2": [Y; — me(z)|?Kp, (z — Xi) — 1+ )PE{]Y — m(X)|*Kp, (z — X)}

i=1

=1+ e)ﬁ(% AL NCITACES SEIEDE AR NO D NCE X;-))

+(1+e? (% iZIIYi,L — Me(z) | Kp,(z — Xi)—+ éli’},L ~ 11e(X) [ K (% — Xi))

149! (% S Wi = e (KK (£ = X6) = B{[¥; = me(X) K, (@ - X))

i=1

)

+(1+ ) E{|Yz — me(X)PKn.(z — X)} = (1 + )E{|Y — me(X) K, (z - X)})
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+(1+ &) (B{Y — me(X) K, (¢ — X)} = E{]Y — m(X)|* K, (z — X)})
9
= Tjn.
=5
Using (a+b)2 < (1+ 1)a? + (1 +€)b? (a,b € R) we get

1 1<
Tsn(z) < (1 + ;) (14 6)35 E Y; - Y5 LK, (z — X5)
i=1

and
Ts,n(z) < (1 + %) 1+ e)'E{|Y, - YKy, (z— X)}.

Hence by Lemma 3.1 a)

Ts n(z)
Bk, (o - X7H)

< (1 + %) 1+ 6)3% Z Y; =Y .| Efg’;(az;_X;())}u(dx)
i=1 "

(3.7)

1 O
< <1+ E) . (1+6)361-ﬁZ|Yé -—Y,',le,

i=1
and by Lemma 3.1 c)

Tg,n (CL')

(3:8) Bk, (- X7
< (1 + %) (1+¢)? / = {E{IYLE—{IZE l(f —}I){(h)}(m - X)},M(dx)
< (1 + %) -1+ €)' E{lY - Y1|?}.
Furthermore
To,n(x)

= (149123 (Vor — @) ~ (¥ir — e(X)
i=1
(Yi,p — Me(x) + Y5 1 — Me(Xi)) K, (z — X3)

4 7 . su Me(u) — m(v l “ - X
< (1+€)%(2L + 2||Mell o) ]|u—'u||§pR'h,,| e(u) — me(v)] n;Khn(w X;),

which together with Lemma 3.1 a) implies

Tﬁ,n(x) ~ €)4 n . su o () — 7 (0)] -
E{Khn(x——X)}'u(d )S(l-i- ) (2L+2“ elloo) ||u—v|1§pR-h |77 () (V)| - c1.

n
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Because of . € C$°(IR?) this together with h, — 0 (n — co) implies

(39) imsup [ gt ® ) <0
and
(3.10) hrl;l—l—?olipE/ E{K],:G’?f? X)}u(da:) <o0.

Next, we observe

Tr n(z)
Bk, 7( - X)}“(d””)

1 + 6)4 ( Z iy; L - me 12 Khn (SE ) (da:)

E{Kn,(z - X)}"
_ K, (z—-X)

= (1+¢)* (% i Zim — E{Zl,n.}) ,

1==1

The random variables Zy 5,...,Z,  are independent and identically distributed. It
follows from Lemma 3.1 a) that they take, with probability one, only values in an interval
of length ¢;(2L? + 2||m.]|2,). Hence Hoeffding’s inequality together with Borel-Cantelli
lemma imply

1 n
p Z Zin—E{Z1,} >0 (n— o) as.
i=1

This proves

. T n(w)
3.11 lim su : dr) =0 as.
(3.11) mswp | o (o X)}u( )
Furthermore, independence and identical distribution of Z; ,,,..., Z, , imply
T7 n(w)
3.12 E/ u(dz) =0 n € IN).
(312) PR =0 (el

Finally by Lemma 3.1 ¢) and definition of m. we get

Tg’n((L')
E{Kp,(z - X)}
m - m 2 T —
=(1+¢€° Ell e(X; I Kh(é)l_?)"}( X)}M(dx)
< (+9% [ (o) - m(o)Pu(da)

< (14 €)’ce.

p(dz)

This together with (3.7)—(3.12) and the strong law of large numbers implies (3.5) and
(3.6).
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In the fifth step of the proof we show

lim sup E{K’? 7("( z)

lmsup B [ o ?agx x)yHde) <0

u(dz) < and
(3.13) )}

By definition of p,, .
Ton(z) < (1+ 6)35

This together with Lemma 3.1 b) and supp(X) C [~ A, A]¢ implies

TQ’n (SC)

E{Kp (cc—X)}“(dx) <@ +e)3% e A%

which in turn implies (3.13).
In the sixth step of the proof we show

Tl,n(l‘)
(3.14) (K. @ _X)}u(d:c)
gcl( )E{lY YL|}+c11+e)2<1+ ) ZmL Y;|?
+01 (]. -+ E)A Tl(),na
where
(3.15) Tion = sup (E{]YL — f(X)2Kn, (2 — X)}
fEFM(Bn),zeR?

—(1+4¢)- % S Yir — F(X) 2K, (2 — Xi)> .

i=1
We use the decomposition

Tl,n(w)
= E{|Y — po(X)|*Kn, (z = X) | Du} — (1 + E{|Ys — $o(X)* K, (z — X) | Dn}

+(1+€)E{|YL —pz(X)|?Kp, (z—X) | Dn}—(1+€)?L __f:llyi,L — Po(X3) P K, (- X;)
+(1+€)?L V_Zjl|Y L — (X)) PKp (z—X;)—(1+¢€)3L zfjl [Y; — 5z (X)) |2 K, (z— X;).

Bounding the first and third terms on the right hand side as in the fourth step (cf. proof
of (3.7) and (3.8)) we get

T]_’n(w)
E{Ky, (z—-X)}

_<_cl( )E‘{|Y Y2} + er(1+€)? ( ) ZleL Y;[?

p(dz)
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(1+ QE{|Yz — po(X)*Kn, (z — X) | Da}
+/ E{Kn, (@ - X)}

(140 Ty ¥ Be(X0) P, (@ — X0)
- E{Khp,(z - X)}

pldz).

The difference of the nominators in the integral above is bounded by (1 + ¢€) times Tjg,,.
T10,n doesn’t depend on x, hence the whole integral can be bounded by Ti¢,, times

(I+4e€

1
)| B

Applying Lemma 3.1 b) to the last term yields (3.14).
In the seventh step of the proof we show

(3.16) limsupTion, <0 as. and limsupETio, <O0.

n—oo n—oo

To this end let ¢ > 0 be arbitray. Then

P{Tlo,n > t}

=P{Elfe}'M(ﬂn),ze]Rd:

B{Yz ~ FO P, (2 = X0}~ (14 €)1 30 Vo = F(X) K, (2~ %) > t}

i=1

<P{3f € Fu(Br),z€ Re:

E(V; - fOOPEn, (2~ X)} ~ = Sy Wir — [PKn,(a= X))
i ¥e B{Vs — f(X)PKn.(z - X)} ZT¥e

=PQ3f € Fu(Br),z € RE:

B - seorx (55) } - Lo - roor (S5
t.h;{+E{|YL_f(X)|2K(z;X>} " T+e

€ n
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By Lemma A.1 in the Appendix, which uses the notion of covering numbers introduced
in Definition A.1 in the Appendix, the last probability is bounded by

" t-hd e \?
t-hd € 1+¢

8(1+E),g’(X,Y)1> -€Xp | — 64B,8,,21 )

4-EJ\/’1(

where

u—

P

6= {5 R xR R glo0) = [Ty - F@PK (45 (@) € RO x )
for some u € IRY, f € J:M(,Bn)} .

We will show in the eighth step of the proof that

t-hd n (1+¢) BRAPMAN®
(317) M (g 9 o) < (0 )

for some constants cs and cg which depend only on M, B and d. This implies

(3.18) P{Tm,n > t}

n t-hd e \?
(14¢). B2A2M AN\ e \l+e
< —
=4 (c"" t hd P 64B32

ﬁ2 AZMd
2 nhd . ce log (cs(l+e) ﬁ—"t.h )ﬁi
—_— n € n
=4-exp | —log(n?) - BZ2log(n) | 64B(i4e)? nhi .

The assumptions of Theorem 2.1 imply

nhd

22log(n) (n= o)

and for n sufficiently large

2 A2Md

2 )2
calog(05(1+€) t-hd >ﬁ"<6610g(n)5r2z_,0

< (n — o).
nhd nhg

It follows that the right-hand side of (3.18) is summable for each ¢ > 0, hence the Borel-
Cantelli lemma yields the first part of (3.16). In order to prove the second part, let 6 > 0
be arbitrary. Then

ET]Q’.,,, < / P{Tm,n > t}dt
0
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t-hd e \?
n.—o
e (1+4¢€) - B2A2Md\ % € (1 +e)
6+/& 4(05 5 hd | exp GB 2 dt

IA

. (14¢€)-B2AMAN® 64BB2(1 + €)? n-hd 6-¢
=0+4 (c5 5-hd n-hde o B2 64B(1+¢)?
— 6§ (n— o00)

by the assumptions of Theorem 2.1. With § — 0 the second part of (3.16) follows.

In the eighth step of the proof we show (3.17). Therefore we use arguments from the
proof of Theorem 2 in Krzyzak et al. (1996). We have G = {g1 - g2 : 1 € G1,92 € Ga},
where

G ={g: RxR - R: g(z,v) = |[Try— f(@)|?((z,y) € lex]R) for some f € Fp(Bn)}

and

Uu—
hn

ggz{g:IRdeR——»]R:g(:c,y)=K( )((:v,y)EIRdle) forsomeuEIRd}.

The functions in G; and G are bounded on [—A, A]% x IR in absolute value by
(2L2 + 2(Bn(M + 1)2AM9)?) < 482 (M +1)*? A?M 4
and B, respectively. Hence by Lemma A.2 in the Appendix we get

t-hd

1 IR ) 1 = 1 16(1+6)B

8(1+¢€) ’gl’(X’Y)l)
t-hd

-M (64(1 +€)B2(M + 1)2dA2M.d7g2, (X, Y);l) X

If hi(z,y) = |fi(x) — Try|? for some f; : [-A, A]* — IR bounded in absolute value by
Brn(M +1)2AM4 then

%_anlhl(Xi,Yi) — ho(X;, V)2

i=1

= %Z lfl(X'L) - TLK + f2(X1,) - TLY;! . |f1(Xz) — fz(Xz)I

i=1

1 n
< (2L + 2B, (M + 1)2AM 9. - Z |f1(Xs) — fo(X3)]
i=1
which implies

N, _t'_h;ii_g (X, V)7
"\16(1+ 9B’ 7"\ )i

t-hd .
<M (16(1 +€)B (2L + 28, (M + 1)dAM~d)"7:M(IBn):X1> .
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Next we need the notion of VC dimension, which is introduced in Defintion A.2 in the
Appendix. Far(8r) is a subset of a linear vector space of dimension (M + 1)¢, hence by
Lemma A.4 in the Appendix

Ve S(M+1)%44+1< (M + 2)d

This together w1th Lemma A.3 in the Appendix implies
2(M+2)¢
4e(M +1)46,AMd
t-hd
16(1 + €)B (2L + 23,(M + 1)2AM-d)

(14 €)p2 4204 20042
(- 0—)

N —t'—h—g‘——g (X, )7} <2
1 16(1+6)B7 1, ? 1 =

<

where ¢7 is a constant which depends only on M, B and d.
Next we bound

t-hd .
M (64(1 +€)B2(M + 1)2dA2M~d’g2’ (X, Y)l) .

By Lemma A.3 in the Appendix we get

t-hd
M (64(1 +€)B2(M +1)2dA2M: 592, (X, Y)1>

2V
2

4eB
<2
- t-hd
64(1 + €)BZ(M + 1)22APMd

2 A2M-dN 2V+
< CB.ME_A_ %2 ,
t-hd '

where cg is a constant which depends only on M, B and d. Hence it suffices to derive a
bound on the VC dimension of the class of all subgraphs of

gz={y:1Rd><lR—>1R=g(x,y)

=K (”—“—;%@E> ((z,y) € R x IR) for some u € ]Rd} .

Since K is left continuous and monotone decreasing we have

— > <
K ( 73 t if and only if ——— h ¢(t)

where ¢(t) = sup{z : K(z) > t}. Equivalently, (z,y,t) must satisfy

2Tz - 2uTz +uTu - h2¢(t) < 0.
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Consider now the set of real functions

Gs={gaprs RIXBRXR—R: gopqs(2,98) =aziz+plz+ys+6
((z,y, ) € R? x R x IR) for some a,7,8 € R, € R%}.

If for a given collection of points {(z;, ¥i, ti) }i=1,..,n & set {(z,y,t) : g(x,y) > t}, g€ Go
picks out the points {(zi,,¥i;,ti,),-- -, (%i,, Yir» i)} then there exist «, B, -y, 6 such that
{(xv Y, 3) : ga,ﬂ,’y,&(x: Y, 8) 2 0} picks out exactly {(IL‘“ s Yiys ¢(ti1))’ RS (1‘1;” Yiys ¢(t‘il))}
from {(z1,v1,9(t1)),---,(%n,Yn,d(tn))}. This shows Vg; < Vi{(y,5):9(2,y,5)>0}:9€G5} -
G5 is a linear vector space of dimension d + 3, hence we can conclude from Lemma A.4
in the Appendix Vg; < d + 3. Summarizing the above results we get

. pd
Nl( t hn ga(XaY)?)

8(1+¢€)’

(o (o QBAPMANTAEDT 1y o) gp pnd D

=\ t-hd c8 t-hd
(L+€)ppAPMa®

= <c5 o tRE

for constants cs and ¢g which depend only on M, B and d.
In the ninth and last step of the proof we finish the proof by summarizing the above
results. By the results of the first and second step we have

[ 1ma(@) = m(o)Pu(da)

Tjn(z)
E{Kp, (z - X)}

4
< cale+ APM4B2h,) +4) p(de).
j=1

Using the results of steps three to seven and $2h,, — 0 (n — c0) one gets

tim sup / (M () — m(z)Pu(dz)

n—o0
<ce+4((1+¢)° — D ElY —m(X)?
+8c1(1+1/e)(1 + ) *E|Y — Y |2 4 4¢;(1 + €)®¢
+4e1(1+1/E)Y — Yz |> + 4c:(1 + €?(1 + 1/)E|Y — Yz|?> as.

With L — oo and € — 0 this implies [ [m,(z) — m(z)]?u(dz) — 0 (n — o0) a.s. The
proof of E [ |my(z) — m(z)]?u(dz) — 0 (n — oo) follows in an analogous way from the
previous results. O

i

PrOOF OF THEOREM 2.2. By definition of m,
[ ma@) ~ m(@) Putdo)
— [ Im(e) ~m(@)Pu(da) + [ m(z)u(do).
[-An,AR]d R [

nyin
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Because of 4, — 0o (n — 00) and [ |m(z)[?u(dz) < co we have
/ Im(@)2(dz) =0 (n— oo).
RA\[-An,An]¢
Hence it suffices to show
/ (@) — m(@)2u(dz) >0 (n— oo)
[_An: n d

a.s. and in L;. This can be done by replacing in the proof of Theorem 2.1 A by A, and
J... by f[_ A An]d " Then one has to show in the seventh step

lim sup Aﬁ ‘T, <0 as. and limsup Ai -ETin <0.

n—o0 n—0o0

To this end one uses

P{A% Ty > t}

t
:P{Tmm > zz}

t-hd e\’
. A2 AZM-dN ©6 ne—g ( )
<afes (I1+¢€)-B2Az exp | - Ade 1+e
(t/A%) - b 64B2;

and proceeds otherwise as before. O
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Appendix

A. Some results of empirical process theory

In this section we list the definitions and results of empirical process theory which
we have used in Section 3. An excellent introduction to most of these results can be
found in Devroye et al. (1996).

We start with the definition of covering numbers of classes of functions.

DEFINITION A.1 Let F be a class of functions f : IR — IR. The covering number
Ni(e, F, 2}) is defined for any € > 0 and 27 = (21,...,2,) € IR*™ as the smallest integer
k such that there exist functions gy, ..., g : R — IR with

1 n
min = " |f(z;) — gi(z;)| < e

1<i<k n 4
Jj=1

for each f € F.
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If ZP = (Zy,...,Zy) is asequence of IR%valued random variables, then N; (¢, F, Z7')
is a random variable with expected value EN; (¢, F, Z7).

LEMMA A.1 (Haussler (1992), Th 2)) Let F be a class of functions f : R? —
[0,B), and let ZP = (Z4,...,2Zy,) be R%-valued i.i.d. random variables. Then for any a,
e>0

LS 1) - Bf ()
P }sup

feF a+ Ef(Z;)

| <ap (N (.7 27) ) e (- 20,

The following lemma is useful for bounding covering numbers of products of func-
tions.

LEMMA A2 (Devroye et al. (1996), Th. 29.7) Let G; and Gy be two families of
real functions on IR® with Igl(z)l < By and |g2(2)| < By for all z € R?, gy € G, and
g2 € Go. Then for any 27 € R%™ and € > 0 we have

Ni(e,{g1- 92 : 91 € G1,92 € G2}, 27") <M (23 ,gl,z?> - M (23 ,92,Z1>

To bound covering numbers we use the following definition of the VC dimension.

