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Abstract. A multiparameter version of Tukey’s (1965, Proc. Nat. Acad. Sci. US.A.,
53, 127-134) linear sensitivity measure, as a measure of informativeness in the joint
distribution of a given set of random variables, is proposed. The proposed sensitivity
measure, under some conditions, is a matrix which is non-negative definite, weakly
additive, monotone and convex. Its relation to Fisher information matrix and the
best linear unbiased estimator (BLUE) are investigated. The results are applied to
the location-scale model and it is observed that the dispersion matrix of the BLUE
of the vector location-scale parameter is the inverse of the sensitivity measure. A
similar property was established by Nagaraja (1994, Ann. Inst. Statist. Math., 46,
757-768) for the single parameter case when applied to the location and scale models.
Two illustrative examples are included.
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1. Introduction

Tukey (1965) proposed a linear sensitivity measure in a set of order statistics as
a measure of informativeness about a real parameter. Nagaraja (1994) discussed this
measure at length and investigated the merits and demerits in the light of the desirable
properties expected of an information measure as given by Ferentinos and Papaioannou
(1981); see also Gokhale and Kullback (1977).

It is well known that Fisher information measure is applicable only if the underlying
distribution belongs to a regular family. The concept is well connected with exact as well
as asymptotic theory of point estimation (Rao (1973) and Lehmann and Casella (1998)).
For an introduction to linear sensitivity measure and its implications in statistical theory
and practice, the reader is referred to Tukey (1965).

In this paper, we propose a multiparameter version of the linear sensitivity measure
and study some of its properties. Further, its relation to optimal simultaneous estimation
is obtained. The linear sensitivity measure, under some conditions, is a matrix which
is non-negative definite, weakly additive, monotone and convex. Its relation to Fisher
information contained in the distribution of a vector unbiased estimator and to the BLUE
of a vector parametric function are discussed. In the case of a two-parameter location-
scale model, it is observed that the dispersion matrix of the BLUE of the location-scale
parameter vector is the inverse of the sensitivity measure. This suggests that one can
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propose measures of efficiency for a vector estimator, in non-regular cases also, based
on the extended version of Tukey’s sensitivity measure. T'wo illustrative examples are

included.
The paper is organized as follows: Section 2 provides the notations and definitions

required in the sequel. Section 3 establishes weak additivity and monotonicity of the
proposed measure. The measure associated with a single observation is shown to be
convex in the matrix sense. Section 4 deals with the relation to Fisher information
matrix. The relation to BLUE is studied in Section 5. Section 6 deals with the BLUE
of the vector location-scale parameter. Finally, the last section provides two illustrative

examples.
2. Definitions and notations

Let Y = (Y1,...,Y;) be a random vector with distribution function Fy, where
0= (0,...,6,). Let p = (u1,...,ur) and ¥ denote, respectively, the mean vector and
the positive definite dispersion matrix of Y. Assume that the partial derivatives

Opi

— i =1,2,...,m j=12,...,k
aeja ? 3 & T3 J L] )

di]‘ =
exist and let D = ((d;;)).
For k =1, Tukey (1965) proposed the following linear sensitivity measure
(2.1) S(Y;60) =d'v"1d,

where d is the column vector of derivatives of the means of Yi,...,Y, with respect to 6.
The following theorem provides a motivation for introducing the concept of linear
sensitivity measure in the multiparameter situation.

THEOREM 2.1. For any matriz A of order k x r,
D'S7'D - D'A'(ATA' ) PAD

is non-negative definite for all @. Further, the difference matriz is null if A = CD'S™!,
for some non-singular matriz C which may depend on 6.

Proor. The dispersion matrix of
D'y y
AY

D'S™1D DA
AD AZA

may be partitioned as

Assuming AYA’ to be non-singular, we have the non-negative definiteness of D'S 1D —
D'A'(ALA")"'AD. The nullity of the difference matrix is obvious, when A = CD'E~!.

DEFINITION 2.1. The linear sensitivity measure contained in the distribution of Y’

about 8 is
S(Y;0) =sup D'A'(AXA) 1 AD,
A
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where supremum is taken over those A for which AY A’ is non-singular.

Recall that for any two square matrices E and F' of same order, E > Fif E— F'is
non-negative definite.
From Theorem 2.1, it follows that

sup D'A'(ASA)'AD =D'S7'D
A

and thus
(2.2) 5(Y;0)=D'S7'D.

Remark 2.1. If k = 1, the above linear sensitivity measure readily reduces to that
of Tukey (1965) given in (2.1) in the context of order statistics and studied by Nagaraja
(1994). If one is interested in a scalar sensitivity measure in the multiparameter case,
the trace or the determinant of the above-mentioned matrix measure may be taken.

