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Abstract. For a family of non-regular distributions with a location parameter in-
cluding the uniform and truncated distributions, the stochastic expansion of the
Bayes estimator is given and the asymptotic lower bound for the Bayes risk is ob-
tained and shown to be sharp. Some examples are also given.
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1. Introduction

In the non-regular case, the Cramér-Rao type inequality was discussed by Vincze
(1979), Khatri (1980), Méri (1983) and others (see also Akahira and Takeuchi (1995)).
For a family of uniform distributions on [# — (1/2),8 + (1/2)], the information inequality
for the Bayes risk of any estimator of § under the quadratic loss and the uniform prior
distribution on an interval [—7, 7] is exactly given and shown to have the sharp bound
by Ohyauchi and Akahira (2000, 2001), where 7 > 1/2. Akahira and Takeuchi (2001)
also show that for any 7 > 0 the Bayes risk of any estimator in the interval of 6 values
of length 27 and centered at 6 can not be smaller than that of the mid-range. And the
lower bound for the limit inferior of the Bayes risk of any estimator of § as 7 — o0 is
attained by the mid-range, which involves the result for unbiased estimators of § by Méri
(1983). For a family of symmetrically truncated normal distributions with a location
parameter, the Bayes estimator with respect to the quadratic loss and the uniform prior
distribution on the interval [—7,7] is obtained and its stochastic expansion is given up
to the order o,(n™!) as the size n of sample tends to infinity, and also the attainment
of the lower bound is asymptotically discussed by Ohyauchi (2002) and Ohyauchi and
Akahira (2001).

In this paper, for a family of non-regular distributions with a location parameter
6 including the uniform and truncated ones, in a similar way to Akahira (1988) the
stochastic expansion of the Bayes estimator is given up to the order op(n7 1), and the
information inequality for the Bayes risk of any estimator of 6 is asymptotically obtained.

2. Information inequalities for the Bayes risk

Suppose that X1, Xa,...,Xn,... is a sequence of independent and identically dis-
tributed random variables with a density p(z — 8) w.r.t. a o-finite measure y, where 6 is
a real-valued parameter. We also assume the following conditions (A1) to (A3).
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(A1) p(z) > 0 for a < z < b; p(z) = 0 otherwise, where a and b are constants with
a < b.
(A2) p is twice continuously differentiable in the open interval (a,b), and

lim p(z) = lim p(z)=:¢>0,

z—a+0 z—b—0
lim p'(z)=— U "(z) =: h < 0.
Jim p(z) =~ lim p'(z) = h <

(A3) 0< I = — [° L182C)p () duu(z) < oo.

Let ¢ := max;<i<n X; — b and 9= min;<i<n X; — @, and L(u) be a loss function on
R! which is nonnegative-valued, three times continuously differentiable and monotone
increasing in |u|. Now, we consider a uniform distribution = on an interval [—7, 7] as
a prior distribution of . Then the Bayes estimator w.r.t. L and 7 is the estimator 6
minimizing

B n
/A L(6—n) Hp(xi —n)dn

for a.a. (1,... ,%n), where A := max{—7,8}, B := min{r,0}. And the Bayes risk of an
estimator € of 4 is defined by

r,(0) = 51; _T Eo[L(6 — 6)]df.

Let I(z) := log p(z) for a < z < b, (&) (z) := (d'/dz?)I(z) (i = 1,2), and
Z4(60) = —— izm(xi _0),  Ze(0) = — Zn:z@)(xi _0)+ val
v i=1 v i=1
for A < 6 < B. Then the Bayes estimator of 8 is obtained as a solution of the equation
B . n
(2.1) /A LM ) [[ (i — n)dn =0,
i=1

where L) (u) := (8/8u)L(u). Let t := /n(6—0) and u = \/n(n—96). Since v/n(A—0) =
max{y/n(—7 — 0),/n(8 — 6)} and /n(B — 0) = min{\/n(r — 0),/n(f — 0)}, it follows
that, for —7 <8 < 1, v/n(A — 0) = \/n(d — 0) and /n(B — 0) = y/n(6 — ). From (2.1)

we have
Vn(9-6) 1 n 1
O e gL —du =
(2.2) /\/ﬁ(g—o) L (\/ﬁ(t u)) {exp{i=1 logp (m, 0 \/E)H \/ﬁdu 0

hence, in order to obtain the Bayes estimator, it is enough to get a solution of ¢ of the
equation (2.2). We also assume that L(1)(0) = 0 and put U := n(§—6) and V := n(8—0).
Then we have the following (see also Akahira (1988)).