DEFINITION A.2 Let D be a class of subsets of IR? and let F C IR%. One says
that D shatters F if each subset of F' has the form D N F for some D in D. The VC
dimension Vp of D is defined as the largest integer k£ for which a set of cardinality k
exists which is shattered by D.

A connection between covering numbers and VC dimensions is given by the following
lemma, which uses the notation Vr+ for the VC dimension of the set

Ft={{(z,t) e R xR : t < f(z)}: f € F}
of all subgraphs of functions of F.

LEMMA A.3 (Haussler (1992) Th. 6) Let F be a class of functions f : R* —
[=B, B]. Then one has for any 2} € IR*™ and any e > 0

Nile, F,28) < 2 (@1 (4653))

The following result is often useful for bounding the VC dimension.

LeMMA A4 (Dudley (1978)) Let F be a k-dimensional vector space of functions
f:IR® = IR. Then the class of sets of the form {x € R : f(z) > 0}, f € F, has VC
dimension less than or equal to k.
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Abstract. Estimation of the mean function in nonparametric regression is usefully
separated into estimating the means at the observed factor levels—a one-way layout
problem—and interpolation between the estimated means at adjacent factor levels.
Candidate penalized least squares (PLS) estimators for the mean vector of a one-way
layout are expressed as shrinkage estimators relative to an orthogonal regression basis
determined by the penalty matrix. The shrinkage representation of PLS suggests a
larger class of candidate monotone shrinkage (MS) estimators. Adaptive PLS and MS
estimators choose the shrinkage vector and penalty matrix to minimize estimated risk.
The actual risks of shrinkage-adaptive estimators depend strongly upon the economy
of the penalty basis in representing the unknown mean vector. Local annihilators
of polynomials, among them difference operators, generate penalty bases that are
economical in a range of examples. Diagnostic techniques for adaptive PLS or MS
estimators include basis-economy plots and estimates of loss or risk.

Key words and phrases: Nonparametric regression, one-way layout, adaptation, loss
estimator, risk estimator, economical basis, orthogonal polynomial, local annihilator.

1. Introduction

The regression model that motivates statistical procedures studied in this paper is
(11) yi =m(t;) +e, 1<i<n.

The nonrandom design points are ordered so that ¢ty < t3 < .-+ < t,. The errors
{e;} are independent, identically distributed, each having a N(0,0?) distribution. Both
the function m and the variance 02 are unknown. Estimation of m from the observed
{yi,ti} is the task undertaken. This probabilistic formulation serves for the derivation
and initial study of estimators for m. Asymptotic theory developed under the model is
supplemented with computational experiments on real and artificial data that respect the
fundamental distinction between data and probability model and bring out additional
aspects of estimator performance. These experiments also explore the use of estimated
losses and certain diagnostic plots to assess the performance of competing estimators on
particular data.

Let y = {y;}, u = {m(t;)}, and e = {e;} be nx 1 vectors with the stated components.
Nonparametric regression as just described can be separated logically into two problems.
The first is to estimate the values {m(¢;) : 1 < i < n}. This amounts to estimation of
the vector u in the possibly unbalanced one-way layout

(12) y=p+te,

900
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where e has a multivariate N (0,0%1,) distribution. It follows from Stein (1956) that the
least squares estimator of p is inadmissible under quadratic loss whenever the number
of factor levels exceeds 2. As will be seen, the least squares estimator can have high
quadratic risk when compared with alternative estimators less prone to overfitting the
data. '

Given an efficient estimator of p, the second problem is interpolation among its
components so as to estimate the function m. This is a problem in approximation theory
that is highly sensitive to assumptions on the nature of m. The observed {y;,t;} will not
tell us how many derivatives m has. In the absence of strong prior information about
the smoothness of m, we may settle for straightforward linear interpolation or spline
interpolation between the estimated components of p. At a minimum, such interpolation
is a convenient visual device for displaying estimators of m at the design points. To
consider separately the estimation at design points and the interpolation between design
points clarifies what can be done in nonparametric regression. Examples presented in
this paper support the claim that efficient estimation of the mean function at the design
points is often more important for data analysis than sophisticated interpolation between
adjacent estimates.

Suppose that the design points {t;} contain p < n distinct values s1 < 52 < -+- < sp,
which are the factor levels. Let X denote the n x p incidence matrix defined as follows:
row ¢ contains a 1 in the column j such that s; = ¢; and has zeroes in the other p — 1

positions. Let 8 = (m(s1),m(sz2),...,m(sp))’ denote the mean responses at the factor
levels. The mean vector of the one-way layout (1.2) is then
(L.3) p=XpB

and the least squares estimator of p is irs = X(X'X) 1 X'y.

Let D be any matrix with p columns, let v be an element of the extended non-
negative reals [0, 00|, and let |- | denote quadratic norm. The candidate penalized least
squares (PLS) estimator of y is

(1.4) fipLs(D,v) = Xfprs(D,v)

where

(1.5) BPLS(D, v) = argmin|jy — Xﬂ|2 + VID,BIZ]
BeERP

It is understood that ,BPLS(D, 00) =lim, e BPLS(D, v). Explicitly,
(1.6) pprs(D,v) = X(X'X +vD'D)"1Xy.

In this form, iprs(D, V) may be viewed as a generalized ridge estimator.

Effective choice of penalty matrix D and of the non-negative penalty weight v are
central issues. When v is zero, the candidate PLS estimator reduces to the least squares
estimator firs. For very large v, the PLS estimator effectively minimizes the residual
sum of squares subject to the constraint that |Dg|? is approximately zero. To guide
the choice of D and v, we will assess the quality of any estimator ji through normalized
quadratic loss and corresponding risk

1.7 L(p,p) =p Yo —ul®,  R(p,p,0%) =EL(j, p).
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Let
(1.8) S(D,v) = X(X'X +vD'D)"'X’

and let | - | denote Euclidean matrix norm. That is, |C|2 = tr(CC’) = tr(C’C) for any
matrix C. The risk of the candidate estimator fiprs(D,v) is then

(1'9) ) R(ﬂPLS(Day)’“702) =p—1[0'2|S(D, V)|2+ |/,L—S(D,V)y,|2].

For the least squares estimator firs = fiprs(D,0), this risk reduces to o2.

Let 62 be a trustworthy estimator of 02. Customary when n substantially exceeds
p is the variance estimator 625 = (n — p) ™!y — fiLs|?>. The derivation of the Mallows
(1973) Cp, criterion yields the risk estimator

(1.10) R(D,v) = p[ly - S(D, vyl + {2[S(D, )] - n}57.

In particular, when 62 = 6%, the estimated risk for the least squares estimator of  is
f%(D, 0) = 62 5. We propose to choose both the penalty weight v and the penalty matrix
D so as to minimize the estimated risk R(D,v).

When represented with respect to the orthogonal penalty basis for the regression
space that is defined in the next section, PLS estimators suggest a larger class of candi-
date monotone shrinkage (MS) estimators for y. The themes of this paper are: asymp-
totic theory to support the strategy of choosing the candidate estimator that minimizes
estimated risk; the advantages of adaptive MS over adaptive PLS; methods for designing
effective penalty matrices; and the use of estimated loss/risk and of diagnostic plots to
assess the performance of adaptive PLS or MS estimators on given data.

The need for asymptotic analysis and for restrictions on the extent of adaptation is
indicated by an example. Suppose that S is permitted to vary over all n x n symmetric
matrices that have a specified set of eigenvectors and that o2 is known. The symmetric
matrix S that minimizes the right side of (1.10) over the class just described then gen-
erates an estimator of x4 whose risk is dominated by that of the least squares estimator
fir.s. This may be seen from Remark A on p. 1829 of Beran and Diimbgen (1998).

For fixed penalty matrix D, the shrinkage-adaptive PLS estimator is defined to be
fipLs(D,?), where 7 minimizes the estimated risk R(D,v) over all v in [0, co]. We will
call this the PLS(D) estimator. Section 2.3 describes how to compute it effectively.
Under the probability model described there, the risk of the adaptive estimator PLS(D)
converges to the risk of the unrealizable candidate PLS estimator with smallest risk.
Thus, the asymptotic risk of the PLS(D) estimator cannot exceed that of the least
squares estimator. In practice, it is often far smaller and the shrinkage-adaptive MS(D)
estimator to be defined in Subsection 2.2 typically reduces risk further. Subsection 3.2
develops possibilities for adaptation through choice of the penalty matrix D in addition
to v.

Though valuable in exploring the scope of adaptation and the overall behavior of
an estimator, ensemble results such as asymptotic minimaxity or rates of convergence
do not indicate the adequacy of a particular estimator on particular data. Section 3
addresses the use of estimated loss and of diagnostic basis-economy and shrinkage-vector
plots to assess adaptive PLS and MS estimators on given data.

Figure 1 exhibits penalized least squares estimates on three sets of artificial data.
The smooth case was suggested by the Canadian earnings data that was analyzed, with
further background, in Chu and Marron (1991). The respective mean functions are:
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Fig. 1. Each column displays the artificial data, the true mean vector, the PLS{D4) estimate,
and the MS(D4) estimate.

Smooth: my(t) = 2 — 50((t — 25)(t — 75))2.

Wiggly: ma(t) = my(t) — .25sin(507t).

Very Wiggly: ma(t) = my(t) — .25sin(1007t).
The design points are {¢t; =i/(n+1):1 < i < n} with n = 200. The j-th artificial data
set is {m;(4/201):1 < i < 200} + e, where e is a single pseudo-random sample drawn
from the N(0,02I0) distribution and o = .2. In this design, p = n. The variance o2 is
estimated by the high component estimator defined in (2.13), with g = .75p.
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As penalty matrix we use the (p —4) x p fourth difference matrix Dy. The first row
of Dy consists of entries 1, —4, 6, —4, 1 followed by zeros. The second row shifts the
non-zero entries one place to the right and puts a zero in the first column. Construction
of subsequent rows continues the shift of nonzero entries to the right. The d-th difference
penalty matrix Dy, defined formally in Section 3.2, is particularly appropriate when the
components of 8 are equally spaced values on a curve whose local behavior mimics a
polynomial of degree d — 1. In the present example, either d = 4 or d = 5 works well.
Computations for this and other examples in the paper were done with S-Plus 2000 for
Windows.

Column j in Fig. 1 plots the j-th artificial sample in the first row and the linearly
interpolated (dashed line) components of the mean vector u = {m;(i/201)} in the second
row. The function rnorm, initialized with set.seed(2), produced the pseudo-Gaussian
errors that are added to the means in the second row to obtain the artificial samples.
Any sinusoidal wiggles present in p are not apparent to the eye in the scatterplots of
this data.

The third row in the figure superposes on the data the linearly interpolated (solid
line) components of estimator PLS(D,). This shrinkage-adaptive PLS estimator recovers
the means well from the Smooth sample and detects the sinusoid underlying the Wiggly
sample, even though it distorts that sinusoid’s amplitude and regularity. However, on
the Very Wiggly sample, PLS(D,) fails utterly, like the eye, to detect the sinusoid and
settles for estimating the smooth component of the trend. The fourth row of Fig. 1 plots
the adaptive MS(Dy) generalization of PLS(D4) that is defined in Section 2.2. This
estimator succeeds in handling the Very Wiggly sample as well as the other two.

2. Estimated risk and shrinkage adaptation

A canonical representation assists both theoretical study and numerical computation
of the candidate PLS estimators iprs(D,v). These and the candidate MS estimators
defined in Section 2.2 are particular symmetric linear smoothers in the sense of Buja et
al. (1989) and are candidate REACT estimators in the sense of Beran (2000).

2.1 The penalty basis

The replication matrix R = X’'X is a p x p diagonal matrix whose k-th diagonal
element indicates the number of {¢;} that equal sx. For any matrix C, let M(C) denote
the subspace spanned by its columns. The columns of the matrix Uy = X R~1/2 provide
an orthonormal basis for the regression problem: UyUy = I, and M(Up) = M(X). Let
B = R™Y2D'DR~'/2, Because X = UyR'/?, equation (1.6) is equivalent to

(21) fipLs(D,v) = Uo(Ip + vB) ™ Ugy.

The symmetric matrix B has spectral representation B = I'AI" where the eigen-
vector matrix satisfies I'I' = I'lY = I, and the diagonal matrix A = diag{);} gives the
ordered eigenvalues with 0 < A\; < Ag < --- < A,. This eigenvalue ordering, the reverse of
the customary, is used here because the eigenvectors associated with the smallest eigen-
values largely determine the value and performance of candidate estimator iprs(D,v).
Let U = UgT'. It follows from (2.1) that

(2.2) ﬂpLs(D, l/) = U(Ip + I/A)——lU’y.
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The columns of the matrix U constitute the orthonormal penalty basis for the regression
space determined by the penalty matrix D : U'U = I, and M(U) = M(X).

Variational characterization of U. Alternatively, the successive columuns uy,us,. ..,
up, of the penalty basis matrix U may be defined through their variational properties:

e As above, let Uy = XR~!/2 provide an initial orthonormal basis matrix for the
regression space M(X).

e Find a unit vector u; = Upy in M(X) that minimizes the penalty |D(X'X)~!
X'uy|?. This reduces to finding the p x 1 unit vector - that minimizes [DR™1/2v|? =
v'By. The desired minimum penalty vector is thus uy = Uy, where «; is the j-th
column of the eigenvector matrix T

e Find a unit vector us = Upy in M(X) that minimizes the penalty |D(X’'X)™!
X'us]? subject to the constraint that uy is orthogonal to uy. This reduces to finding the
p X 1 unit vector v orthogonal to ; that minimizes |[DR~Y/24|> = 4'B7y. The desired
minimum penalty vector is thus us = Upye.

¢ Continue sequential constrained minimization to obtain the penalty basis matrix

(23) U= (Ug"}’l, U()")lg, seey U()")’p) = Uor

In the one-way layout under consideration, (X'X)™X'u; extracts the components of
basis vector uy, that are associated with the p factor levels. The penalty for this extracted
vector is

(2.4) DX X)X us? = | DR = 7By = M.

‘When the penalty matrix is a d-th difference operator, the preceding variational char-
acterization of U explains intuitively why its successive column vectors are increasingly

wiggly.

2.2 From PLS to monotone shrinkage estimators

Fix D so that the penalty basis U is determined. Let z = U’y and let f(») denote
the column vector (1/(1+vA1), 1/(1 +vA2),...,1/(1 4+ vAp)), with the understanding
that f(oo) = limy_o f(v). The distribution of z is N,(&,021,), where & = U’u. The
PLS estimator of ¢ implied by expression (2.2) is ‘

(2-5) éprs(D,v) =U'fiprs(D,v) = f(v)z,

where the multiplication of vectors in the expression to the right is performed compo-
nentwise as in the S language. Equivalently,

(2:6) fipLs(D,v) = Ulprs(D,v) = U diag{f(»)}U'y.

The structure of representation (2.6) suggests a larger family of candidate estimators
for p. Let

(2.7) Fus={f€0,1P:fr> f22>--- fp}
and let

(2.8) éms(D,f)=fz for f€ Fus.
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The candidate monotone shrinkage (MS) estimators for u associated with penalty matrix
D are defined by

(2.9) fas(D, f) = Ubus(D, f) = U diag{f}U'y  for f€ Fus.

It follows from (2.6) that the candidate PLS estimators are a proper subset of the MS
family in which the shrinkage vector f is restricted to the form {f(v):v € [0, oc]}.

The next section develops three good reasons for considering monotone shrinkage
estimators. First, for every candidate PLS estimator there is an MS estimator whose
risk is at least as small. Second, minimizing the estimated risk of candidate MS or PLS
estimators over all shrinkage vectors permitted by their definitions turns out to minimize
asymptotic risk over the respective classes of candidate estimators. Third, computation
of adaptive MS estimators is faster than computation of their adaptive PLS counterparts.

2.3 FEstimated risks and shrinkage adaptation
For any vector h, let ave(h) denote the average of its components. Define the
function

(2.10) plf,€2,0%) = avelfZo? + (1 — )27 for fe[0,1].

Because |fips(D, f) — ul? = |fz — £|?, it follows that the normalized quadratic risk of
the candidate MS estimator is

(2'11) R(ﬂMS(D) f)v/'l‘a 02) =p(fv‘$2’02) for fe€ Fus.

In particular, the risk R(fiprs(D,v), u,02%) of the candidate PLS estimator, expressed
in the original coordinate system by equation (1.9), is simply p(f(v), &2, o2).

The risk function p(f,£2,02) depends on the unknown parameters £2 and 2. Having
obtained a variance estimator 62, we may estimate ¢2 by 22 — 42 and hence p(f,£2,02)
by

(2.12) (D, f) = ave[f?5% + (1 ~ f)*(2* — 6%)].

Expression (2.12) expresses in canonical form the Mallows risk estimator (1.10).