3. Weak additivity, monotonicity and convexity

It is obvious that the proposed matrix sensitivity measure is non-negative definite.
In this section, we establish, under some conditions, weak additivity, monotonicity and
convexity properties of the measure.

The following theorem establishes the weak additivity property.

THEOREM 3.1. Let U = (Uy,...,Up) and V = (V4,...,V;)" be two uncorrelated
random vectors whose distributions depend on 8. Then,

S(U,V;0)=S(U,;8)+ S(V;0), V6.

ProofF. Let u® and u(? denote the mean vectors of U and V/, respectively, and
let 3; and X5 denote their dispersion matrices. Define
dP =ou/06;, i=12,...,n j=12,....k
and
d? =ou®/06;, i=12,...,1 j=12,. .k
Further, let
Dy =((d})) and Dp=((d).
Since U and V are uncorrelated, we have
>too Dy
S(U,V;6) = (DD, !
w5 2] (2)
= D{¥'Dy + D35 Dy
= S(U;0)+ S(V;6), V6.

Hence, the measure is weakly additive.
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In order to establish the monotonicity of S and Theorem 3.2, we introduce the
following notations in addition to those of Section 2. For Z = (Y3,...,Y,, Y41}, let

dj = %EG(YTH), 7=12,...k
d=(di,...,dx),
og; =cove(Y;,Yry1), 1=1,2,...,7,
o=(01,...,00),

and
A=Vy(Yrt1).

THEOREM 3.2. IfY =(11,...,Y,) and Z = (Y1,...,Y:, Yoq1), then
5(Z;0)=S(Y;0) + (d— D' 'o)(d- D'E7le) /(A - 0'E710), V6.

ProoF. The dispersion matrix of Z may be partitioned as

Yo
20 = .
Following Graybill (1983),
g1 _ (Z—a0' /M) 7 lo/(A=0'E710)
O T —o's Y/ (A-0'E"le)  1/(A-0d'E710) '

Thus,

S(Z;0) = (D'd)z;? (i)
= D'(£—-00'/A)7ID —da’S™'D/(A - o' 10)
(3.1) —D'S7lod /(A - 0'S7 o)+ dd' /(A - a’'E o).
Recall that (Graybill (1983))
_(ATl)(@A™h)
1+dA-1le

for any square matrix A and two vectors ¢ and d, provided the inverses exist. Now take
A=%,¢c=—-o0/Aand d=o0. Then

(Atcd) =471

Y lgo’'n!
(B=o0'/N =27+ T—=r
Thus, (3.1) gives
5(Z;0) = D'S7'D 4+ (D'S"'ed’'S™'D — do’S7'D
~D'S7tod +dd')/(A - 'S o)
(3.2) = 8(Y;0)+ (d— D'S7 o) (d - D'E7a) /(A - d'E710).

Based on this theorem, we have the monotonicity property.
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COROLLARY 3.1. IfY =(Y1,...,Y.) and Z = (Y1, ..., Yr,yr41), then
S(Y;0)<S5(Z;68), V.

PROOF. The proof is an immediate consequence of (3.2) since the second term on
the right side is a non-negative definite matrix.

Remark 3.1. The proof of Corollary 3.1 involves in considering Definition 2.1 for
S(Z;0) and choosing the last column of A to be a null vector.

Remark 3.2. From (3.2), it is clear that the increase is a null matrix if and only
if d— D'S~1g = 0. If the matrix Xy does not depend on 8, following the arguments
similar to those of Nagaraja (1994), it can be shown that the increase in the measure is
null if and only if Eg(Yy41) — Ee(Y' )X 710 does not depend on . Such a condition may
be satisfied if Z has a multivariate normal distribution.

In the following theorem, we establish the convexity property of S(Y;8) whenr =1,
if some conditions are satisfied.

THEOREM 3.3. The sensitivity measure, associated with a single observation, is
convez.

Proor. Sincer =1,
S(Y;0) = D'D/Ve(Y).

Let
Fy = aFo(l) + (1 - a)F9(2), 0<a<l,

and U; denote a random variable whose distribution function is F(i), 1= 1,2. Here, Fp
is the distribution function of Y. We then wish to show that

S(Y;0) < aS(U;0) + (1 ~ a)S(Ug;0), V6.

Let p denote the mean of UM, 4 = 1,2, and D; denote the row vector of partial
derivatives of (¥ with respect to 6y,...,0k, i = 1,2. Finally, let 02,0 and o2 denote
the variances of Y, U; and Us, respectively. Then,

D=aD;+(1—a)D,

and
o’ =acl+(1-a)o:+a(l - a)(“(l) — u®)2,

It can be verified that

(3.3) S(Y;0) < aS(U;;0) + (1 — a)S(Ua; 8)

holds if and only if

(3.4) () — u@)2{aD}| D102 + (1 — &) DyD203} + (D103 — D20?) (D103 — Dao?) >0

holds. Since (3.4) is true, (3.3) holds and hence the theorem.
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Remark 3.3. The convexity of S when r > 1 seems to be an open problem.