THEOREM 1. Under the conditions (Al) to (A3), the Bayes estimator 8p of 0
w.r.t. the loss function L and the prior uniform distribution = on [—7, 7| has the stochastic
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eTpansion
n(fp — 0) = %(U+V) 12\/_21(0)(U V)?
I b 1
—EZ—(U+ VYU - V)2~ 24; U-V)2+o, (E) :
where —7 < 8 < T, b; := (d*/du’)L(0) (i = 2,3) and by # 0.

PROOF. Since L(l)(O) = 0, it follows that

(23) L@ (T(t - u)) f(t —w)L®(0) + i(t —u)?’L®(0) + o, (%)

b o 1
- Bwr e-wro ().
We also have

(2.4) exp {Zlogp (a:,- —-6- —%) }
=exp{zn:l(1'i Z‘l(l)(acz —6)+ Zl(z)(a: —0)
i=1

+o,(2)}

= ﬁp(wi —9) [1 - —Zl“’(w — )+ —Zl(2)(cc,- —9)
i=1

i=1

" 2
+% {;l(l)(azi - o)} +0, (%)]
= l—lp(:z:Z -0) [1 +uZ1(6) + 5= {22(9) VvnI(6)}
From (2.2) to (2.4) we obtain

u? 1
1 \/5(5—9){ by

_ _ bs — u)?
g PR E R >}

1
.{1+uZ1+ (z? I)}du+0 ( 5/2)
1 Vn(6-9)

VS me-e)

(25) 0=

{bg(t —u) + b Zyu(t — u) + %2(212 — Du?(t —u)

4\/_(Z1 D2(t — u)? }du+0 < 51/2)
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where Z; = Z;(#) and I = I(#). Let S := (U+V)/2and T := (U-V)/2for ~—7 <0 < 7.
From (2.5) we have

S t 1
0=26T|t— — 20y 71T { —8 — — (352 + T?
2 < \/—)-I- baZ1 {\/ﬁS 3n(38+ )}

by 2 2y _2_ 2 2
+—= ( I){ T(35% 4-T?) \/ﬁTS(S +T )}
+j3ﬁT {t2 — 7_~tS + —(3S2 + T2)} ?—t2Z1TS

1’3\t/_(z1 NTBS?+T%) + 0, (;}5) ,

which implies

1 b3 b3 t 1 2 2 2
1+ —27 -3 (12 — (72 —
bz\/ﬁt{ + \/_ 15 + 2b2\/_t b2 (1 221> S+ 5 (Z7 — I)(35* +T7)

= byS + \/_21(352+T2)+ (22 - 1)S(S? +T?)

2 2 1
(35 +T2) + 0y ( s

Hence we obtain
n(é—e) = /nt
1
— 2 2 R IR 2 2
= {S—l— 3\/_Zl(SS +T%) + 2n(Z1 NS(S*+1T%)

by 2 2
6b2n(35 +T )}

1 bs bs t
1= —=Z1S — gttt (1+ 5% ) S
{ \/ﬁ 1 2b2\/_ + bgn ( + 1>
—i(zl2 —-D(3S2+T?) + EZ%S2 b t2} + 0p (%)

4b2n
—S+———ZT2——~ST2 bs 124, (L
3/n 6bon PAn
I
_ 2 12
(U+V)+l2\/_ (U = V) ———24n(U+V)(U V)

~ 24byn U=V +op (n)
for —7 < @ < 7. Thus we complete the proof.

Henceforth, we assume that u is the Lebesgue measure. Letting Io := f: {'(x)}?/

p(z)dz, we have I = —2h + Iy. Let Iy > 0. Then we also obtain the following from
Theorem 1.