The following definitions carry out several strategies for estimating the variance o

o The least squares variance estimator. The least squares variance estimator 62 5 =
(n—p)~ |y — firs|? is unbiased and is consistent for 02 when n — p tends to infinity.

e The first-difference estimator. This estimator, 6%, = [2(n — 1)] 71 >0 (v —
yi_1)?, was treated by Rice (1984). It is consistent for 02 when n tends to infinity
and the bias lim,_,0o[2(n — 1)]7* 30 o (i — pi-1)? = 0. Similar estimators may be
constructed from higher-order differences of y.

The next two variance estimators make use of the penalty basis U. Choose U so that
the concatenated matrix (U | U) is orthogonal. Set z = U’y in analogy to the earlier
z=U'y.

e The high-component variance estimator. The strategy of pooling sums of squares
in analysis of variance suggests

2.

p p
213)  bh=(m-97'| Y A+ | =m-97"| DY F+ly-pwsl|,
1=q+1 i=q+1
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where ¢ < min{p,n — 1}. The bias of 6% is (n — ¢)~1 g1 &2. Consistency of 6% is
assured When this bias tends to zero as n — ¢ tends to 1nﬁmty When ¢ = p < n, the
estimator 6% reduces to 6% S-

e The robust high-component variance estimator. Let w denote the vector obtained
by concatenating {2;:9 + 1 < i < p} with Z. Robustness theory suggests the estimator

(2.14) 6re = median{jw;|:1 < j < n — q}/®~(.75)

for o, where <I> ! is the standard normal quantile function. Under model (1.2), 6%
approaches o2 in probability when n — ¢ is large and the high order components of ¢ are
small.

Let § = (2% — 62)/22. The risk estimator 5(D, f) in (2.12) can be rewritten in the
form

(2.15) p(D, f) = ave[(f — §)22%] + 6 ave(§).

For fixed penalty matrix D, the shrinkage-adaptive PLS(D) estimator is defined to be
llMS(Da 0)7 where
(2.16) p = argmin p(D, f(v)) = argmin ave[(f(v) — §)?2].
vef0,00] ve[0,00 -

Computation of ¥ is thus a weighted least squares problem that can be solved with the
S-Plus function nls in the manner exhibited on p. 244 of Venables and Ripley (1999).
The PLS fits plotted in the third row of Fig. 1 were obtained in this fashion.

Similarly, for fixed penalty matrix D, the shrinkage-adaptive MS(D) estimator is
defined to be fiprs(D, fars), where

(2.17) fus = argmin p(D, f) = ?rgminave[(f — §)?2].

f€Fus €Fms

To facilitate this minimization, let H ={h € RP:hy > hy > --- > hp} and let

A

(2.18) h= argmin ave[(h — §)%2].
eH

Then f MS = h+ That is, each component of f Mms is the positive part of the correspond-
ing component of A. For a proof, see Beran and Diimbgen (1998). Computation of A
is a weighted isotonic least squares problem that can be solved with the pool-adjacent-
violators algorithm (cf. Robertson et al. (1988)). The MS fits plotted in the last row of
Fig. 1 were obtained in this fashion. Computation is faster for MS(D) than for PLS(D).
S-Plus code for the examples in this paper is available from the author.

The following theorem shows that adaptation works in the sense that minimizing
estimated risk over either the MS or PLS shrinkage class for fixed D succeeds in mini-
mizing risk asymptotically over that class. The result makes no smoothness assumptions
on the unknown mean vector y and follows from Theorems 2.1 and 2.2 in Beran and
Diimbgen (1998).

THEOREM 2.1. Let F be any subset of Fars that is closed in [0,1]P. In particular,
F could be either the PLS shrinkage class {f(v):v € [0,00]} or the monotone shrinkage
class Fus. Suppose that 62 is consistent in that, for every r > 0 and 02 > 0,
(2.19) lim sup E|§%—0? =0.

P70 ave(£2)<o?r
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Let V(f) denote either the loss L(i(D, f), ) or the estimated risk p(D, f). Then, for
every penalty matriz D, every r > 0, and every o > 0,

(2.20) lim  sup  Esup|V(f)—p(f,&%0%)|=0.
JFEF

P00 ave(€2)<o?r
Moreover, if f = argming. x p(D, f), then

(2:21) lim  sup |R(ﬂ(D,f>,u,a2)—?ggR(ﬂ(D,f),u,ﬁ)r=0-

P ave(u?)/o2<r

By (2.20), the loss, risk and estimated risk of a candidate estimator converge to-
gether asymptotically. Uniformity of this convergence over F makes the estimated risk
of candidate estimators a reasonable surrogate for true risk or loss. By (2.21), the risk
of the shrinkage-adaptive estimator (D, f ) converges to that of the best candidate esti-
mator. These conclusions break down when the class of shrinkage vectors F is too large
in a covering number sense. In particular, it does not hold if F = [0,1]?, as shown in
Beran and Diimbgen (1998).

Remarks. Condition (2.19) holds for the variance estimator 624 if n — p tends to
infinity with p. Asymptotic results for other variance estimators are given in Beran
(1996) and Beran and Diimbgen (1998). The quantity ave(u?)/o? = ave(¢?)/o? in
(2.21) measures the signal to noise ratio. Limits (2.20) and (2.21) both hold without
any restrictions on the smoothness of u. Because the monotone shrinkage class Fyrg is
strictly larger than the generating PLS shrinkage class { f(v): v € [0, 00]}, the asymptotic
risk of MS(D) cannot exceed that of PLS(D).

COROLLARY 2.1. Under the conditions for Theorem 2.1,

(2.22) lim sup E|pD,f)—W)|=0

P ave(£2)<o?r

for W equal to either L(a(D, ), 1) or R(@(D, ), 1, 02).

PrOOF. Equation (2.20) implies that

(2.23) lim sup Esupl|p(D,f)— LD, f),un)| =0,
P00 ave(€2)<o?r  feF

which yields (2.22) for the first choice of W. Because f minimizes p(D, f) over f € F,
equation (2.20) also implies that

2.24 lim sup E|p(D, f) — minp(f,£2,0%)| = 0.
(2.24) L S |6(D; ) — min p(£,£7, %)

Combining this with (2.21) yields (2.22) for the second choice of W.

That the plug-in loss/risk estimator p(D, f) converges asymptotically to the actual
loss/risk of PLS(D) or MS(D) is useful when comparing adaptive estimators on specific
data. For the examples of Fig. 1, the plug-in loss/risk estimates and actual losses for
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MS loss MS plug-in  PLS loss PLS plug-in LS loss LS plug-in

Smooth .0011 —.0068 .0013 —.0066 0372 0455
Wiggly 0111 .0015 .0138 .0072 0372 0456
Very Wiggly 0127 .0092 .0326 .0290 0372 0454

PLS(D,), MS(Dy), and the least squares estimator are shown in Table 1. In scrutinizing
this table, we observe that:

e The plug-in estimated losses for the shrinkage-adaptive MS and PLS estimates
are noticeably smaller than the true losses.

e The plug-in losses indicate correctly the ordering of the true losses for the MS,
PLS and LS estimates.

e The loss of the LS estimator in each of the three examples is .0372, a value
reasonably close to the LS risk 02 = .04. The high-component variance estimator used
in this experiment overestimates the true variance modestly.

3. Penalty matrix adaptation

Section 3.1 analyzes the manner in which the penalty matrix D affects the asymp-
totic risks of adaptive estimators MS(D) and PLS(D). The economy of the penalty
basis in representing the unknown mean vector y is a key factor. Section 3.2 develops
candidate penalty matrices for equally and unequally spaced factor levels and considers
adaptation over both penalty matrix and shrinkage vector. Section 3.3 discusses diag-
nostic plots that display the empirical economy of candidate penalty bases and considers
an alternative to plug-in estimates for the loss or risk of adaptive estimators.

3.1 Role of an economical penalty basis

As will be seen, the risk of the shrinkage-adaptive PLS or MS estimator for u is
relatively small if all but the first few components of £ = U’y are very nearly zero.
In this event, we say that the columns of the matrix U provide an economical basis
for the regression space M(X). The benefit of using an economical regression basis is
clear heuristically. In that case, we need only identify and estimate from the data the
relatively few non-zero components of £, using the naive estimate zero for the remaining
components. The quadratic risk then accumulates small squared biases from ignoring
the nearly zero components of £ but does not accumulate the many variances that would
arise from an attempt to estimate these unbiasedly.

An idealized formulation of basis economy enables mathematical analysis of how
economy affects risk. For every b € [0,1], every r > 0, and every o2 > 0, consider the
projected ball

(3.1) B(r,b,0%) = {¢&:ave(¢?)/0? < r and & = 0 for i > bp}.

Suppose that the regression basis U associated with penalty matrix D is economical in
the formal sense that the transformed mean vector ¢ lies in B(r,b,0?) for some small
value of b and some finite positive value of r. Though this description is too simple
to serve as a complete definition of basis economy, it yields the following quantitative
results about the effect of basis economy on the risk of estimators of y.
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THEOREM 3.1. Fiz the penalty basis U by choice of D. For every b € [0,1], every
r > 0, and every o2 > 0, the asymptotic minimaz quadratic risk over all estimators of p
18

(32) lim II}f sup R(ﬂﬂ 22 02) = 0'27"b/(’l" + b)
P—0 Lt ¢ecB(r,b,a?)

The . shrinkage-adaptive estimator fiprs(D, st) achieves asymptotic minimaz bound
(3.2) in that

(3.3) lim  sup R(ims(D, fus),p,0%) = o*rb/(r +b)
P00 ¢ B(r,b,02)

for every possible b, r, and o2.

Limit (3.3) follows from Theorem 4 in Beran (2000). As discussed in that paper,
equation (3.2) is a special case of Pinsker’s (1980) asymptotic minimax bound. Note
that (3.3) establishes more than formal asymptotic minimaxity of shrinkage-adaptive
estimator MS(D). When b is small, the right side of (3.3) is much smaller than the risk
o2 of the least squares estimator firs. To the extent that estimator PLS(D) approximates
estimator MS(D), its performance also benefits strongly from economy of the penalty
basis. This phenomenon underlies the very similar appearance of PLS(D,) and MS(Dy)
in the first column of Fig. 1.

3.2 Candidate penalty matrices and adaptation

The ideal choice of penalty basis U would have its first column proportional to the
unknown mean vector u so that only the first component of & would be nonzero. Though
unrealizable, this ideal choice indicates that prior information or conjecture about u can
be exploited in devising the penalty matrix D that generates the penalty basis. The
discussion in this section relates prior notions about the local behavior of the mean
function m to the construction of reasonable candidate penalty matrices.

Difference operators. Consider the important case when the factor level vector
s = (81, 82,...,5p) has equally spaced components. To define the d-th difference matrix
Dy, consider the (p — 1) X p matrix A(p) = {6; ;} in which & ; = 1, 6; ;41 = —1 for every
7 and all other entries are zero. Then,

(3.4) D, =A(p) and Dyg=A(p—-d+1)D41 for 2<d<p.

It may be verified that the (p — d) x p matrix D, annihilates powers of s up to power
d — 1 in the sense that

(3.5) Dgs* =0 for 0<k<d-1.

Moreover, in row ¢ of Dy, the elements not in columns 4, ¢ + 1,...7 + d are zero.

The penalty term in (1.5) is proportional to |DB|?> where 8 = m(s). When m
behaves locally like a polynomial of degree d — 1, property (3.5) and the subsequent
remark about zeros entail that |Dy8| is small. We may therefore expect that both
PLS(Dg4) and MS(Dg) will favor fits with local polynomial behavior of degree d — 1.
This implicit preference is appropriate whenever m has such local polynomial behavior.
The success of fits based on penalty matrix Dy in the first column of Fig. 1 illustrates
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the point. We note that normalizing the row vectors of Dy to have unit length does not
change the corresponding penalty basis U. However, (3.5) breaks down for k£ > 1 when
the components of s are not equally spaced.

Local annihilators. To devise useful candidate penalty matrices for arbitrary factor
levels s € RP and for other notions about m, we draw on the mathematical interpretation
of (3.5) as an orthogonality property. Let go, g1,...,94—1 be a given set of real-valued
functions defined on the real line. We hypothesize that the mean function m behaves
locally like a linear combination of the {gx:0 < k < d — 1}. Local polynomial behavior
is the special case where gi(s;) = s¥ for every k.

For each 7 such that 1 < ¢ < p— d, assume that the d vectors {{gx(s:),-- -, gk(8i+d):
0 < k < d — 1} are linearly independent in R%t1. This is a condition on the functions
{gr} that is satisfied, for instance, when gx(s;) = s¥. Let G; denote the d-dimensional
subspace of R4t that is spanned by these vectors. Define the (p—d) x p local annihilator
matrix Ag = {a; ;} as follows: In the i-th row of A4, the subvector {a; ;:1 < j < i+ d}
is the unit vector in R%1, unique up to sign, that is orthogonal to G;. The remaining
elements of Ay are zero.

THEOREM 3.2. Let gi(s) = (gr(s1),9x(s2),-..,9%(sp))'. Each row vector of the
local annihilator matrix Ag has unit length and ~

(3.6) Agge(s) =0 for 0<k<d-1.

Proor. The definition of A4 ensures that its rows have unit length and

P i+d
(37) Zai,jgk(sj) —_ Zai,jgk(sj) =0 for 0 < k < d—1.
j=1 g=i

Of particular utility as the generalization of Dy for unequally spaced factor levels
is the local polynomial annihilator. This is obtained by setting gi(s;) = sF in the
definition of A4. Thus, in the i-th row of the local polynomial annihilator, the subvector
{a;;:i < j < i+ d} is the basis vector of degree d in the orthonormal polynomial basis
on the factor levels (s;,...,8i+4). All other elements in the row are zero. The S-Plus
function poly enables computation of the local polynomial annihilator in a numerically
stable way for d up to 50 or so. When the components of s are equally spaced, the local
polynomial annihilator A; becomes a scalar multiple of the d-th difference matrix Dy.
Of course, local polynomial A; is proportional to D; for every factor level vector s.

Remark. A referee kindly pointed out that the foregoing discussion of annihilators
can be linked to the algorithm for L-splines described at the end of Heckman and Ramsay
(2000). Let m®) denote the j-th derivative of m and let L be a differential operator such
that Lm = Zj;é ajm(j ). The set of all m such that Lm = 0 is a linear space of dimension
d. Let go, 91,...,94-1 denote a basis for this space. The construction of the sparse
matrix Ag in Theorem 3.2 follows from the Heckman and Ramsay algorithm by setting
@', D and U in their notation to Agq, identity matrix and (go(s), g1(s),---,9a-1(s)) in
the present setting.
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Fig. 2. Using penalty matrices D3 and local polynomial A3 respectively, each row displays
adaptive PLS and MS estimates for conditional mean electrical usage and the associated basis
economy plot.

D3 penalty Az penalty
PLS plug-in loss —33.55 —42.95
MS plug-in loss —35.57 —42.99

Figure 2 exhibits competing PLS and MS estimates for mean electrical usage as
a function of temperature. The data is described in Simonoff (1996). We estimate
mean electrical usage conditional on the observed temperatures, whose distinct values
are not equally spaced. The variance is estimated by 625. Because the trend in the
data appears to be roughly quadratic, we expect that MS and PLS fits generated with
the local polynomial annihilator A3 as penalty matrix will have relatively low estimated
risks. This turns out to be the case. The first row of Fig. 2 gives the PLS and MS fits
when the penalty matrix is D3 while the second row gives the corresponding fits when
the penalty matrix is local polynomial As. The plug-in loss/risk estimates for these
competing fits are shown in Table 2. In sharp contrast, the loss/risk estimate for the
least squares estimator of p is 129.70.

The negativity of the risk estimates in this table is an artifact of the small regression
space dimension, p = 37. The ordering of the estimated risks matches the visual quality
of the competing fits in Fig. 2. In this example, MS does not improve significantly upon
PLS. However, choosing the penalty matrix to handle unequal spacing of the design
points is clearly beneficial. The basis-economy plots in the third column of Fig. 2 exhibit
the superior empirical economy of the local polynomial Az penalty basis relative to the
D3 basis.
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Fig. 3. Row d displays the shrinkage-adaptive PLS(D,;) and MS(Dy;) estimates for mean
melanoma incidence and, in the third column, the associated basis-economy plot.

Adaptation over penalty bases. Having devised a set D of candidate penalty matrices,
we may use estimated risk to select an empirically best PLS or MS estimator by extending
the adaptation method described in Section 2. Over shrinkage class 7 and penalty matrix
class D, the fully adaptive estimator of y is defined to be fip r = i(D, f), where

(38) (D, f) = argmin (D, f).
DeD,feF
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d=1 d=2 d=3 d=4
PLS(Dg) plug-in loss  .0310 .0204 .0326 .0349
MS(Dy) plug-in loss 0165 .0166 .0194 .0230

If the cardinality of D is o(p'/?), F is a closed subset of Fys, and E|6? — o?| =
O(pl/ %), then Theorem 2.1 and Corollary 2.1 may be extended to justify the simultaneous
adaptation in (3.8) over both f and D. The extension follows from the error bounds
established in Theorems 2.1 and 2.2 of Beran and Diimbgen (1998). Justifying adaptation
over larger classes of penalty matrices is an open question. Because local polynomials of
degree up to 6 or so approximate a wide range of smooth mean vectors, adaptation over
large D need not be advantageous.