Remark 3.4. Ferentinos and Papaioannou (1981) have given an extensive list of
desirable properties that are expected to be satisfied by any measure of information.
Some of these desirable properties such as conditional inequality, strong additivity and
subadditivity have been shown by Nagaraja (1994) to be not satisfied by the linear sen-
sitivity measure in the scalar parameter case. Naturally, these properties will therefore
be not satisfied by the linear sensitivity measure proposed here for the multiparameter
case. Furthermore, as the examples presented in Section 7 reveal, the linear sensitivity
measure proposed in this paper also suffers from the fact that it is invariant under suffi-
cient transformations only when the sufficient statistic 7" for 8 is a linear function of Y,
as has been pointed out earlier by Nagaraja (1994) for the scalar parameter case.

4. Sensitivity measure and Fisher information matrix

Let J(@) denote the Fisher information contained in the distribution of an unbiased
estimator § of p(8). Under certain regularity conditions (Rao (1973)), the matrix X5 —
DJ~Y(@)D’ is non-negative definite, where X5 is the dispersion matrix of § and the
(¢,7)-th element of D is du;/86; Vi, j. Equivalently,

D'{DJ Y6)D'}'D - D's;'D

is non-negative definite. In other words, D'{DJ~1(0)D’}~' D may be viewed as an upper
bound for the sensitivity measure S(8, 8).

In particular, when r = k and D is non-singular, the linear sensitivity measure is a
lower bound of Fisher’s measure of information.

When 0 is scalar (that is, in the one-parameter case), Nagaraja (1994) has in fact
shown this result. In addition, he has shown that the Fisher information contained in
a statistic 7" about the parameter 6 equals the linear sensitivity measure in T if and
only if T' has a one-parameter exponential family density; see also Kullback (1985) and
Zografos and Ferentinos (1994) for some additional insight into this property. Using the
same arguments here, it can be shown that J(6,8) and S(8,80) are equal if and only if
the distribution of & is of exponential type. '

5. Sensitivity measure and BLUE

In this section, a relation between sensitivity measure and the BLUE for the simul-
taneous estimation problem is established in the multiparameter situation.

THEOREM 5.1. If there exists a non-singular matriz C(6) such that Ap = CD'S™!
does not depend on 8, then AgY is BLUE for estimating Aopt.

Proor. By Theorem 2.1,
(5.1) D'sS™ID - D'A'(AXA')"'AD >0, VA.

Let AY be an arbitrary linear unbiased estimator of Agu with finite dispersion matrix.
Then
Ap = Aop, VO
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and therefore
(5.2) AD = AgD, V6.
By the definition of A, invoking Theorem 2.1, we have
D'S7ID = D'(Ag) (AeTAp) "1 AoD
= D'A'(ApZA)) 1 AD,

in view of (5.2).
Now (5.1) gives

(AD)' {(ApXZA}) ! — (AXA)"1}AD >0, VA.
In other words, ’
(ApTA))~! - (AzZAY 1 >0, VA
This implies the non-negative definiteness of
AT A — A4, VA
Hence, AgY is the BLUE of Agp.

6. Sensitivity measure and the location-scale model

Let the population from which the sample is drawn be a location-scale model with
probability density function (pdf)

f@en) = To(@~6)/r), sER; ECR, T>0.

Let Y;.,, i = 1,2,...,n, denote the order statistics based on a random sample of size
n. Let Zi., = (Yin — €)/7, 1 = 1,2,...,n, denote the standard order statistics, whose
distributions do not depend on 8 = (£,7)". If & and B denote the mean vector and the
dispersion matrix of Z = (Z1.n,...,Znm)’, it is known that the mean vector and the
dispersion matrix of Y are

p=£61+7a and X =712B.

Thus, D = (1 o) and
1
-1 -1
D'y~ = T_QD/ B~
Note that the matrices D and B do not depend on 8.
Since we are interested in finding the BLUE of 8, it is sufficient to find a matrix C

such that CD'S1Y is a statistic and is unbiased for 6.

Consider
Eg(CD'E'Y) =6, V6.

This implies that
C =Dz D)y =72(D'B~'D)"L

Clearly, CD'S~! = (D'B~'D)~'D’'B~! and does not depend on #. Thus, by Theo-
rem 5.1, it follows that the BLUE of 8 is

6=(D'B'D)"'D'B7lY.
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The dispersion matrix of 8 is 72(D’B~1D)~! or (D'S~!D)~!. Thus, the dispersion
matrix of the BLUE of 8 is the inverse of the sensitivity measure.