THEOREM 2. Under the conditions (Al) to (A3), for any fized T > 0 the informa-
tion inequality for the Bayes risk w.r.t. the quadratic loss L and the uniform prior m on
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[—7, 7] of any estimator 6= é(Xl,... , Xn) of 8 is given by

. A 1 1 51
(26) n_li)_ﬂ;o'n {nzr.,(O) — ‘2—6—2—} > —@( - 4h) — —0 = BQ(C)

PRrOOF. Letting L(u) = u2, we have from Theorem 1

(2.7) n(fg — 6) = (U +V)+ ——=2Z,(U - V)?

12f
—%(U VYU = V) 4o, (%)

for —7 < 8 < 7, which implies

(2.8) Bln*(65 — 6] = B[V + V)] +

VI
12\/‘

1
5 FlU + VPO -V 4o (1),

Iy
144n

(U - v)iz?)

Now, the second order asymptotic joint density of (U, V) is given by

(2.9)

" 1

c2e—c(u—v) [1 +~ { — 1+ 2c(u—v)
+ﬁ((u +v)? + (u—v)?) - f(“ —v)?

fov(u,v) =< 4 2
_E(u—v)}]+0(l) for v <0< u,
¢ n
o otherwise

(see Akahira (1991), p. 191). Letting Z(d) := Z1(0)/v/To, we have the second order
asymptotic conditional density given U =u and V = v as

h K 1
@10)  fale |00 =9~ 2 a0te) — Egn( =396 +0 ()
for —0o < z < o0, where ¢(2) = (1/4/27)e™? */2 and

b
- [t @)z

(see Akahira (1996), p. 358). Since, for nonnegative integer p and ¢

[e o]
cuPe” “du = — cvqe”’dv = (- ) ,
0 ct
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it follows from (2.9) that

2 6 6h 1
2 T e — i P ] —
E(U)_@ c2n+c4n+0<n>’

2 6 6h 1
-3k 8 e(l).

n  cin
1 3 2h 1
E(U")—“@'%Tn*zrﬁ*f’(a)’
hence
2 6 8h 1
. V2= 5 — o — 2.
(2.11) - E[U+V)] =5 c2n+c4n+0(n>_

From (2.9) and (2.10) we have
(2.12) CE[U-V)'Z®] = E[U-V)'E(Z® |U,V)]

=E[U-V)Y] +0(%)
-2 10(3)

(2.13) E[(U+V)U-V)*Z]
=E[U+V)(U-V)’E(Z|U,V)]

=E [(U+V)(U— v)? {—h—(:%;“/—) +0 (%>}} |

40h 1
=~amto(a)
(2.14) E[(U + V)(U - V)3 = E[U® — U2V — UV? + V3] = o(1).

From (2.8) and (2.11) to (2.14), we obtain

Bln* (05— 07] = “225 - —(3 ?—4h) — 65{31 +o(%>

811

for —7 < 8 < T, since I = —2h + Iy. Hence for any estimator 6 of 6 and any fixed 7 > 0

lim n{n r.(0) — 2c2}

- ?m { rr(0s) - 202}

> lim { (05 — 0) ]d9——1—}
—00 202

1 51

2 =

24( ¢ — 4h) —
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Thus we complete the proof.

Remark. In the second order asymptotic lower bound Ba(c)(< 0) in (2.6), the first
term represents the information on the endpoints a and b of the density p through (U, V)
and the second one means the information on the central part of the distribution with p
through Z;(8). The Bayes estimator 6p is seen to attain the lower bound B(c).

COROLLARY. Under the conditions (Al) and (A2), for any fizred T > 0 the infor-
mation inequality for the Bayes risk w.r.t. the quadratic loss L and the uniform prior =
on [—7,7| of any estimator 8 of & is given by

; A 1
(2.15) nl_l_%onzrf(ﬂ) > 52 = Bj(c).

The first order asymptotic lower bound By (c) is attained by the mid-range 6o = (9+8)/2.

The proof of the first half is straightforward from Theorem 2, and that of the latter
half is given since from (2.7)

n(bp — 6) = %(U + V) +0,(1) = -;-(éo —0)+0,(1)
and from (2.9)
Eln*(B5 — 0] = 3B [(U + V)] +0(1) = sz +o(0).

3. Examples

As the application of Theorem 2, we consider the uniform and truncated distribution
cases.

