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Abstract. We repair numerical difficulties in applying saddlepoint tail probability
approximations when the ordinate at which the approximation is evaluated is near
the mean of the distribution approximated. These modifications apply to double
saddlepoint approximations to conditional distributions as well.
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1. Introduction

Huzurbazar and Huzurbazar (1999) describe the use of saddlepoint tail probability
approximations for the convolution of distributions, but note that some of the approxi-
mations that behave very well in the tails of the distribution perform poorly for ordinates
near the mean of the distribution approximated. We repair numerical difficulties in ap-
plying double saddlepoint tail probability approximations when the ordinate at which
the approximation is evaluated is near the mean of the conditional distribution. This
correction is necessary in order to calculate significance tests. The underlying test will
then be inverted to form confidence regions.

2. Saddlepoint approximations

Saddlepoint approximations (McCullagh (1987), Chapter 5; Reid (1988)) are asymp-
totic approximations to densities and distribution functions of means T of independent
and identically distributed random vectors Y;. These approximations are derived from
the cumulant generating function of each of the addends,

(2.1) K(B) = log(E[exp(8"Y;))).

When the cumulant generating function K is defined for vectors of complex numbers
whose real parts are sufficiently close to zero, saddlepoint approximations for the den-
sity and cumulative distribution function may be defined by approximately inverting the
relationship (2.1). These approximations are expressed in terms of derivatives of the cu-
mulant generating function evaluated at the real vector 3 determined by the saddlepoint
equation

(2.2) ') =t,
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where K’ is the vector of first derivatives of K, and t is the point where the density or cu-
mulative distribution function is to be evaluated. The vector 8 is called the multivariate
saddlepoint. v

Skovgaard (1987) applies saddlepoint techniques to the problem of approximating
tail probabilities for conditional distributions. Approximating F(t! |t_,) = P[T" > t! |
T_; =t_y], for Ty = (T?%,...,T%) and t_; = (t2,...,t%), involves the multivariate
saddlepoint solving (2.2), both for the full distribution of T and for the distribution of
the shorter random vector T_;. Let ﬁ solve (2.2), and let 4 be the vector of length d
such that
(2.3) Kigy=t for j#1, 51 =0,
where K7 denotes the derivative of K with respect to component j of its argument. The
conditional tail probability approximation of interest is

(2.4) 1— F(t | t_q) = 1 — ®(v/nb) + ¢(v/n) [ﬁ - T:u;} ,

where 2 = f1/det{[C" (B)]/ det|K”, ()], & = sgn(Br)y/ 2187t~ K(B)] — 2447 — K],
K", is the (d — 1) x (d — 1) submatrix of the matrix of second derivatives of K, corre-
sponding to all components of 8 and T except the first, and ® and ¢ are the normal
distribution function and density respectively.

Also of interest are inversion techniques for lattice distributions. Skovgaard (1987)
derives a counterpart of (2.4) in the lattice case, in which (3 is replaced by 2 sinh(—12— Bl),
and in which ¢! is corrected for continuity when calculating ,3 That is, if possible values
for T' are one unit apart, then 3 solves K'(8) =t where #/ =t/ if j # 1 and ! = ¢! — .

3. Linear approximation near the mean

The difficulty in applying (2.4) for certain values of t! near the conditional mean is
that w(t) and 2(t) both take on the value 0, and hence 1/w — 1/2 can not be evaluated.
With all components of £_; held fixed, w(t) is a smooth invertible function of t'. Hence
1/z — 1/w is a function of w, and since z = 0 if and only if w = 0, and dz/dw # 0, then
1/z—1/w may be approximated as a linear function in w, with error of size O(w). In order
to determine this approximation, we require derivatives of the saddlepoint ﬁ with respect
to t!. Let Bi = (d/dt’)Pk. Then &% Bj = %, for 6 the array that is one if all indices
are equal and zero otherwise, and [35 = Ki;67 !, Here k with superscripts denotes partial
derivatives of K with respect to the corresponding components of f3; for example, K12 =
I@%E’C(ﬂ)' The symbol & with two subscripts denotes the generic element of the inverse
of the matrix of second derivatives of K. We employ the Einstein summation notation,
whereby an index repeated as a subscript and as a superscript implies summation over
that index. Also, nij’“,é’g[;}c" + nijﬁg-m =0, and so B = —k;k"F 35817, and

B = ik B BT B — miek P BLBT BT — ik BUBET — kst BT
= Ktk 1o GBI BT + migk T B BRBT + ki g BB B
Ry
et Bl B

The functions z and w are functions of quantities whose derivatives with respect
to t! are easy to calculate; w(f) = /2h(t!) for h(t!) = —& + B;R7 + & — 4;&’, and
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2(t) = i (t') exp(g(t1)/2), where g(t') = log(det[K"(8)]/ det[K”,(%)]). Then
W(8) = =R} + BiR7 By + Bi47 = BiR7* B = b,
RI(EY) = B, n () = BYY, BM(EY) = AT
and ¢'(t!) = k;;£9% 3L, and