Figure 3 exhibits competing adaptive PLS and MS estimates for mean melanoma
incidence in males based on measurements for the years 1936 to 1972 and using the first-
difference variance estimator %,. The data is given on pp. 199-201 of Andrews and
Herzberg (1985). The first two columns in Fig. 3 display linearly interpolated PLS(Dg)
and MS(D,) fits to the data, the candidate penalty matrices being {Dg:1 < d < 4}.
The plug-in loss/risk estimates for these competing fits are showen in Table 3.

The loss/risk estimate for the least squares estimator of g, which coincides here
with the raw data, is .1165. It is not too surprising that the PLS(Ds) and MS(D;)
estimators have relatively low estimated risk among this group of competing shrinkage-
adaptive estimators because the underlying trend in the melanoma data is roughly linear.
The plotted shrinkage-adaptive estimators capture ripples in melanoma incidence that
are associated with the sunspot cycle. It is notable that the competing adaptive fits in
Fig. 3 are visually similar, even though their estimated risks differ. Heckman and Ramsay
(2000) obtained similar fits to this data with continuous-spline penalized least squares,
using differential penalty operators analogous to Dy and choosing penalty weight by
generalized cross-validation or by equivalent degrees-of-freedom. Their treatment also
considered a penalty differential operator that annihilates sinusoids of specified frequency.

The third column in Fig. 3 plots the components {|z;|!/?} against i for each of the
four penalty bases considered. Such diagnostic plots will be called basis-economy plots.
The square root transformation reduces the vertical range and ‘makes more visible the
values near zero. The purpose of a basis-economy plot is to approximate the unobservable
ideal plot of the {|&|'/2} against i so as to assess the economy of the penalty basis. For
the melanoma. data, the penalty basis generated by Ds is empirically the most economical
in Fig. 3. This finding is consistent with the ranking of estimated risks described above.
At the same time, all four penalty matrices {Dg4: 1 < d < 4} yield similar looking fits.

3.3 Diagnostic tools

The foregoing theory and examples have identified two key factors that govern the
risk of PLS and MS estimators. The first and more important factor is the economy
of the basis U generated by the penalty matrix D. The second factor is the extent
to which adaptive monotone shrinkage or penalized least squares shrinkage is able to
exploit whatever economy exists in the chosen basis U. Flexibility in the shrinkage
strategy becomes particularly important when, as columns two and three of Fig. 1, high-
frequency details in the unknown mean entail that strict economy does not hold.

For a given penalty matrix, a comparative shrinkage-vector plot displays, with linear
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Fig. 4. On the Very Wiggly data, row d displays the shrinkage vectors for estimators PLS(Dy)
(solid interpolation) and MS(Dg) (dashed interpolation), the basis economy plot, and the ideal
basis economy plot.

interpolation for visibility, the components of the adaptively chosen shrinkage vectors
f pr.s and fMS Setting such a plot next to the basis-economy plot enables one to assess
how well adaptive MS or PLS estimation exploits the degree of economy present in the
penalty basis. For the Very Wiggly data described in the Introduction, the first two
columns in Fig. 4 display the shrinkage-vectors and basis-economy plots generated by
penalty matrices D; through Dy4. The Dy basis appears more economical than the other
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three penalty bases, but not much more than the D3 basis. However, for either the Dj
or D, basis, adaptive PLS does a poor job of mimicking adaptive MS. This phenomenon
underlies the inability of estimate PLS(D,) in Fig. 1 to recover the sinusoidal component
of trend. The third column of Fig. 4 plots the actual components of £, which are available
here because the data is artificial and u is known. It is gratifying that the empirical basis-
economy plots in the middle column capture the essential features found in the ideal plots
of the third column.

Feedback about which nonparametric regression procedure to use in a particular
data analysis can come from estimated performance summaries as well as from diagnostic
plots. A broadband diagnostic approach is surely more effective than any single tool.
Plug-in estimated losses sharpen our scrutiny of the fits and diagnostic plots in Figs. 1
to 4. However, the discussion accompanying Fig. 1 indicated that plug-in estimated
loss/risk for an adaptive PLS or MS estimate tends to underestimate true loss. We
therefore consider another approach to estimating the loss or risk of a general estimator
i = pi(y). Let g(y) = p(y) — y. If the function g satisfies assumptions detailed in Stein
(1981), then the risk of 4 under the Gaussian model described in the Introduction is

(3.9) R(,p,0%) =0 + E |20°n™1 > 8g:(y)/By: + n " g(w)|?| -

i=1

The implied estimator of loss or risk is

n
(3.10) L(p) = 6% +26*n"1 ) 8gi(y)/0yi + n g (v) >
i=1
When fi(y) lacks a tractable closed form, the partial derivatives needed in (3.10)
may be approximated numerically. Let v; denote the vector in R™ whose i-th component
is 1 and whose other components are 0. Then, for small real values of 6,

(3.11) 89i(y)/0ys = 6 Hgs(y + 6ui) — gi(y)], 1<i<n.

Computing these difference quotients requires computing i(y) = y + g(y) and the n
perturbed estimators {fi(y + 6v;):1 < i < n}.

Sometimes the Stein loss/risk estimator in (3.10) has a closed form expression.
For the candidate estimators fiprs(D,v) or fims(D, f), the estimator (3.10) reduces to
p(D, f(v)) or p(D, f) respectively. For either PLS(D) or MS(D), the loss, the risk, and
the plug-in loss/risk estimator converge together as p tends to infinity; Theorem 2.1 and
Corollary 2.1 give the details. However, the experiment reported in Section 2.3 indicates
that the rate of convergence may not be swift and that plug-in loss/risk estimators may
underestimate true loss.

Alternatively, we can construct by numerical approximation the Stein loss/risk es-
timator (3.11) for the shrinkage-adaptive estimators PLS(D) and MS(D). Does this
approach produce better estimates of loss than the plug-in method? For the examples
of Fig. 1, where the penalty matrix is Dy, the approximate Stein loss/risk estimate ob-
tained from (3.11) with § = .0001 may be compared with their plug-in counterparts and
the true losses (Table 4). In this table, the Stein and the plug-in estimates for the loss
of MS(D,) and PLS(D4) are close; their ranking is the same; and the former is only
slightly closer to the true loss in most cases. There is no compelling reason in this exper-
iment to prefer the Stein loss/risk estimates over their computationally simpler plug-in
counterparts.
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MSloss MS Stein  MS plug-in  PLSloss PLS Stein PLS plug-in

Smooth .0011 —.0061 —.0068 .0013 —.0061 —.0066
Wiggly 0111 .0031 .0015 0138 .0076 .0072
Very Wiggly 0127 .0100 .0092 0326 .0294 .0290
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Abstract. Let II; be an i-th population with a probability density function f(- | 6:)
with one dimensional unknown parameter 8;, i = 1,2,...,k. Let n; sample be drawn
from each IT;. The likelihood ratio criteria Ajj(;_1) for testing hypothesis that the first
j parameters are equal against alternative hypothesis that the first (j—1) parameters
are equal and the j-th parameter is different with the previous ones are defined,
4=2,8,...,k. The paper shows the asymptotic independence of A;j(;-1)’s up to the
order 1/n under a hypothesis of equality of k parameters, where n is a number of
total samples.

Key words and phrases: Likelihood ratio criterion, asymptotic expansion, homo-
geneity of parameters, asymptotic independence.

1. Introduction

Bartlett (1937) dealt with the case of homogeneity of variances of k normal popula-
tions. As the exact distribution of a test statistic was unknown, he considered to give a
good approximation based on a knowledge of the moments of it. The method consisted
in multiplying —21log (likelihood ratio criterion) by a scalor factor which results in a
statistic having the same moments as chi-square random variable ignoring quantities of
order 1/n?, where n is the size of the total sample. This correction factor was known as
Bartlett correction factor in the sense of the moment.

For a case of a general population Lawley (1956) considered an asymptotic behavior
of the likelihood ratio criterion for testing a composite hypothesis and obtained Bartlett
correction factor in the sense of the moment. He decomposed a log-likelihood ratio
criterion into a sum of log-likelihood ratio criteria corresponding to a sequence of a
nested hypothesis and he showed that each log-likelihood ratio criteria has a Bartlett
correction factor in the sense of the moment.

Hayakawa (1977, 1987) gave an asymptotic expansion of the distribution function
of a likelihood ratio criterion for testing a simple hypothesis up to the order 1/n and
showed that Bartlett correction factor in the sense of the moment yields a statistic having
a chi-square distribution ignoring quantities of the order 1/n?. This implies that Bartlett
correction factor in the sense of the moment is same as a Bartlett correction factor in
the sense of the distribution for a likelihood ratio criterion. For other statistic it is
usually hard to claim this fact, for example, this does not hold for Rao’s score statistic.
Thus the concept of Bartlett correctness in the sense of the distribution is stronger than
that of Bartlett correctness in the sense of the moment. Thus if a statistic has Bartlett
correction factor in the sense of the distribution, we call that it is Bartlett correctable.

918
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Harris (1986) and Cordeiro (1987) pointed out an incompleteness of Hayakawa’s 1977
result for the case of composite hypothesis testing.

Bickel and Ghosh (1990) considered independence of a sequence of signed likeli-
hood ratio criterion which corresponds to Lawley’s decomposition of log-likelihood ratio
criterion from Bayesian point of view, and Takemura and Kuriki (1996) also handled a
similar problem from a frequentist point of view. Takemura and Kuriki introduced a new
parameter transformation which makes some higher order cross moments of derivatives
of log-likelihood ratio criterion vanish.

Let X; = |71, Zi2, - - -, Tin,;| be a random sample from the i-th population II; with
probability density function (pdf) f(z | 6;), i = 1,2,...,k and 6;’s are one dimensional
parameters. For testing a hypothesis of homogeneity of parameters

H:0,=05=---=60i(=0,say)
against the alternative
K : violation of at least one equality,

the likelihood ratio criterion A is defined as

H H f(@ia | )
(1.1) A==

H H f(@ia | éz')

i=1a=1

where 0 is the maximum likelihood estimator of § based on n = Zle n; observations
under H and ; is the maximum likelihood estimator of §; based on n; observations X;.

This is a general set up of Bartlett’s homogeneity of variances of k normal pop-
ulations. Hayakawa (1993) studied the asymptotic behavior of the distribution of A,
and Hayakawa (1994) dealt with the case of p dimensional parameter and showed that
Bartlett correction factor is closely related to the corresponding expression given by
Hayakawa (1977) in the context of a one-sample problem. Hayakawa (2001) considered
this problem by use of Rao’s score statistic, and Hayakawa and Doi (1999) also considered
this by use of Wald statistic.

Consider a sequence of hypotheses Hjj(;1) and Kjj(;_1) defined as

Hj|(j—1):01="‘: j——1=0j vs. Kj‘(j_1)191=---‘—= j_lyéej,
i=2,3,....k

The likelihood rato criterion for testing Hj(;_1) is given by

HHf(xmlﬂ)

i=1a=1 .
(1.2) AjlG-1) = o i=2,3,...,k,
Hl 1:[ f(mzawa 1) H [ (Zja |9)
where 6; is the maximum likelihood estimator of #; = --- = 6; based on fi; = Z;zl n;

observations {X3,...,X;]. The likelihood ratio criterion A for testing H against K is
decomposed as
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(1.3) A= Ao g2 Ak (k-1)-

The purpose of this paper is to show the independence of Ajj(;_1), 7 = 2,3,...,k
up to the order 1/n.

It should be noted that by use of an appropriate parameter transformation this
testing problem is reduced to the case of one sample problem dealt with by Bickel and
Ghosh (1990) and Takemura and Kuriki (1996). However, it is not self-evident to have
a concrete expression because of a complexity of a parameter structure even though our
problem is included in a general set up, and it would be worth to express a final result
by original parameters and to be able to handle this problem without any choice of an
appropriate prior probability density function.

2. Asymptotic independence of LRC

Let 0;,i=1,2,...,k be a univariate parameter. Defining the log-likelihood function
based on independent random sample z;1, ..., %, by

Li(8;) = Y log f(zia | 6:), i=1,2,...,k,
a=1

the following notations and convensions will be used. We assume that each L;(6;) is
regular with respect to 6; derivatives.

. ~172 & 9'L(6; .
(1) yfl)znz l/zazl—ao(l'L)7 l=1:233747 yizygl)y 7'—:1,2""’]‘3,
= i

(11) Tn‘(r;"1 Ko ,...,rlal ) (01)
1 01" [oml 8:) 1™
= f{-————,i————o%g.f” | )} ...{—,—0%5_(,“’ | )} F(z]6;)dz.
Bartlett identities (Barndorff-Nielsen and Cox (1994)) hold

myz2)(6:) + mz)(6:) =0,
ms) (91) + 3m(21)(9i) -+ m(la)(ﬁi) =0,
m(q) (0;) + 4m(31)(9i) -+ 3m(22) (01) + 6m(212)(0i) + m(14) (91) =0,

(i) ps =mni/n(>0), Yi,p=L

Under the hypothesis H : §; = --- = 64, = 6 (say) all moments are expressed as mz)(f) =
m3), Ma1)(0) = m(a1), M(a1)(0) = may), ete.
By noting
Jj i - J—1 ns -
1:[1 l:[lf(xia | 6;) ,1_11 Ulf(wia | 65-1)
AjlG-1) = z; a;_ - /z;_oll_ni — = A2-j /A1 (1)

NI f@ia | 0)7  II TI f(zia | 6:)
i=la=1 i=la=1

we have

—2log Ajij—1) = 2log A1a...(j—1) — 2log Aga...;5.
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921
By use of the asymptotic expansion (2) in Hayakawa (1994) we have
1
(2.1) —2log Ajjj-1) = w§) + wl + w§ + o, (n) i=2,3,...,k
where
2 i1 2
, (Zm ) (Z ﬁy>
'LU(]) — ___yL + i=1 . i=1
0 y(z) J @ j—1 5 ’
? > by S ey
i=1 i=1
3
1 y( )y3 j-1 (Z\/E Z)
j 3
ng) — 3(2) 33 sz\/ﬁ;y() 5
( ) i=1 ( (2)>
szy
p 3
(Z\/p—z )
+ = }:pz\/'p"zy(3)—~—l—~—3,
=1 ’ ()
2 p;
=1
3 4
Lo L@ 1 y§ 'y
2 (2)y5 (2)y4
4 (w;") 2 (w;7)
4

LBrm) B (S (£0m)
B (B
i1 (JZI‘/ITz 1)4 i (Z\/ﬁl z)4

1 2 (4)
j=1 412 le 4
z:l =

(Z pzy(2)> (Z pzy(2)>

1

To find the moment generating function of these statistics we need to use the Edgeworth
type expansion of the joint density function of y;, yz@, ygg), y§4) , 1 =1,2,...,k, which

is stated as follows.

(2:2) =1 [1 + %Fl + %Fz] +o0 (;1;) ,

where

k

fo= H(Zﬂ'm(lz)(ﬂi))—l/Z eXp{ —Y; /2m(12) H6l“

i=1
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k k
1 1 1 W
_ -—m 0,, H ) — ——m 01, H ; d 7
6;\//7 as) (0:) Ha(v:) ;\/ﬁ (21) (02) H (ys) dg;
1.1 \
= 9 Z ;‘,‘{m(ﬁ) (6:) — mé) (9i)}d§i)

i=1

k
g 2 e (00 = i B mas 00} () )

- 2 —m(31> (6:) Ha (o) ds)) + Z —~m(21) (0:) Ha (i) d5))

=1

1 1
* o1 > —Amqn () = 3mie) (00} Ha ()
i=1 *

1 k

6

1
e (6:) misy (8;) Ha (i) dsy)

1 1
+ 75 Z —,m%la) (6:) He (y:)

(i) Hy (yj) 457 dSY

1#1
. = myan) (6;) mqsy (0;) Hy (y;) Hs (y;) dSy
6 = \/pm
)HB (yj)
1?6.7

8 = 6(" — m) (6:) /n“‘”/ %),
dl(T) 5(r)(y(l) ma (9)/n(l 2)/2)/5(y(l) ma) () /"gl_2)/2)

and 6(" is the r-th derivative of Dirac delta function §. H,.(y) is defined by

e3) L exp (-5 ) = (DB e (-4
’ dy" 2m(1z) " 2m(12) )

PROPOSITION. Under the hypothesis H, —2log Ajij—1), J = 2,3,...,k are mutu-
ally independent in the limit.

Proor. With help of law of large numbers y( ) converges to m(g) (6;) = —m2) (6;)
in the limit and yzl , | > 3 converges to zero in the limit, respectively. Thus we have
(2.4) u”z(()z) = plim {~2logAy1}

ni—00
i=1,,k

~ man( {i : (2‘/'7)2}
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(2.5) ng) = plim {-2log)j;i;—1)}
N 00
i=1,.k
2

L , 1 [ 2y (i
maz(0) |7 by ;ﬁ ' pi-1 ;ﬁ '

J
where p; = Z Pi-
i=1
Define PJ =/ p;\/ P;f,, IJ] = €J€; and Y= (y17y2’ ER 9yk),7 where vV ,0; = (V [ ERRE
3

19

VP 0,...,0) and e = (0,...,0,1,0,...,0). Then (2.4), (2.5) are expressed as

1 p .
. —_— O = [.. — P; - -
(2 6) maz) (0)?/ ij7 QJ IJJ G+ Pj L J=2,3, K
and y is k dimensional random vector with mean 0 and covariance matrix m;2 (9) Ix-
By noting
2.7) QiQ=6uQ; rankQ;=1

and by use of Craig theorem (e.g. Ogawa. (1949), and others) we have that —21log Aji¢;-1),
j=2,3,...,k are mutually independent and these have chi-square distribution with one
degree of freedom in the limit, respectively.