Ezample 1. 1If pis a density of the uniform distribution on the interval [—1/2,1/2],
then ¢ = 1, hence, from (2.15) we have B;(c) = 1/2 as the first order asymptotic lower
bound which coincides with that of Ohyauchi and Akahira (2000). In this case, the

mid-range b = (min; <i<n X; + maxi<i<n X;)/2 attains the lower bound By (c).
Ezample 2. H pis a symmetrically truncated normal density, i.e.

(2) = ke=="/2 for |z| < 1/2,
P = 0 otherwise,

where k is some constant, then ¢ = ke™1/8 h = —c¢/2 and Iy = 1 — ¢, hence, from (2.6)
we have

(3c+2 5(1-¢)

By(e) = 2c3 6ct

as the second order asymptotic lower bound which coincides with that of Ohyauchi (2002)
(see also Ohyauchi and Akahira (2001)). In this case, it is shown from (2.1) that the
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Bayes estimator 05 w.r.t. the quadratic loss and the uniform prior 7 on the interval
[—7, 7] is given by

éB(X):fABeexp{—g()‘(—9)2}dﬁ//jexp{—g()?—ef}do,

where A := maxf-T, X(ny—(1/2)} and B := min{7, X(3)+(1/2)} with X(3) := min;<;<n
X; and X(,,) := max<i<n X; and X = (1/n) "7, X;. Letting ¢ be the density of the
standard normal distribution, we have '

~ B — B —
05(X) = [ 08(/(0— X))as / | oo - xas,

which attains the above lower bound By(c) (see Ohyauchi (2002) and Ohyauchi and
Akahira (2001)).
In this case the maximum likelihood estimator (MLE) 6y, of 0 is given by
8 for X <4,
éML = y forfzﬁ,
X for<X <9,
where 8 = X(n) — (1/2) and 6 = X (1) + (1/2), which is asymptotically equivalent to
. 8 with probability 1/2 + o(1),
" 18 with probability 1/2 + o(1)
as n — oo (see Akahira and Takeuchi (1981), Ohyauchi and Akahira (2001) and Ohyauchi
(2001)). Since the asymptotic density of n(far — 0) is
_C —clt
Fors ) =57 (—00 <t <o00),
for any fixed T > 0 the Bayes risk of the MLE is given by
A 2 1
e 1i 2 — —
(3.1) Rup(c) = Jirrolon r+(OmL) = = Bi(c) = 22

From (3.1) it is seen that the MLE does not attain the first order asymptotic lower bound
By (c) and the Bayes risk of the MLE has four times as large magnitude as the bound
31 (C) .

Next we consider the maximum probability estimator (MPE) 8%, which is defined

as that value of d maximizing
d+(r/n)
/d [ — 6)de

—(r/n} ;5
for a fixed number r > 0 (Weiss and Wolfowitz (1974)). Then we have

%(04—5) for 8—-6<2r/n

g b = 0—(r/n) for X>8—(r/n 2r/n,
0+ (r/n) for X <@+ (r/n 2r/n,
X for -+ (r/n) <X <8~ (r/n)

), 8—-8>
), 6—8>
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(see Akahira and Takeuchi (1981)). Since the asymptotic density of n(d},p — 6) is given
by

ce—2¢ltl for |t| <,
fé;‘wp(t) = %ce_c(|t|+r) for |t| >,

it follows that for any fixed 7 >0

N 3 T 1
coY — Fm n2 — -2
Rprp(r;e) == nlgx;on r- (04 p) = (@ + E) e=2er 4 —> Bi(o).
It is noted that the MPE 67, , tends to the mid-range (8 + 6)/2 as 7 — oo and the MLE
éM 1. as 7 — 0 which corresponds to the fact

. 1
Jlim Rarp(r;c) = 5z = Bi(c),

3 . — 2 —_—
}%RMP(T, c) = 2= R (c).

Ezxzample 3. If pis a symmetrically truncated density of the form

(z) = ce=*  for |z| < 1,
ne)= 0 otherwise,

where ¢ is some positive constant, then h = 0 and
! 2 214 (1-2%)3
0<IO——~72c/ z“(1 — z) =) gz < oo,
o .

hence, from (2.6) we have

3 51
B =—— -
2(¢) 2¢2 6ct
as the second order asymptotic lower bound which is attained by the Bayes estimator
0p w.r.t. the quadratic loss and the uniform prior = on [—7,7].
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