1 iik A1l ikl A1 A { iik A1 5
g'(t") = ki TEBE + ki TRBLBE — kisk® Ry kTR B0
27k ! A1 4 i1kl A1 4 yml 1 21 A
= —kijE TP k™G BL + ki kT BLAT — ki ™ Kmn k™ BLBL

Expanding 1/w — 1/z in w about 0,

(3.1) E%E - ;zli)— — (%gl(o)h//(o)—lﬂ + %h(3)(0)h"(0)—3/2>

+(=3¢'(0)°h"(0) " + 6" (0)R"(0) " ~ 64'(0)" (0)"*h)(0)
—5h3)(0)*h”(0)~3 + 3h”(0)"219(0))
w(t)/24 + O(w(t)?),

The first term in (3.1) was given by Skovgaard (1987); the term of order O(w(t)) is new.

When T is scalar, and hence no effective conditioning is occurring, then h”(t!) = k11,
hm(tl) — _(ﬁll)SKIlll, h""(tl) — 3(,“1)5(,6111)2 _ (511)4,{1111’ g'(tl) — (K11)2,{111’ and
g"(tl) — _2(’“1)4(&111)2 € (H11)3K1111, and

(32) 1/w —1/z = p3/6 + [(3ps — 5p3)/24]w + O(w?),
for p3 = (k11)%/?k!! and pg = (k11)*k"11.

The quantity w? is twice the log of the likelihood ratio statistic, and, considering w
as a random variable, has a distribution that is well-approximated by a x? distribution
with one degree of freedom. Approximations (2.4) and (3.2) imply that for ¢ near zero,

(3.3) Plw® < q] =~ 28(\/7) — 1 +ay/3¢(v/2),

for a = (3p4 — 5p2)/12. The right hand side of (3.3) is the first order Taylor expansion
of 1 — 2®(4/q(1 — a)) as a approaches zero. Quantities a chosen to make a twice the
log of a likelihood ratio statistic divided by 1 — a more closely approximated by a x?
distribution with the appropriate degrees of freedom are examples of Bartlett’s correction
(Kolassa (1997), p. 148ff). We are grateful to a referee for calling our attention to this
interpretation of the quantity we calculate as part of our corrrection.

The expressions (3.1) and (3.2) are valid in the lattice case as well, since sinh(0) = 0,
sinh’(0) = 1, and sinh”(0) = 0.

We suggest using (3.1) when w is small enough that direct evaluation of 1/w —1/z
causes numerical difficulties. Specifically, we suggest choosing € > 0 such that if |w| > ¢,
then (2.4) is used without modification, and if |w| < € then (3.1) is used. The choice
of € depends primarily on the accuracy with which the saddlepoint equations (2.2) and
(2.3) are solved. If € is chosen too small, then 1/w — 1/z will be evaluated in a region
where it is numerically unstable. If ¢ is chosen too large, then some of the accuracy
of (2.4) will be sacrificed, and furthermore, the approximation will have a jump as |w|
crosses €, potentially adding instability into algorithms that depend on inverting (2.4) to
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calculate confidence intervals. One might expect that the order O(w(¢)?) error in (3.1)
might require some smoothing of the transition between use of 1/w — 1/2z and (3.1),
but in the many examples that we investigated, (3.1) proved accurate enough that no
such smoothing was required. We routinely require that numeric solutions to (2.2) and
(2.3) make each component of the two sides agree to 10!, and choose € = 1073, This
tolerance was used in the calculations that produced the figures below.

4. Two examples

Let F be the cumulative distribution function resulting from the convolution of an
exponential variable with parameter A, and hence mean 1/A, and a gamma variable
with parameters « and (3, and hence mean a/3. Figure 1 contains an approximation to
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Fig. 1. Comparison of modified and unmodified saddlepoint approximations to the CDF.
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Fig. 2. Comparison of modified and unmodified saddlepoint approximations to the CDF.
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1 — F(x). This example was discussed by Huzurbazar and Huzurbazar (1999), and is
simple enough to enable use of (3.2). Of particular interest were the values A = 0.0348,
o = 3.490, and 8 = 0.314. Pictured are the saddlepoint approximations with and
without the refinement presented in the last section.

The refinements of the previous section are perhaps even more useful when T is
of length at least two, and (3.2) is unavailable. In this case the saddlepoint equations
involve simultaneous nonlinear equations, and one may have to settle for a less accurate
solution. Let X; and X, be independent variables, each with cumulative distribution
function F. Figure 2 contains an approximation to a distribution of X; conditional on
X1+ Xo.
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