THEOREM. Under the hypothesis H, the joint moment generating function of
—2log Ajij-1), J = 2,3,...,k is expressed as '

k
(28) M(tz,...,tk) =F exp th(—210g/\]|(]_1)) }

=2
k
= ———— A — 1 1
jl;‘[2 (1 —2t;)1/2 {1+ n’ (1——2tj ) +°(n)}’
where
1 /ps- .
(2.9) Aj:aT(pg L,y P >
Pi \ Pj Pj—1
1 1
¢ = 3 gy (e ~mas ~2mem)}
1 1
ST (maz)? {m@ym@) — Sm@mas) — 8meanymas) } -

This implies that —2log Aji(j-1), § = 2,3, ..., k are mutually independent up to the order
1/n.

ProoF. The proof is given in Section 3.
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Note. If we set t = t3 = --- = t = ¢, then the moment generating function is
reduced to the one of —2log A for testing H against K. By noting p; = py and g = 1,

and

E1 (pia Pj A

ZT(_,+1+TT“> => —-1
=2 Pj Pj Pi-1 = Pj

the moment generating function is expressed as

(2.10) (1 —2f)~1/26k-D [1 + % (Zk: -g-i- - 1) (1%215 - 1) +o (%)} .

i=1
This is the one given by Hayakawa (1994).
Note. —2logAji(j-1), J =2,3,...,k are Bartlett correctable.

3. Proof of theorem

The joint moment generating function of ~2log \;|;-1), j = 2,3, ...,k is expressed
as

k k k
(3.1) M(ts,...,tg) = /exp thw((f) +thw§’) +thw§’)
=2 j=2 =2

1 1 1
1+ —F+—_F (2) 40,3 o, Sl
xfo[ +ﬁ 1+n 2}dydy dy*dy'"™ + o =)

where y) = (y{l),ygl), ... ,y,(cl))', 1=2,3,4.
The limit of the moment generation function is expressed as

k k
(3.2) / exp{ S t;5 § T] (0, may (6))dy
j=2

i=1

1
O | Grmam @) e"p{ 2 @7 y}dy’
where
k
(3:3) Q=3"Q+VAVE, VB = (VAL Fa- - VPR,
j=2

k
=0-2t;)"" i=23,...k |0/ =]]e:
j=2

This implies that y is dealt with as a normal random vector with mean zero and covari-
ance matrix m;2)(8)Q.
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We use following different expectation notations according to the order situations.

(34) |Q/V2E[g) = / g-exp Zt w b fodydy®dy®dy @,

n k . k .
Jj=2 j=2

(3.6) |Q|1/2£§)[g] = /g exp Zt w(]) + Zt w(J) + Zt w(J) fodydy® dy® dy™®.

Thus we have variance and covariance of y with respect to an operator E as follows.

37 EQ1]=

3.8)  El2/men] = wig = [ci—+cﬁ—+ oLk +1]
(3.8)  Elyi/muz]=wi =pm 2 fa Dap3 * Pr—1pr

(3.9) Ely?/mauz)] =wj; = p; [ijjjl boj L g PRy 1] ,

piPi T pibin Pr—1Pk
§=23,... .k
. 1 Pi+1 Pk
3.10) FEly:syi/men) =w; = -1[0((—7)4‘01 P + -t —+1],
( ) Elyjyi/maz) il =/ PiP i +1plpl+1 Pe—1Pk
1<j<I<k.

where ¢; = (1 —2t;)7%, j=2,3,...,k.
Hereafter we give several moments.
(I) The integration of the first term in (2.2).

k
/exp Zt wm + Zt,wm + Zt W {9 Fodydy D dy® dy®

/exp {Zt w(J) n(0,m(12)(6)I)

2

k k
. 1
4 _Zt o Z a4 thw§a> dy+o (E) ,
where
@_1 my [S 1(S ’
~ (2 7
w = — ~ 75 PilYi 3
1 3 (m(12))3 puary \/sz /’% (;\/_— z)
r . 3 . 3
3 7 j=1 :
a9 L me Y1 1
=vi— 3 | =" 72 piyi | + = pivi | |
3 (maz))® | v (;ﬁ ) P ;\/_ z
3<j<k,

and
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4
_(2) _ (m@)? 1 my
w2 4m125+ 2 (man)t pz ,0 Z\/EZ ’
( ) ( ) i=1 2 =1
&) _{ 1 (m)” M) }
2 4 (m(lz)) 12 (m(lz))4
4

4
[EaE) g )] oo

J

Thus by setting u; =c¢; — 1, j = 2,3,...,k, we have

(3.11) E Zt i [ = o,

k
. . 3 (ms) )2 1 my 1 (pi=1 Pj
312) E t;o$) ={-—- + = Wi (Pizt gy Pi
(3.12) Z 8 (muz))® = 8 (mg2))? ; Thi \ pj Pi-1
k 1 A - .
+> uj— (&i+1+#> +2 3w,
j=2 p] Pj Pj-1 2<p<q<k Pq—1Pq
k 2 k ~
: . m(s)) i1 p
3.13) B Lo | = ) (a oo J)
319 {,Z " (m@z))? 24;2 pi \ ps pi-1
RS pi ), 1 p
2 J- J r
+ u-7(5 —145- )—I—— UpUgqUp %
24 ; TP\ P pi-1) 4 2<p§T<k PR pr_1pr
3 2 2(pq Pq— 1)
+3 Z upqu Z UplUg—=
8 2<p<q<k Pe— 1pq 2<p<q<;rc Pq—1Pq

1
+Z Z UpUg—

2<p<q<k Pq—1Pq ]
(IT) The integration of the second term in (2.2).

To have terms of order 1/n it is enough only to use up to the second term in the
exponent,

/exp Zt w(J) + Zt w(J) } foFldydy(Q)dy(3)dy(4).

k k
-1 exp tawd + 3 twd® b A0 L Hy (o) dydy®@ dy® dy®
J .7 6 \//T
j=2 i=1 *

3=2

1 -
:——\/-’;TL_-/eXp th ) n(O,m(lz) Zt ()
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xm(la)zk: ! Hg(yi)dy+o(-——l—>
6 & VA Vi)

(3.14) £ th *(’)m(‘3) Z H3(yz

i=1
_ M@masy : Pj—1 Pj
g J
Pt gy i)
(maa)® 1222 ! b ( Pi pi-1
1 k 1 ﬁ 1 p p -1 p
+— uz,—<7]—“—5+7ﬂ> U2 (“ +1+A’>
12 X_; i\ P pi-1 Z ' pj pi-1
1 Pr 3 2 Pq
+—= Z UpUqUpr + - Z UpUg s =
2 cpLatr<k Pr-1br 4, 2=, Pq—1Pq

1 2 \Pq q—1
+_2_Z q(PP)+Z

2<p<q<k Pq-1Pq 2<p<q<k p‘l 1p‘1
me21) )] &) : Y )
(I1-2) / exp E tjwg + E tywy”’ ¢ fo E 2 dSD dydy D dy® dy®.
m( %) j=2 i=1 VPi

Noting the integration with respect to dg?,

o'h
(3.15) / Ry fody) dy® = (-1 =) !
;™) yD=mgy=—mz2,
we have
(3.16) — 2N f; f: gV | = 1 mgMr 52'”: 21 (ﬁj—l oy P )
. - " Ui\~ — Py
maz) |4 V/Pi Vn (maz)? 470 \ pj Pi-1
k k ~
1 . 1 . .
4= U ( p.? 1_7+11?p¢>+§zuj,\_(p] 1+1+Ap.7 )
4457 Pj pj—1 26 P\ P Pi—1
3 Pr 9 2 Pq
+= Z UpUqUy 7 + — Z UpUg 7=
2 piatrsk Pr-1pr 4, L T Pa-1Pg
3 (Pg — Pg—1 Pq 1
By uale) 0y, k| o (L)
2 opTash Pa-1Pq 2 pcpeask Pa-1Pq n

(IIT) The terms of order 1/n in (2.2) are obtained after some lengthy algebra as
follows.
~ 11 k 1 (2
B17) |53 {men - (me)’} ds

i=1
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k ~
- (m(zz) - (m(2))2) §2u2 1 (Pj—l 14 Apj )

Lo~ 1 (B i\, 3 p
+—= u~7<3 +1+ = J>+— Uplg
2 JX:; ]pJ p.? pJ 1 42<pz<;1<k P qpq—lpq

(3.18) A [——(m(212) —m(g)m(lz))z p H2(yz)d(1)]
i=1 7

k ~
_ (m(212) -—m(z)m(lz)) §2u2 1 (pj_l 14 - Pi )

(m(12))2 4j=2 p.7 p.7 p] 1
p] 1 > q
Uj +14 - + U
2 Z ‘7 ( Pj-1 2<1;q<k i qpq 19q
) may |15~ o1 (Pim1 Pj
3.19) —m —Hy(g)ds) | = —A | =) uwl— (—"——1+A——’—,—>
(3.19) ~mz)E [Z 1 () ] G | 2 g A s B
b= ZJ‘ (PJ 1+1+ ) Z Uplig—— +0(L>,
j Pj-1 2<peg<k Pq— lpq Vn
(3 20) 1 { 3( )2}E» i 1 Ha(y:) ma4) — 3(m(12))2
. — dmey — 3(my12 —_— )] =
24 14) (12) sy 4\Yi (m(12))2
k
1 21 (ﬁj—l b ) ! Pq
X | — Uu; 14 = + - UpUg
8 ]z___; Jp] 4] Pi-1 4 2<p<zq<k i qpq——lpq

k
1 N 1
(3.21) ~2—(m(21))2E Z EHZ(yi)dg?]

k j=1 3 A3
(m(gl))Q 15 3 1 2 pj pj_1
= ——w= | E Us; =5 E P - +
(maz)® | 8 =2 ’ ? a=1 * p?—l Pj
k j-1 3 2
Z 3 P 9 pj 3 p
+ ’U,2 p2>{_A3J + = J +_A3JA2}
j=2 ’ {(a=1 N 2 j—lpa 2Pa 1/’1 2 5105

4 )
8 pipt 8 p}  8pips

k. j-1 2
Pj 1 0 1 pji 5 pj
+) u Pal i m s mt s st rm s
.Z ]KZ “){p?_lp? 25318} 2 P10 203105

15 p3_ . 39 72 1+gﬁ§_1]
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3051 _1pi-py 3P Bi1 31 1pia
20,7 2 B2 2p3 0 pF 20 2 pib

45 Pp Pq Pr
4= UpUgUpy T + e ——
4 Z Pq Tpp——lpp ( P Zpa> Pq lpq pr lpr

2<p<g<r<k a=1
45 p
+§ Z u2uq Py ,\2 { (Z pa) pp + pp 1} .
2<p<q<k pp—l D Pq lpq
45 2 Po
+— u,,u -1 + P ) PO
8 2Sp§<:q$k "P““’ ( Z ) Parfi
17 pp 3 pp
+ UplU + p = + —5
2sz<;1<k P q{ 4 pp-1P3 ( - Z a) Pq—1Pq 4p12;—1pp

1
x (03— D0 | 2 + 3L +3 2~
(p” Z *) Pq- mq Po-1Pp Po-1 Z * pi_ 2
3 4 Pq 3_ Pq |
p Pa | +Ppr ¢ — 15
4pp— [ { P (Z a) P2 1} Pq—1Pq 4 Pg-1Pq
-1
+i pz: 2 Pp(GPp Pp—l) val(ﬁpp Po) Pq
2 “ Po—1P} P Pa-1hq | |’

a=1

1
(3.22) ~—m(21)m(1s)E lz p H4(yz)d(1)]

=1

m k j—1 3 ~3
_ My21)M(13) u3- Z 2 P] n &:1_
(m(lz) o’ pJ a=1 & p-7_ Pi

.'I
k -1 : R R A
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15 —1 2
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2<p<q<k p— pp Pg—1Pq

1
+ + P =
Pp—lpp( - Z a) (Pg 1 Pq)
+5— + o
/’p— ( - Z a) Pa-1Pq
+3~ 2 Por— Zpa 5 -3t ’
pp—l Pq— lpq Pg—10q

1 U LA |
(3.23) ﬁ(m(ls)) E {Z EHG(%')]
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_ (man)? i 31 Jz_i 0\ P2 +ﬁ?_1
T (man)? |45 R o )BT s

a=1
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2Sp<q<,’.sk pq lpq pT‘ lp'f‘
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UpUg 55 P +P 1 py
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1 - 1
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5 2 |,
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8 p5 107 ( Zp") Pq- mq}
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1 pg _2pp/3p—1 Pq +Ppﬁp—1 Pq
2 Aq_lﬁq ﬁg ﬁq—lpq ﬁp /33-1/34

1
wo(F)
Combining (3.12), (3.17), (3.18), (3.19) and (3.20) for the fourth moments and using
Bartlett identities, we have

(ﬁj—l 1y P ) (ma2) — 2maz) —mas))

i\ Pj Pi—1 (m@2))?

1 1
(3.27) 3 Z(cj - 1)5

Similary combining the third moments, we have after some lengthy algebra

’

P; ) (m(gymr) — Smzymas) — 8meymas))

k
Ly 1 (i
328 ———— (C'—'l)'r‘ (——J +1+ ”
( ) 24 = 7 Pj ; (mgi2))3

Pj Pi—1
which gives joint moment generating function (2.8).
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Abstract. In this paper, we consider the percentile test procedures for multivariate
and right censored data. Because of the involvement of censoring distribution into
the distribution of the proposed test statistic, we study the asymptotic normality
using the estimated covariance matrix. Finally, we derive the asymptotic relative
efficiency and illustrate our procedures with an example.

Key words and phrases: Asymptotic relative efficiency, noncentrality parameter,
Pitman translation parameter, two sample problem.

1. Introduction

Median tests as nonparametric procedures for two sample problem are well known
and useful for detecting location translations. Basically there are two kinds of median
tests in the univariate case. One is the control median test (e.g. Mathisen (1943)) and the
other, the combined median test (e.g. Mood (1950)). The distinction between two kinds
of median tests is as follows: the control median test uses a median from control sample
whereas the combined median test uses a median from combined sample. From now on,
we call simply median test for the combined median test. Two kinds of median tests have
been modified or extended to the various directions. As a particular modification of the
control median test, Gastwirth (1968) proposed the first median test in order to improve
its performance as a two-sided test, which permits the experimenter to reach a decision
early. Therefore the first median test would be useful in case of the life trial situation.
Also Gastwirth discussed the application of the curtailed sampling to the first median
test for the early decision in the same paper. For more detailed discussion of the curtailed
sampling, we may refer to Alling (1963). Hettmansperger (1973) further considered a
conservative test based on the first median test statistic to cover the Behrens-Fisher
problem. Chatterjee and Sen (1964), Hettmansperger (1984) and Babu and Rao (1988)
considered extensions of the median test to multivariate data. Recently, Park and Desu
(1999) extended the control median test to multivariate data. Brookmeyer and Crowley
(1982) modified the median test for right censored data. Gastwirth and Wang (1988)
proposed the control median test for right censored data. Also Park and Desu (1998)
considered an extension of the control median test to multivariate and right censored
data. Therefore one may expect the advent of a median test procedure for multivariate
and right censored data. However, for the case of right censoring data, it is not rare
that one may not obtain a sample median or medians because of heavy censoring for
larger observations or early termination of experiments. In this case, it is impossible to
compare treatment effects with sample medians. In order to circumvent this stalemate,
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we consider a percentile test which uses the corresponding quantlie points instead of
using medians. Also Gastwirth and Wang (1988) proposed a control percentile test for
the consideration of the efficiency in the univariate case. In the next section, we propose
a multivariate percentile test for right censored data. We deal with the large sample
approximation in Section 3. Finally, we consider the asymptotic relative efficiency and
show an example for illustration of our proposed test procedure.

2. Multivariate percentile test for right censored data

Let X and Y be two independent g¢-variate random vectors with continuous dis-
tribution functions F' and G, respectively. It is of our concern to test the hypothesis
Hy : F = G. Since the location translation alternatives are of interest, we assume that
in general, v
(2.1) G(z) = F(z — A) for all z € R? and for some A € RY.