Remark 6.1. It may be noted that a similar observation was made by Nagaraja
(1994) for the location model and the scale model. Further, the above discussion extends
to the conventional Type-II censored, progressive Type-II censored, and generalized pro-
gressive Type-II censored samples. The above discussion also suggests that one can
propose efficiency measures for linear unbiased estimators based on the matrix sensitiv-
ity measure or a real-valued function of the same.

7. Examples

In this section, we illustrate the results of the paper through two examples.

Example 7.1. Let Yi.n,Y2.n,..., Yn.n denote a set of order statistics based on a
random sample of size n from Uniform(&,€& + 7) distribution. Following the notations
of Section 6, we have (Arnold et al. (1992), pp. 14-20)

a; =1/(n+1), i=1,2,...,n,
bij=i(n—j+1)/{(n+1)*(n+2)}, i<j.
We wish to find the sensitivity measure associated with Y = (Y1.n,Y2in,.-+, Ynin)'-
Noting that
2(n+1)(n+2), [i—j]=0
V¥i={ —(n+1)(n+2),li-jl=1
0, li—j]>2

where B! = ((b%)), we have
1 _

2 1
1n/(n+1)

(n+1){(n+2)
7-2

By definition,

- 1
1
+1)(n+2 1 1 -1
S(Yiim, Yain; 0) = ﬁ"_)_(’}_2_) 1 - n n+1
(n—1)7 : T -1 n L "
n+1l n+ n+l
n+1)n+2) |2 1
= -————————T2 n
n+1
= S(Y;0).

This S(Yi.n, Ynn;8) = S(Y;0)V0 means that the linear sensitivity measure associated
with the whole observed sample Y is exactly equal to the linear sensitivity measure
associated with the two order statistics (Y].n, Yn:n), which form a complete sufficient
statistic.
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Remark 7.1. In this case, Fisher information does not exist, while we have shown
that the linear sensitivity measure does exist, and that it is the same as that of (Y1:n, Youn)
which is a complete sufficient statistic. In addition, the results of David (1981) may be
invoked to find similarly the linear sensitivity measure in a doubly Type-II censored
sample as well.

Ezample 7.2. Consider a progressively censored sample from a two-parameter ex-
ponential distribution with the location-scale parameter 6 = (£,7)'. Let Yinn, i =
1,2,...,n, denote the progressively censored order statistics based on a sample of size
N, where n is the number of observed failures and 71,73, ...,7p—1, ', denote the number
of items censored at each failure. Note that r, = N — 21";11 r; — n. Define

Z; = (Yin:N — &)/, 1=1,2,...,n.
From Viveros and Balakrishnan (1994), we have
E(Zy) = N1

and
-1

i k-1
E(Z)=N"'+Y {N-Y(rj+1); , i=23,...,n
k=2 j=1

bij = COVQ(Zi,Zj)

i k-1 -2
- N"2+Z{N—Z(re+1)} =it lm i=12.m
k=2 £=1

see also Balakrishnan and Aggarwala ((2000), p. 19). By Lemma 7.5.1 of Arnold et al.
((1992), pp. 174-175), we have B~ = ((b)) given by

(N2 4+ (N —r —1)?, i=j=1

AN - E e+ DY AN = i e+ DY = i=2,3,0m

b = < —{N—Zzzl(wﬂ)}?, j=i+1;i=1,2,...,n—1
—{N =i (e + 1)}, j=i-114i=23,...,n
0, otherwise.

\

In this case,
o; = Fe(Z;), i=12,...,n.

Thus, we obtain

1
S(Y;8) = T—2D’B‘1D

1 N2 N

T2 N |’
We will now show that the sensitivity measure associated with (Y1.n.n,To), where Tp =
S oheo(re + 1) (Yain:n — Yi.n.n), is same as that associated with the sample Y.
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Recall that (Viveros and Balakrishnan (1994))

EO()/lzn:N) :€+T/N’ %(n:n:N) =T2/N2,
Eo(To) = (n—1)1,  Vp(To) = (n— 1)1,

and cov(Y1.q:n, To) = 0. Thus, it can be seen that
S(len:NvTO;e) = S(Yag)a Vea

which means that the linear sensitivity measure associated with the observed progres-
sively censored sample Y is exactly equal to the linear sensitivity measure associated
with (Y1.n.v, To), which form a complete sufficient statistic for 6.

Remark 7.2. Following the arguments of Lehmann and Casella ((1998), p. 43),
it can be observed that (Y1.,.n,7Tp) is a complete sufficient statistic. Further taking
1 =79 =+ =Tp_1 = 0, we obtain the corresponding results for Type-II right censored
sampling scheme. If, in addition, N = n then the results for complete sample case may be
obtained. In each of the above two examples, we observe a justification for Tukey’s linear
sensitivity measure while considering complete sufficient statistic in inference problems

regarding 6.
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