In view of this assumption, the null hypothesis can be restated as Hy : A = 0. Usually, a
random sample X;,...,X,, of X and an independent random sample Y, ...,Y,, of Y are
observed and tests are performed based on these samples. However in some experiments,
one can only observe {(V;,6;),s = 1,...,n} and {(W;,7;),j = 1,...,m}, where V;; =
min(Xg;, Cri), Oki = I(Vii = Xii), Wiy = min(Ys;, Dj) and 75 = I(We; = Yay)
fori=1,...,n,j=1,...,mand k = 1,...,¢q. I(-) is the indicator function. It is
assumed that C,...,C, is a censoring random sample with distribution function Hp
and Ds,...,D,, is an independent censoring random sample with distribution function
Hg. Furthermore, it is assumed that X’s, Y’s, C’s, and D’s are all independent each
other. For each k, k£ = 1,...,q, we denote F; and Gy as the marginal distribution
functions of F and G and Fy, and Glm, as the corresponding Kaplan-Meier estimates.
Also for each k, let Hyny = (n/N)Fy, 4 (m/N)Gy and Hyy = (n/N)Fyn + (m/N)Gim
with N = m +n. Finally, for each p with 0 < p < 1 and for each k, let &£ (p) be a p-th
quantile of Hxy and f,’; ~(p), the corresponding p-th sample quantile of Hyy. Then for
any consistent estimate £y (p) of the limiting null covariance matrix £o(p) of

VI(F &N D), - - Fan (€ (0))),

assuming that the inverse f);,l (p) of Y (p) exists, we propose a g-variate p-th percentile
test statistic My as follows:

Fa@n®) -p\ . [(Fun®) -

MN=7’L . ot N
Fqn(&éN(p)) —D

~ (0) R ;
Fqn(E;N(p)) —-P

where T means the transpose of a matrix or a vector. We will identify $o(p) and $n(p)
later. Then an a-level test of Hy : F = G against Hy : F' # G is to

“reject Hy if My > C(a).

The constant C(a) is chosen so that the size of the test is a. Since the exact null
distribution of My depends on F, G, Hr and H¢ in a complicated manner, it is natural
to consider the large sample approximation.
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3. Limiting distribution of My

For the derivation of the limiting null distribution of My, we introduce some more
notations about distribution and subdistribution functions. In the following, for each &,
Hp, and Hg, denote the marginal distribution functions for Hr and Hg, respectively.
Foreach k, k=1,...,q, let

Fy(u) = P(Vii < u, 65 = 1), t(u) = P(Wij < u,7k; _ 1),
Sk, (u) = P(Vii > u) = (1 — F(u))(1 — Hr, (u)),
Sa, (u) = P(Wi; > u) = (1 = Gi(v))(1 — Hg, (u)).

Also foreach 1 < k#1< g, let

Fyi(u,v) = P(Vis < u, Vi < 0,68 = 6 = 1),
Gry(u,v) = PWi; < u,Wy; < v, 15 = 115 = 1), '

Sk (u,v) = P(Vi; > u,Vi; >v),  Sgu(u,v) = P(Wg; > u, Wi >v),

Np, (u,v) = P(Vis S u, Vi 20,60 =1), Mg, (u,v) = P(Vi; > u,Vi; < v,8; = 1),

Ng,, (u’ ’U) = P(ij <u, vvlj 2 U, Tej = 1)7
Me,, (u7 U) = P(ij 2> U, VVIJ' Lv,my = 1).

Also we need the following assumptions:
AsSUMPTION 1. As N — oo, n/m — A € (0, 00).

AssuMPTION 2. For each k, &k = 1,...,q, F; and G, are continuous and twice
differentiable at &, (p) with fi(€£x(p)) > 0 and gi(&fx(p)) > O for each N, where fj
and gy are the respective densities.

Now we state Bahadur representation of the Kaplan-Meier estimate, which is due
to Lo and Singh (1985).

LEMMA 1. For each k, k=1,...,q and for each 0 < p < 1, with Assumptions 1
and 2, we have with probability one (w.p.1), as N — oo,

Frn(€in(0) — Fu(&in(0))
= % > B(Viis 81ir €5 (0) + O(N~3/4(log N)*/*)  and
i=1
Crm(&in (0) — Gr(&in () = -7% > (Wi g, £ () + O(N =/ 4(log N)*/4),
=

where

B(Vii, 61y t) = (1 — Fk(t)){lmgiié’f)z 1) /0 I(Vi Sz%u();l)p’,;(u)} ind

YWig, 7> 1) = (1= Gi(£) {”Wkgjk pr=l) [0 123@:@)} .
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LEMMA 2. Under Assumption 2, for each k, k=1,...,q and for each 0 < p < 1,
w.p.l, as N — o0,

éits) - i) = ) o5/ 0g )

where hgn is the density of Hyy .

Proor. First of all, we note that

. n . . m 4
(3.1) Hin(t) = Hon () = w7 [Fen(t) = Fi(6)] + 5 [Grm (1) = G(t)]-
Then from Lemma, 3 in Lo and Singh (1985), we see that w.p.1, as N — o0,
(3:2) sup |Hpy(p) ~ Hiw(p)| = O(N ™/ (log N)V/2).
O0<p<l

Thus from Taylor’s expansion around &; (p) and (3.2), we have w.p.1, as N — o0,
(3.3) Hen (&) — Hen(&in () = hin (Ein () (En (0) — i (0)) + O(N ' log N).
Also from Cheng (1984) with (3.1), we have w.p.1, as N — oo,

(3.4) HinEin(0) — Hin (Ein (@) — Hon (Exn(0)) + Hen 6in ()
= O(N~3*(log N)*/4).

Since Hin (€fn () = p+ O(N1), we have w.p.1 from (3.4) with (3.3), we obtain the
result.

THEOREM 1. Under Assumption 2, for each k, k=1,...,q and for each 0 < p <
1, w.p.l, as N — o0,

Fkn(é;;N (p)) — Fu(€in (D))

{1 A ®) 1V s e
= e § 2 BV i)

m

LGB L S (Wi o (2) + O(N /410 M)/,

hin(En(P) N

PROOF.

Fen(in (D) — Filéin(p))
= {Fkn(éitN(P)) — Fu(&in (D)) — Frn(&in(D)) + Fr(&in (p))}
+HEFe (€ (D) — Fr(&in (@)} + {Frn (Ein (9) — Fr(éin (0))}
=A+B+C, say.
Then by Cheng (1984), w.p.1, as N — oo,

A =O(N"3/4(log N)3/%).
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From Taylor’s expansion and Lemmas 1 and 2, w.p.1, as N — oo,
fe(en(p) 1 =
B = ) B(Viis Oris + Whjs Thi»
hin (G (P)) N Z ki Okis Sy (P)) ;7( ki» Tki» Env (D))
+O(N~3/4(log N)3/4).

Therefore this theorem is followed by applying Lemma 1 to C.

‘We note that under Hy

E(B(Vii, 6ki» Een (D)) = E(Y(Whyj, hjs kv ()) = 0
v (®) JF* (u)

) ex _ ___ * 2 an
V8V s ) = (- Bu(ein@)? [ G ond
&in{(p) *(u
V(10¥i5, 75, i 00) = 1 = Guin ) [ SR,

Also we obtain by applying Fubini’s theorem that

(3.5) Cov(B(Vii, Okir Een (), B(Vis, 61, Ein (D))
= (1~ Fe(&n ()1 - Fi(§in ()

/EZN(P) /Em(l’) d2Fy,(u,v) /ﬁkN(P) /€¢N(P) S, (u, v)dF (u)dFf (v)
Sp. ()8R (v) St (W) SE, (v)

) /g;'N(p) /skn(p) / d?Np,, (u,8) | dF}(v)
0 0 v SFk (u) S%'z(’u)

) /Oe:m) { /::N(p) /:o Mﬁ;"zg’m} ilsgf((Z;]

= (1 - Fi(&n () (1 = FuEin (0))(C1(F) + Co(F) — Cs(F) — C4(F)), say

and
(3.6) Cov(Y(Wkj, Tj» e (P)), Y(Wig, 5, €l (D))

= (1 - G1(&n))(1 = Ga2(én))

/ﬁin(p) /&m(p) dzgkl(u v) /Ekzv(p) /Euv(p) 56y, (1, 0)dG3(w)dG; (v)
SG'k (u)SGz ('l)) Sék (U)Sg}; (v)

B /ﬁl*N (p) /‘ka(P) / d2Nle (U,, 3) dGi (’U)
0 0 v Sa,(u) SZ‘, (v)

_ /“N"’) /‘ffN"’> ® Mgy (s,) | dCi(w)
0 ol TS0 [ W

= (1 = G (&in ()1 = GilEn (9))) (C1(G) + C2(G) — C3(G) ~ Cu(G)),  say.

We now return to the subject of the limiting null distribution of M. From Theo-
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rem 1, for each k, k = 1,...,q, the limiting distributions of v/n(Fn(€fx(p)) — p) and

- Zﬂ(Vk“(sk“ka(p Zﬂ(vkzaakza gkN(p ) + Z’Y(WkJ)TkjigkN(p))

j=1

are the same under Ho. Therefore from the central limit theorem with Assumptions 1
and 2, under Hy, we see that for each k, k=1, ...,q, vi(Fen (€l N(p)) p) converges in
distribution to a normal random variable With mean 0 and variance o2 (p),

_ (1—p)? [E® dFrw)  Mi-p)? (5P dG}(u)
7lp) = (1+ /\)2/ S%I:(u) + (1+ )2 / %,

where £} (p) = limny o0 £y (p)- Also from (3.5) and (3.6), we see that the limiting null
covariance between

Vi(Een(Ein®) —p)  and  va(Fin(En () - p)

o) = §TDCF) + Call) ~ Co(F) = Cu(F)
PP (6,6) + o(6) - G3(0) - u(@))

1+ )2

with substitution of &} (p) for &y (p) in (3.5) and (3.6). Then by applying Cramér-Wold
device (cf. Billingsley (1986)), we obtain the following result.

THEOREM 2. For any consistent estimate $x5(p) of Zo(p), under Hy, My con-
verges in distribution to a x? random variable with q degrees of freedom, where

o3 (p)-- 01(1(17)
Zo(p) =
alq(p) -02(p)

We note that under Hy, the first and the second parts of each variance and covariance
term are the same except for . Therefore we could have reduced the expression of Xo(p)
to a more concise form. However since we have to obtain 3y (p) from two samples, we do
not reduce them in this manner. A consistent estimate 3y (p) for Zo(p) can be obtained
by substituting empirical ones for the quantities, which were introduced at the beginning
of this section. Then one can show the consistency of )N (p) by proving the consistency
of each component of ZN (p). For more detailed discussion, we may refer to Park and
Desu (1998).

4. Asymptotic relative efficiency and an example

In this section, we study the asymptotic relative efficiency (ARE). For this matter,
we only consider comparing two types of the median tests. Let Ly be the control median
test statistic which was proposed by Park and Desu (1998). We begin this section by
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stating the definition of ARE for the multivariate version (cf. Puri and Sen (1985)). For
two sequences of test statistics, say {@y} and {@Q%}, having asymptotically (under a
sequence {H;n} of alternative hypotheses) noncentral chi-square distributions with ¢
degrees of freedom and noncentrality parameters ¥ and ¥*, respectively, the ARE of
{Qn} relative to {Qy} is defined by

ARE@Q.Q) = g

Noncentrality parameters of {My} and {Ly} under alternatives depend on the
censoring distributions in a complicated manner. Therefore we will assume, in this
section, that censoring distributions for two samples are equal. We consider ARE under
the Pitman translation alternatives: for each k, k = 1,..., ¢ and for each N,

HlNZAN = (AlN,...,AqN)T = (ﬁl/fﬁ,...,Bq/\/JV)T,

where for each k, 0 is some nonzero constant. Before we derive the ARE(L, M), we
review a useful relation between the noncentrality parameter and the efficacies of com-
ponents of test statistics under the Pitman translation alternatives. For this purpose,
let {Zny = (Zin,...,Z4n)T} be a sequence of g-variate test statistics such that for
each N, Zy is arbitrarily distributed with mean vector, gy (Ax) and covariance matrix,
YN(AN), where py(An) = E(Zy | An) and En(AN) = V(Zn | An). We assume that
Z converges in distribution to Z, where Z is normally distributed with mean vector,
p and covariance matrix, £. Then we note that (Zy — puxn)TEN (Zn — py) converges
in distribution to a chi-square random variable with ¢ degrees of freedom. With those
notations and assumptions, we state the following result.

LEMMA 3. For the sequence {Zn} of test statistics, suppose that
(1) for each k and for each N, & purn(A) = pfn(A) is assumed to ezist and be
continuous in some neighborhood of 0 with p(0) # 0,
(2) lUmy—oo N (Dkn)/ 1N (0) =1 and
(3) limN_.,oo EN(AN) =3.
Then under the Pitman translation alternatives, the limiting distribution of Z NEX,I (An)
Z n is a noncentral chi-square distribution with q degrees of freedom and the noncentrality
parameter
bre1 . b1e1
=] ... Pty ..,
Opep Opep

where for each k, ex is the efficacy of the k-th component, Zyy of the test statistic, Z
and P is the limiting correlation matriz.

PROOF. See Park and Desu (1999).

We note that the conditions (1) and (2) in Lemma 3 with the condition that the
sequence {Zy} of test statistics has a limiting distribution, are exactly the same as
those for the derivation of the efficacy of {Zn} in Theorem 5.2.7 of Randles and Wolfe
(1979) except the existence of the efficacy itself. Assumption 1 in Section 3 implies
that &5y — &, where & is a median of Hy = (1/(1 + A))Frx + (A/(1 + A))Gg. Since
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the noncentrality parameter contains the expressions of the limiting distribution of the
sequence of test statistics, without loss of generality, we use £ instead of £, in the
sequel to obtain the noncentrality parameter. Also we use Ay instead of Agyn for each
N when there is no confusion. We note that under Hy and the Pitman translation
alternatives, £; becomes also a median of F and Gy.

Therefore in view of Lemma 3, it is enough to derive the efficacies of ¢ components
and limiting correlation matrix for the noncentrality parameter. Foreach k, k=1,...,¢q
and 1 < k #1 < q, define

N (Br) = V(G (& + Ag) — 1/2),
n x 2 51: Ak * (a4
oin(Br) = {1 - M} (1 - Felé +Ak))2/0 o dFg(u)

I_V. hkN(E;: + Ak) ‘5’}2% (u)
mn Fol€r + Ag) }2 ~ . ) §rtDk dG:(u)
Nz {hkN(g;; Tay ) G+ A) /0 5%, (u)

and
n fi(§f + Ax n fil§f + A
ou(®) = {1- G SR H - Tt s o
Cov{B(Vii, bks, & + Ak), B(Vii, 615, &5 + A1)}
L S + D) fil6] + A0
N2 hin (& + Ar)hun (& + A1)
COV{’}’(ij,Tkj,E;: + Ak), ’Y(le,’rlj,ff + Al)}.

Then under the Pitman translation alternatives,
A ~ T A~ N
Fin(&f) = 1/2 = pin(Ay) Fin (1) — 1/2 — pan(An)
n = (A) .

o N o ..
Fqn(&;) - 1/2 - /LqN(Aq) Fqn(&?) - 1/2 - #qN(Aq)

converges in distribution to a chi-square random variable with g degrees of freedom.
Therefore we can use the Lemma 3 to derive the noncentrality parameter by checking
the three conditions. Assumption 2 in Section 3 guarantees the condition (1). Thus we

have
d A d A
B0 _ per+ o) amd BEEO) g,
dAy dAr  |a=o0
With the fact that Ay — 0 as N — 00, we see that
dp,kN(Ak)/dAk

hm = 1,
N—oo dupn(Ax)/dBx|A=0

which confirms the condition (2).

In order to check the condition (3), we take Xy as X. ¥ was defined in Section 3.
Since hxny = (n/N)fr + (m/N)gy with the fact that £ is a common median of Fj and
G}, under the Pitman translation alternatives, we have

im Se(€f + Ax)
N—oo hn (& + Ak)
dim Fy(&h+ Ak) = lim Gi(&L + Axk) = Gr(éR) = 1/2.

=1, and
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Thus with the assumption that censoring distributions for the control and the treatment
are equal, we can conclude with Assumption 1 that for each k,

lim o2y (Ax) = 0}
N—-oo
Also with the same arguments used for 02, we can show that
lim ogn(A) = ok
N—oo0

Therefore we have shown that all the three conditions in Lemma 3 are satisfied. This
means that, in view of Lemma 3, it is enough to consider the efficacies of two components
with limiting null correlation matrix to obtain the noncentrality parameter for the median
test M.

The conditions and method for the derivation of the efficacy for tests statistics
are well summarized in Randles and Wolfe (1979). Already we have noticed that all the
conditions in Theorem 5.2.7 in Randles and Wolfe are satisfied except the existence of the
efficacy. Therefore it is enough to check that condition. Then some simple considerations
for the efficacy e; of the k-th component of My leads as follows:

ey [ A [ dezw) )
€k = 49k\Sk Y A Sék(u) .

Also straightforward calculations produce the limiting null correlation matrix P with

Pl:l:"':quzl and

* * -1 / 2

k dGy, (u) & dG, (u)
S&, () Jo 5%, (u)

In the following, we denote &, as a median of Gy, for each k. Then we note that under

Hj and Pitman translation alternatives, & = &f. In order to derive the noncentrality

parameter for the control median tests statistics {Ly} (cf. Park and Desu (1998)), define
foreachk, k=1,...,qand 1<k #I[<g,

pen (Ak) = Vn(Gr(ék + Ax) — 1/2),

RAYS * (01
Ten(Ak) = (1 - Fi(ée + Ak))2/0 ng: ((U))

o f2(& + Ag) [EFA% dGE(u)

£
P =P = (C1(G) + Ca(G) — C3(G) — Cu(G)) {/0

+ %(1 — G(& + Ar))

g2 (& + Ak) Jo Sg, (v)
and
0N (A) = Cov{B(Vii, Ors, &k + Ar), B(Viis 613, & + A1)}
n fille + Bi) il + D)
m gk (& + Ar)gi(& + Ar)
Cov{y(Wij, Tkj> & + Ax), YWij, 115, & + A }.
Thus

(ﬁln(éfnﬁ(lﬂ)) —1/2 = pin(B1) ) ’ (Fln(éffi(l/?)) -1/2- #IN(Al))
n .. ER,I(A) .

Fn(G1(1/2)) — 1/2 — (D) Fin(C2(1/2)) — 1/2 — pran(Bo)
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converges in distribution to a chi-square random variable with ¢ degrees of freedom.
Therefore by the same arguments used for {My}, we can show that the conditions
(1), (2) and (3) in Lemma 3, are all satisfied. Then by checking all the conditions of
Theorem 5.4.7 in Randles and Wolfe (1979), we obtain the same efficacies as those of
{Ln}. Also it is easy to show that the limiting correlation matrix for Ly is the same
as that of M. Therefore we conclude that with the fact that £ = & under Pitman
translation alternatives, ARE(L, M) = 1.

Finally we illustrate our procedure with the NCGS data considered by Wei and
Lachin (1984). The patients are allocated into two groups, i.e. control (placebo) and
treatment (high dose) groups with sample sizes n = 48 and m = 65. The Kaplan-Meier
estimate for the second component of high dose group (X12) shows that a sample median
cannot be obtained because of the heavy censoring of higher observations. Therefore one
can not apply any median test procedure. Since the lower (or first) sample quartile point
(25%) can be achieved for all components, we consider applying the 25 percentile test to
this example. The necessary statistics for obtaining the 25 percentile test statistic are
as follows: '

€5 113(:25) =249.23  and  £5113(.25) = 640.26
Fy 48(249.23) — 0.25 = 0.44 — 0.25 = 0.19
F 48(640.26) — 0.25 = 0.27 — 0.25 = 0.02

s _ (0:2842884 01733308 and 3=l - (82975131 — 7.839439
113 = 1 0.1733398 0.1834684 113 = \ _7.839439 12.857183 /-

Then we obtain that Mj13 = 11.765, whose p-value is less than 0.005 from the chi-square
distribution with 2 degrees of freedom. Therefore we may conclude that the two groups
of patients are significantly different for the disease progression.
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Abstract. In the common trigonometric regression model we investigate the D-
optimal design problem, where the design space is a partial circle. 1t is demonstrated
that the structure of the optimal design depends only on the length of the design space
and that the support points (and weights) are analytic funetions of this parameter.
By means of a Taylor expansion we provide a recursive algorithm such that the D-
optimal designs for Fourier regression models on a partial circle can be determined in
all cases. In the linear and quadratic case the D-optimal design can be determined
explicitly.

Key words and phrases: Trigonometric regression, D-optimality, implicit function
theorem, orthogonal polynomial.

1. Introduction

Trigonometric regession models of the form

(1.1) y=P0+ Zﬂgj_l sin(jt) + Zﬂzj cos(jt) +¢e, te€led

Jj=1 =1

—00 < ¢ < d < oo; are widely used to describe periodic phenomena (see e.g. Mardia
(1972), Graybill (1976) or Kitsos et al. (1988)) and the problem of designing experi-
ments for Fourier regression models has been discussed by several authors (see e.g. Hoel
(1965), Karlin and Studden (1966), p. 347, Fedorov (1972), p. 94, Hill (1978), Lau and
Studden (1985), Riccomagno et al. (1997)). Most authors concentrate on the design
space (—m, ], but Hill (1978) and Kitsos et al. (1988) point out that in many applica-
tions it is impossible to take observations on the full circle [—=,7]. We refer to Kitsos
et al. (1988) for a concrete example, who investigated a design problem in rhythmome-
try involving circadian rhythm exhibited by peak expiratory flow, for which the design
region has to be restricted to a partial cycle of the complete 24-hour period.

In the present paper, we address the question of designing experiments in trigono-
metric models, where the design space is not necessarily the full circle but an arbitrary
interval [c,d] C R. Recently, Dette and Melas (2003) considered optimal designs for
estimating individual coefficients in this model and gave a partial solution to this prob-
lem. In the present paper, we consider the D-optimality criterion, which is a reasonable

945
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criterion if efficient estimates of all parameters in the model are desired. It is demon-
strated in Section 2 that the structure of the D-optimal design depends only on the
length a = (c—d)/2 of the design space and that there only exist two types of D-optimal
designs (this result seems to be even unknown for the complete circle). Our main result
of Section 3 proves that the support points (and weights) of the D-optimal design are
analytic functions of the parameter ¢ and that an appropriately scaled version of the
D-optimal design converges weakly as a — 0 to a nondegenerate discrete distribution
on the interval [0, 1]. Following Melas (1978), these results are applied to obtain Taylor
expansions for the support points of the D-optimal design (considered as a function of
the parameter a = (d — ¢)/2), which allows a complete solution of the D-optimal design
problem in the trigonometric regression model (1.1) on the interval [c,d]. Finally, some
examples are given in Section 4, and in the linear and quadratic trigonometric regression
model on the interval [—a, a] D-optimal designs are determined explicitly.

2. Preliminary results for D-optimal designs in trigonometric regression models on a partial

circle

Consider the trigonometric regression model (1. 1) define 8 = (B0, B1,---,Pom)T as
the vector of parameters and
(2.1) f(t) = (1,sint, cost, ...,sin(mt), cos(mt))T = (fo(t), ..., fom(t))T

as the vector of regression functions. An approximate design is a probability measure £
on the design space [c, d] with finite support (see e.g. Kiefer (1974)). The support points
of the design £ give the locations, where observations are taken, while the weights give the
corresponding proportions of total observations to be taken at these points. Due to the
2rm-periodicity of the regression functions we restrict ourselves without loss of generality
to design spaces with length d — ¢ < 27. For uncorrelated observations (obtained from
an approximate design) the covariance matrix of the least squares estimator for the
parameter § is approximately proportional to the matrix

22) M(E) = / FOFT(O)dE(t) € REmFIxem1,

which is called Fisher information matrix in the design literature. An optimal design
minimizes (or maximizes) an appropriate convex (or concave) function of the information
matrix and there are numerous criteria proposed in the literature, which can be used for
the discrimination between competing designs (see e.g. Fedorov (1972), Silvey (1980) or
Pukelsheim (1993)).

In this paper, we are interested in D-optimal designs for the trigonometric regression
model (1.1) on the interval [c, d], which maximize the determinant det M (§) of the Fisher
information matrix in the space of all approximate designs on the interval |c, d|. Note that
a D-optimal design minimizes the (approximate) volume of the ellipsoid of concentration
for the vector 8 of the unknown parameters in the model (1.1) (see e.g. Fedorov (1972))
and that optimal designs in the trigonometric regression model (1.1) for the full circle
[c,d] = [—m, ] have been determined by numerous authors (see e.g. Karlin and Studden
(1966), Fedorov (1972), Lau and Studden (1985), Pukelsheim (1993) or Dette and Haller
(1998) among many others).

Qur first preliminary result demonstrates that for the solution of the D-optimal
design problem on a partial circle it is sufficient to consider only symmetric design
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spaces. To be precise, let

(to ... ta
(2:3) = (wo wn)
denote a design on the interval [e, d] with different support points {3 < --- < ¢, and
positive weights wg,...,w, adding to one and define its affine transformation onto the
symmetric interval [—a, a] by

NS
(2.4) &n = (wo wn>

where a = (d—c¢)/2 and &; =t; — (d+¢)/2,i=1,...,n.

LEMMA 2.1. Let M(n) and M(&,) denote the information matrices in the trigono-
metric regression model (1.1) of the designs 1 and &, defined by (2.3) and (2.4), respec-
tively, then

(2.5) det M (&) = det M(n).
ProoF. If the number of support points satisfies n+ 1 < 2m + 1, then both sides

of the equation (2.5) vanish and the proof is trivial. Next consider the case n = 2m, for
which we have (see e.g. Karlin and Studden (1966))

2m
(26) det M(£y) = (det F(&))? H Wi,
i=0
where the matrix F(¢,) € RZ7+1x2m+l j5 defined by
~ j=0,...,.2m
(2.7) F(&) = (L&) am -
Now it is easy to see that the vector f(¢) defined by (2.1) satisfies for any a € R
flt+a) = Pf(t)
where P is a (2m + 1) x (2m + 1) diagonal block matrix defined by
1
Qla
.| e

Q(ma)

and Q(B) is a 2 x 2 rotation matrix given by

_( cos(B) sin(B)
QB) = (— sin(B) cos(ﬁ)) )
Obviously, we have det P =1 and obtain from (2.6) and (2.7)

det M(£,) = det M(n),
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which proves the assertion of the lemma in the case n = 2m. Finally, in the remaining
case n > 2m, the assertion follows from the Cauchy Binet formula and the arguments
given for the case n = 2m. [

From Lemma 2.1 it is clear that it is sufficient to determine the D-optimal designs

for symmetric intervals
le,d] =[-a,a], O<a<mw

and we will restrict ourselves to this case throughout this paper. For fixed a € (0, 7] let &
denote a D-optimal design for the trigonometric regression model (1.1) on the interval
[~a,a]. Note that in general the D-optimal design for the trigonometric regression
model is not necessarily unique (see e.g. Fedorov (1972), who considered the case a =
w). However, it is known that the optimal information matrix M(£}) is unique and
nonsingular (see e.g. Pukelsheim (1993), p. 151). Moreover, due to the equivalence
theorem for D-optimality (see Kiefer (1974)) the design £, satisfies

(2.8) d(t,&,) <0 forall te€[-aq,q],
with equality at the support points, where
(2.9) dt,&) = FFM~1(E)f() - (2m+1)

denotes the directional derivative of the function £ — logdet M (&) (see Silvey (1980),
p- 20). Let Ef,l) denote the set of all designs of the form

b .. - to ti .. tm
(210) £=¢(a)= 1 1 1 1 1
2m+1 7 2m+1 2m+1 2m+1 7 2m+1
where 0 =ty < t] < --- < t;, = a and define
(2.11) E® = {¢ | supp(€) C [—a,a], d(t,€) = 0 for all t € [—a,a]}

as the set of all designs on the interval [—q, a] with vanishing directional derivative for
all t € [—a, a], then we obtain the following auxiliary result.

LEMMA 2.2. Let & denote a D-optimal design on the interval [—a,al, then
£ e = UEP.

PROOF. Due to the equivalence theorem (2.8) any design £ € =P is D-optimal
for trigonometric regression model (1.1) on the interval [—a, a]. Now assume that

_ Uy ... Up
£= (w1 wn>
is D-optimal for the trigonometric regression on the interval [—a, a], where the support
points satisfy —a < w3 < - < up, < a. €& Ef,z), then d(t,£) # 0, but due the
equivalence theorem we have
d(u,£) <0 Yu € [~a,q]
(2.12) d(u;,€) =0 Vi=1,...,n
d

@d(u,fﬂu:ui =0 Vi=2,...,n—1.
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If £ denotes the reflection of £ at the origin, then it is easy to see that det M(£) = det M 3]
and consequently ¢ is also D-optimal. Moreover, the concavity of the D-criterion im-
plies that the symmetric design £* = (£ + £)/2 is also D-optimal in the trigonometric
regression (1.1) on the interval [—a,a]. Note that there exists a permutation matrix
P ¢ R?m+1x2m+1 guch that

wo - (5 3)

where

M@ = [ FOFF (D) € Rrroms

(2.14) M) = [ 1) 5T (6)dE(t) € RHIRm

—a

My©) = [ (O @d(e) e R

and f.(t) = (1,cos(t),...,cos(mt))T, fs(t) = (sin(t),...,sin(mt))T. Because the infor-
mation matrix of the D-optimal design is unique (see Pukelsheim (1993)), we obtain
(note that £* is symmetric)

M2(§) = Mg(é) = M2(§*) =0€ Rm+1><m,
which implies for the directional derivative in (2.9)

(2.15)  g(t) = d(t,€) = FTOMTHE) () + £ T ()M 1) f>(t) — (2m+ 1)

2m
= Z 7; cos(it)
i=0
for appropriate constants 7o, - . .,Y2m (note that the last representation follows by well

known trigonometric formulas). From & ¢ =) we obtain that the polynomial g(t) is not

identically zero and the equivalence theorem shows that every suppport point is a zero of
the function g. Moreover, the functions {1, cost, . ..,cos(2mt)} form a Chebyshev system
on the interval [0,a] and a Chebyshev system on the interval [—a,0]. Consequently, g
has at most 2m + 1 roots in the interval [0, a] and at most 2m + 1 zeros in the interval
[~a,0] (including counting of multiplicities) (see Karlin and Studden (1966)). Consider
the case [0, a] and substitute ¢ = arccos z, then it follows, observing the definition of the
Chebyshev polynomials of the first kind

(2.16) T;(z) = cos(i arccos z),

(see Rivlin (1974)) that g(arccosz) is a nonpositive polynomial of degree 2m on the
interval [cosa, 1]. Consequently, if g(arccosz) has exactly 2m roots (including counting
of multiplicities), the boundary points cosa and 1 have to be roots of g(arccos ). Note
that a similar argument applies to the interval [—a,0] and therefore the nonpositive
function ¢ defined in (2.15) has at most 4m roots (including counting of multiplicities)
in the interval [—a, a]. Because the number of regression functions is 2m +1, it therefore

follows from (2.12) that any D-optimal design 1 ¢ 22 has exactly 2m + 1 support
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points in the interval [—a, a] including the boundary points —a, a. A standard argument
shows that all weights of the D-optimal design have to be equal, i.e. w; = 1/(2m + 1),
j=1,...,2m+1. f £ & E =0 then ¢ # £ and consequently £&* = (£+£)/2 is a D-optimal
design for the trigonometric regression model (1.1) on interval [—a,a] with more than

2m+ 1 support points, which is impossible, by the above discussion. This shows £ € = ”(1)
and proves Lemma 2.2. [1

3. Analytic properties of D-optimal designs in trigonometric regression models on a partial
circle

Lemma, 2.2 motivates the consideration of designs of the form (2.10) and our next
lemma gives an explicit representation for the determinant of the information matrix of
this type of design.

LEMMA 3.1. Let{ denote a design of the form (2.10) and z; = cost;, i =0,...,m,
then
92m? 72 2 4
(3.1) det M(§) = (—2*‘—:1)27“ H(l H-z)? [ (@—=z)*

- 1<i<j<m
Proor. For any design £ of the form (2.10) we have

det M (&) = det M; (€) det M3(£),

where the matrices M, (), M3(£) are defined by (2.14) and the matrix My(¢) is the
null-matrix, which follows form the discussion in Section 2. Define the design ¢ by

To I ‘o Tm
e = 1 2 2 ’
2m+1 2m+1 =~ 2m+1
then it is straightforward to see, that
(52) 10 = ([ nem@me)
1,j=0
m—1
(33) My(€) = (/ (1 - 2)Ui(a)V5 @) o))
i,§=0

where T;(x) is the Chebyshev polynomial of the first kind defined in (2.16) and

sin((Z + 1) arccos z)
sin(arccos x)

(3.4) Ui(z) =

is the Chebyshev polynomial of the second kind (see Rivlin (1974)). Because Ti(x) is a
polynomial of degree ¢ with leading coefficient 2'!, it follows that M (£) is essentially
a Vandermonde determinant, i.e.

det My (§) = 2™ 2meuwhm2

(2m+ 1

2m + 1)m+1 H I @-=)7

1<i<j<m
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(note that zo = 1). Note that the support point zo of n¢ has a vanishing contribution
to the matrix M3(£) and that the leading coefficient of U;(z) is 2°. Therefore we have
by similar arguments

2

det Ma(€) = (2%7:—17,; [[a-a [ G&-=)

1<i<ji<m

and a combination of these formulas yields (3.1), which proves the assertion of
Lemma 3.1. O

We are now studying the function

(35) ¢(z,0) = [I0-2D-2)* T] (25-=)*

1<i<j<m

as a function of the length a of the design space. To this end we note that z,, = cos(a)
and introduce the set

(36) T={(m1,. . ,Tm-1)T |0<T< -+ < Typy < 1}

(37) X ={(z1,...,Tm-1)T | zi =cos(ar),i=1,...,m —1,(71,...,Tm-1)" €T}
Note that any design £ E,(ll) of the form (2.10) is uniquely determined by a point
7 = (11,...,7m-1)F € T or its corresponding function = = (z1,...,Zm-1)7 € X by
the transformation t; = ar; = arccosz;, i = 1,...,m — 1 (note that t; = 0,t,, = a)
and by Lemma 3.1 the determinant of M(£) is proportional to the function ¢ given in
(3.5). By standard arguments it can now be verified that for fixed a € (0, ] the function
$ in (3.5) is a strictly concave function of z = (z1,...,Tm—1)T € X. Therefore (for
fixed a) the function ¢(z,a) has a unique maximum in X, which will be denoted by
z*(a) (because of its dependence on the length of the design space). The function ¢ is
obviously differentiable and z*(a) can be obtained as the unique solution of the equations

9 m—1
(38) ‘a—w¢($, a) =0eR .
Moreover, for any z € X the matrix of the second partial derivatives
82 m-—1
. G = —
(39) @@(m%mmhﬂ

is positive definite and in particular the matrix
(3.10) J(a) = G(z*(a),a)

is positive definite for all a € (0,7]. It therefore follows from the implicit function
theorem (see Gunning and Rossi (1965)) that the function

a1y {072

defined as the solution of the equation (3.8) is real analytic. In other words: for any
point ag € (0, 7] there exists a neighbourhood Uj of ag, such that the function z*|y, can



952 HOLGER DETTE ET AL.

be expanded in a convergent Taylor series. Observing the symmetry ¢(z,a) = ¢(z, —a),
it therefore follows that the function

[-m,7\{0} = T
arccos 27 (|al) arccos :c;‘n_l(|al))T

(3.12) T
a—»r*(a)-——( yeees

a a

is also real analytic. The following result shows that the function 7* can be extended to
a real analytic function on the full circle [—m,7].

LEMMA 3.2. The function 7* defined by (3.12) can be extended to a real analytic
function on the interval [—m,x], where

7(0) = lim 7(a) = (7, ..., 1)

T <+ < T 1 are the positive roots of the polynomial

1

PP (20 — 1) = - PP, () = i Ds

Py (x)

and Pi(a’ﬁ ) (x) denotes the i-th Jacobi polynomial orthogonal with respect to the measure
(1—z)*(1+z)?dz and Pom(z) is the 2m-th Legendre polynomial orthogonal with respect
to the Lebesgue measure on the interval [—1,1]:

ProoOF. The assertion of Lemma 3.2 follows if we prove the existence of lim,_.q
7*(a) and the claimed form of its components. Let z, = (cos(ami),...,cos(a7m-1))7,
then the expansions sint = t + o(t), cost = 1 — t2/2 + o(t?) show that for a — 0

2m(2m+1) m
$ara)= o 108 T (2= D4+ ofa)

i=1  1<i<j<m

(Tm = 1) and consequently, the limit lim, ,o 7*(a) exists and can be obtained by maxi-
mizing the function

(3.13) o) =l a-2* I -7)°

1<i<j<m—1

over the set T' defined in (3.6). Note that standard arguments show the strict concavity
of the function ¢ and consequently, the point 7* = (77, ...,75_;)T where the maximum
is obtained is unique. Taking partial derivatives of the logarithm of ¢ yields the system

3 4r; ml 4r; .
(3.14) T > 0, i=1,...,m—1
Tl 73 — Tz ]
J=Lj#i
and substituting 72 = y; € (0,1) gives
3 m~1
3.15 1=1, m—1
( ) yz Yi — Yi — ’

J=1,3#i
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Table 1. Values of the components 75 (0), . .., 7, _; (0) of the vector 7*(0) defined in Lernma 3.2
and the polynomial solution of the differential equation (3.16) for various values of m.

m_ Y(y) and 7;(0)
2 YPly)=y-3/7
71(0) = v 3/7 =~ 0.6546
3 P(y) =y*—10/11y +5/33
7(0) == 0.4688, 73 (0) ~ 0.8302
4 Ply) =y~ T/5y% +7/18y — 7/143
7$(0) = 0.3631, 73 (0) = 0.6772, 75 (0) = 0.8998
5  (y) = y* ~ 36/19y3 + 378/323y2 — 84/323y + 63/4199
77 (0) & 0.2958, 75 (0) & 0.5652, 75 (0) = 0.7845, 75 (0) ~ 0.9340

Similar arguments as given in Karlin and Studden (1966) or Fedorov (1972) show that
m—1

the polynomial ¥(y) = [[."] (y — v;) satisfies the differential equation

(3.16)  y(Q—yv" @)+ (3/2-7/2y)¥ (y) + (m — 1)(m + 3/2)%(y) = 0.

It is well known (see e.g. Szegb (1975), Section 4.21) that the unique polynomial solution
of this differential equation is given by the polynomial

PUD (1~ 29)

and the assertion of the lemma now follows from transformation y = 72 and the equation
pleP )(—x) = (—1)"P,(f_’[i) (x) (see Szegd (1975), formula (4.1.3)). The alternative rep-
resentations of the polynomial P,(nl’_ll/ 2) (2z% — 1) are a consequence of P9 (z) = Py(z)
and Theorem 4.1 in Szegd (1975). O

Table 1 shows the polynomial P,(nl’_ll/ 2) (2y — 1) (normalized such that the leading
coefficient is 1) and the corresponding values 7;* = ,/y; for lower degrees m = 2,3,4,5.
The following result shows that for small designs space, i.e. a < (1 — 1/(2m + 1)), the
solution of the optimal design problem can be obtained by a Taylor expansion of the
function 7* in (3.12) at the point a = 0, where the i-th component 7;*(0) of the vector

7*(0) is the ¢-th positive root of the polynomial P,(nl’_ll/ 2)(2z2 —1).

THEOREM 3.1. Consider the trigonometric regression model (1.1) with design
space [—a, a], where 0 < a < 7.
(i) If a > w(1 — 1/(2m + 1)), then the design & with equal masses at the 2m + 1
points
(3.17) oot = 1T™ L omat1
' R
is a D-optimal design.
(ii) Ifa<7w(1—1/(2m + 1)), the D-optimal design is unique and of the form
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—a —ar},_1(a) -+ —ar{(a) 0 ati(a)
(3.18) & = 1 1 1 1 1
2m +1 2m+1 2m+1 2m+1 2m+1
ar),_4(a) a
1 1

2m+1 2m+1

where T* s a real analytic function on the interval [—m, 7] defined by (3.12) and
Lemma 3.2.

PrOOF. Recall the definition of the set E,(f) in (2.11) and assume that the design
& € E,(lz) is D-optimal for the trigonometric regression model (1.1) on the interval
[~a, a]. Because d(t,£*) = 0 for all t € [—a, a] it follows from the Chebyshev property of
the functions {1,sint,cost,...,sinmt, cosmt} that the directional derivative d(t,£*) also
vanishes on the full circle [, 7] (see Karlin and Studden (1966), p. 20). Consequently,
&* is also D-optimal for the trigonometric regression on the interval [—, 7], which implies
(by the uniqueness of the D-optimal information matrix) M (£*) = diag(1,1/2,...,1/2),
det M(£*) = 272™. On the other hand we have

lim max det M (£) = 0,
a—0 £

and consequently for sufficiently small a the D-optimal design cannot be an element of
the set ES?’. From Lemma 2.2 it follows that the D-optimal design must belong to the

set Ef,l) and the discussion in the first part of this section shows that for sufficiently
small a the D-optimal design is unique and of the form (3.18). Now let £} denote the
design defined by (3.18) and

(3.19) a* = sup{a € (0,n] | & is D-optimal}
' = sup{a € (0,7] | det M(£*) < 272™}

(note that the second equality follows by continuity and Lemma 2.2). It is well known (see
Fedorov (1972) or Pukelsheim (1993)) that the uniform distribution &, at the 2m + 1
points defined by (3.17) is D-optimal for the trigonometric regression model on the
interval [-m,7]. If & = w(1 — 1/(2m + 1)) denotes the largest support point of this
design, then it follows that £ = &,. Consequently, the design £} specified in part (i)
of Theorem 3.1 is also D-optimal for the trigonometric regression on the interval [—a, |
and the D-optimality of £ on [—m, w| shows

& e =N nEY,
which implies for the critical bound in (3.18) the inequality a* < a. Now for any design
of the form '
tm ... —t to t i tm
(320) &£=¢(a)= 1 1 1 1 1
2m+1 7 2m+1 2m+1 2m+1 = 2m+1
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with 0 < t; < --- < t, < 7 it follows from Lemma 3.1 that

des (@) = C[Ja-sDt -2 [ (252" = hiae)

i=1 1<i<j<m

with C = 22" /(2m + 1)>™* 4 = (z1,...,2m)T, 7; = cost; (i = 1,...,m). The
discussion at the beginning of this section shows that h is strictly concave. Additionally,
we have for the design &5, h(wg:) = 272™ and for any other design £ of the form (3.20)
h(z¢) < 272%™ (because otherwise a convex combination of £ and &, would have an
information matrix with a determinant larger than 2~2™, which is impossible). Conse-
quently, because £} is of the form (3.20) it follows for the quantity a* defined by (3.19)
that a* = a.

If a > &, the discussion of this proof shows that the design specified by part (i)
of Theorem 3.1 is D-optimal. If a < &, the definition (3.19) shows that the D-optimal
design is in the set =% and Lemmas 3.1 and 3.2 (with their corresponding proofs) imply
that the D-optimal design for the trigonometric regression on the interval {—a,a] is of
the form (3.18), which completes the proof of the theorem. []

Note that Theorem 3.1 provides a complete solution of the D-optimal design prob-
lem. In the case (i) with @ > 7(1—1/(2m+1)) a D-optimal design for the trigonometric
regression model (1.1) on the interval [—a,a] is explicitly given by the uniform dis-
tribution at the support points specified by (3.17), but is not necessarily unique. If
a < w(1—1/(2m+ 1)) the D-optimal design is unique and specified by (3.18), where the
vector 7*(a) = (1§ (a),...,7,_1(a))T can be obtained by means of a Taylor expansion
at the point a = 0

00
(3.21) OIS
i=0

and the vector 7, = 77(0) is given in Lemma 3.2. It is shown in Dette et al. (2002)
that the coefficients in the above expansion can be calculated by the recursive relations

1 . d s+1
=~ O (5) 972 @, 0leco
$=0,1,2,..., where
d .
T:s> (a’) = ZT(*i)az
i=0

denotes the Taylor polynomial of degree s € {0,1,2,...},

J(0) = (#?—;Eqb(wﬂ a))

8 _
g(r,a) = Ed)(m«,,a) e R™1,

m~—1
and

1.J=1|r=1x(0)

Note that in general an exact determination of the radius of convergence for the Taylor
expansion (3.21) seems to be intractable. In general several re- expansions could be
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needed to obtain the D-optimal design for any a € (0,7(1 —1/(2m +1))). However, our
numerical calculations in the following section indicate that only one expansion at the
point a = 0 is required to obtain the D-optimal design for the trigonometric regression
model (1.1) on the interval [—a,a] for any a € (0,7(1 — 1/(2m + 1))).

Remark 3.1. As pointed out by a referee it might be of interest to obtain similar
results for multidimensional models. Unfortunately, it seems to be difficult to obtain
such results, because in the multidimensional case the system of regression functions
does not satisfy any Chebyshev properties. For interesting work on optimal designs in
multidimensional models on the complete circle (—m,w] we refer to Riccomagno et al.
(1997) and Dette (1998).

4. Examples

Ezample 4.1. Our first example considers the linear trigonometric regression model
(m = 1) on the interval [—a,a], for which the solution is rather obvious. If a > 27/3,
the design

2 2T

22 g Z££
¢ = 3 3
‘ 111
3 3 3

is D-optimal, while for a < 27/3 the D-optimal design for the linear trigonometric
regression model on the interval [—a, a] is given by

/—a 0 a
L=11 11
3 3 3

This follows directly from Theorem 3.1. For A-and E-optimal designs in this model see
Wu (2002).

Ezample 4.2. Inthe quadratic regression model the situation is more complicated.
If a > 47 /5, then part (i) of Theorem 3.1 shows that the design

A7 2w 0 2 4r

5 5 =~ 5 5
11 1 1 1

5 5 5 5 5

is D-optimal. If a < 47/5, the D-optimal design can be obtained by means of a Taylor
expansion as indicated in the second part of Theorem 3.1. However, in this particular
case an explicit solution is possible by a careful inspection of the arguments given in
Section 3. Part (ii) of Theorem 3.1 shows that the D-optimal design in the quadratic
trigonometric regression model is in the set Egl), whenever a < 47 /5 and consequently
only one support point t; = t}(a) has to be determined. This can be done by a direct

differentiation of the function ¢(z,a) in (3.5). Note that m = 2, zo = cosa and therefore
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#(z,a) is a function of only one variable, say x; € (—1,1). Elementary calculus yields
that the derivative of ¢ has zeros at the points x; = cosa, z2 =1 and

1
73,4 = g[2cos(a) — 15 V/33 + 12cos(a) + 4 cos(a)?].

It is easy to see that only one of these two points yields to a solution in the interval
[cosa, 1] and consequently the D-optimal design for the quadratic trigonometric regres-
sion model on the interval [—a, a] with 0 < a < 4x/5 is given by

—a —ti(a) 0 ti(a) a
L=11 1 1

11
5 5 5 5 5

where

1{a) = arccos (%[2 cos(a) — 1+ /33 + 12 cos(a) + 4cos(a)2]> .

Ezxample 4.3. In the general case m > 3 the second part of Theorem 3.1 has to be
applied if a < (1 — 1/(2m + 1)) (note that in the remaining case a D-optimal design
is explicitly given in part (i) of Theorem 3.1). From Table 1 we obtain the values of
75(0), i = 1,...,m — 1 (provided m < 5) and the nontrivial support points 7;*(a) for
0 <a<7(l—1/(2m+ 1)) can now be calculated by means of a Taylor expansion as
indicated at the end of Section 3. Table 2 shows the values of the first coefficients in the
expansion

o0
(4.1) @)=Yy (%)l i=1,...,m—1
=0

for m = 2,3,4,5. It can easily be shown that 7;*(a) is an even function of the parameter a
and consequently the odd coefficients vanish and only the even coefficients are displayed.

Table 2. Coefficients in the expansion (4.1). The D-optimal design in the trigonometric
regression model (1.1) on the interval [—a,a] with 0 < @ < w(1 — 1/(2m + 1)) has equal masses

at the points —a, —tm—1,...,—t1, 0, ¢1,...,tm—1, a, where t; = ar(a), i=1,...,m — 1.
% 0 2 4 6 8 10
m=2 7f @ 65465 —.21977 -—-.07747 .04852 06118 -.02116
m=3 T{(i) 46885 —.19145 —.00875 .02584 —.00184 -.00283

Ty @ .83022 —.13502 —.10286 —.05465 —.00161 .03946

m=4 Tf @ 36312 —.15556 00820 01117 —.00368 —.00011
Ty @ 67719 —.18093 ~.07349 .00094 .02393 01100
T3 &) 89976 —.08456 —.07603 —.06025 —.03806 —.01256

m=5 77 @) 29576  —.12851 .01204 .00501 —.00238 .00036
T 0 .56524 —.18316 —.03971 01585 .01178 —.00245
T3 ) .78448 —.14366 —.08805 —.03360 .00483 .01980
T @) 93400 —.05677 —.05431 —.04874 —.03965 —.02762




958 HOLGER DETTE ET AL.

m=2 m=3
3| 3
P ianaaiantis ] 50%°
0‘.
El e 2 ' o*
3 4 e
¥ o R |
+ o o i
s
e S
e 0 s*”
1 " 4+ 1 0 +*
o A4 et e eibaasacases |
- et ﬁgg"w‘ qasrtt
3% s
23 s
Of Ao SR | ¢ E R L X ) .
4
‘u‘:q, . b, o
a4, 3 s,
4, 4. 509 i,
', " hg. 290 ST
* g, “ °°oo“,, e
bl 000 44,
*a, Miasasastastsd Qg 4.
4, N
. Soog *0ns
e " rreas,
o, STVOUIUIN
2 *ey, 2 %o,
.
4y, 5,
4, %,
%,
%%0000000¢
=3 B
o8 1 ] H 25 3 o5 + ey % 55 %

Fig. 1. The support points of the D-optimal design in the trigonometric regression model (1.1)
on the interval [—a,a] as a function of the parameter a for various degrees m. The D-optimal
design has equal masses at these points.

Consider as a concrete example the case m = 3. If a > 6x/7 a D-optimal design
for the cubic trigonometric regression model on the interval [—a, a] is given by part (i)
of Theorem 3.1, i.e.

6 4r 2 2r 4n 67
N 0 = — -
ba= 1 1 1 1 1 1 1
7 7 7 7T 7T 7T 7

If 0 < a < 67/7 the D-optimal design can be calculated from the expansion (4.1) and
Table 2. For example if a = 1 we obtain that the D-optimal design for the cubic
trigonometric regression model on the interval [—1,1] is given by

1 —08154 —04494 0 04494 08154 1
L=11 1 11 11

1
7 7 7 7 7 7 7
Figure 1 shows the support points of D-optimal designs as a function of the length a
of the design space for m = 2,3,4,5. The support points have been determined by a
Taylor expansion as indicated in Section 3 and the D-optimal design puts equal masses
at these points.
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