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Abstract. This paper is concerned with a Rodrigues’ formula for generating new
classes of polynomials. The associated density functions belong to the family of gener-
alized Pearson curves, which extends the classical Pearson family. Various properties
of these polynomials (degree, orthogonality ...) are investigated and then exploited
to derive several related results, especially characterizations, in probability.
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1. Introduction

Any simple technique for generating new classes of polynomials, especially orthog-
onal, is potentially useful in different fields of mathematics, from approximation theory
to probability and statistics. In this work, we are going to discuss such a polynomials
generator that is constructed through a Rodrigues’ formula. We will point out that the
generator is closely related to different problems and characterizations in probability
theory.

Specifically, we begin by considering a particular linear operator of differential form.
For that, let f be some given real function, assumed to be infinitely differentiable on an
interval Z = (a,b), finite or not. Then, for any function z with similar properties, we
introduce the operator Dy by stipulating that

(L1) Ds(z) = D(/2)

where D(h) = h' denotes the usual differentiation. Now, let 2 = p be any polynomial
of degree (denoted by deg(p)) equal to n, n > 0. With the operator above, we then
associate a sequence of functions h; = hj, ¢ defined as

N .
(1.2) h; =Dy’ (p") = —J;D](fp’), j=0,
D7 denoting j-fold differentiation (thus, ho =1, hy =p' +pf'/f,...).

731



732 CLAUDE LEFEVRE ET AL.

Our starting point is to ask the following question. Under what conditions on f
the sequence of functions hj, j > 1, constitutes a sequence of polynomials. It is worth
underlining that if the h;’s are polynomials, then the identities (1.2) correspond to a
Rodrigues’ formula. A necessary condition on f is almost immediate. Indeed, from (1.2)
for j = 1, we get that f'/f = (h1 — p')/p = ¢/p is a ratio of two polynomials. Such a
family of functions f, i.e. satisfying the ordinary differential equation

" q . . . _ _
(1.3) T q and p being polynomials with deg(g) = m and deg(p) = n,
is called a family of generalized Pearson curves.

We recall that the classical Pearson family of curves corresponds to the special case
of (1.3) with degrees m < 1 and n < 2 (see, e.g., Ord (1972), p. 9 and Johnson et
al. (1994), p. 16). The Pearson family and the related orthogonal polynomials have
received much attention in the literature. In particular, we refer the reader to the
recent fascinating paper by Diaconis and Zabell (1991) which has motivated the present
research. We mention that estimation by a generalized Pearson curve has been discussed
by Dunning and Hanson (1977); for some other properties, see also, e.g., Ord (1972) and
the Appendix.

Sections 2 and 3 of the paper are devoted to an algebraic analysis of the polynomials
h; and the associated (generalized) Pearson curves. In Section 2 we prove that the
condition (1.3) on f is also sufficient to guarantee that the functions h;, j > 0, reduce
to polynomials. Furthermore, we establish that deg(h;) < jr where the index r is
defined as r = max(n — 1,m), and that strict inequality holds for some j if, and only
if, m = n —1 > 1 and under a supplementary condition on f. Conversely, in Section 3
we study some properties of the generalized Pearson curves (1.3) on the basis of the
polynomials &;’s. We so obtain a characterization of the Pearson family, and we give a
simple sufficient condition that allows us to determine the index r.

In the second part of the paper (Section 4), we exploit properties of the polynomials
h; to discuss several applications and characterization problems in probability theory.
We will assume now that, in addition to the condition (1.3), f is a probability density
function which is strictly positive on its support (a,b). Note that since K f, for any
constant K, satisfies (1.3) whenever f does, given two polynomials p and ¢ this new
assumption imposes a restriction on the support (a, b) to guarantee that f is positive on
(a, b); this question will not be examined here (see, e.g., Johnson et al. (1994), pp. 16-25
and Dunning and Hanson (1977)).

The associated generating operator D defined in (1.1) is rather standard in prob-
ability. In particular, Cacoullos and Papathanasiou (1995) have derived the following
covariance identity which involves Dy. Let X denote a continuous random variable with
density function f. Given any differentiable function g and any function h, there exists
some function z = z5 such that

(1.4) cov[h(X), g(X)] = E[2(X)g' (X)),

provided that z(X)g'(X) is integrable. This z-function is related to f and h through the
differential equation

(15) Ds(2) = E(h) — h,

where Dy is given precisely by (1.1). Moreover, if (1.4) holds for every differentiable
function g, then the functions 2z, f and h are related by (1.5). In the special situation
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where h is the identity function, z reduces to the w-function introduced by Cacoullos
and Papathanasiou (1989), multiplied by Var(X).

Now, within our generalized framework, we begin by deriving some variant of the
covariance identity (1.4), provided that an additional important condition (4.1) holds.
Then, we apply this result to examine whether the system of polynomials {h;,j > 0}
is (partially) orthogonal. Finally, we deduce characterizations of the Pearson, normal,
gamma and beta density functions that rely on such orthogonality properties.

2. Algebraic structure of the polynomials

We propose to point out the Rodrigues’ formula (1.2) as a key tool for generating
polynomials h; from a generalized Pearson curve f.

Given a polynomial ¢, we denote by a(t) the coefficient of the power with highest
degree in t. Without loss of generality, we may assume that a(p) = 1.

THEOREM 2.1. Let f be of the form (1.3). Then, h; defined in (1.2) is a polynomial
such that
(2.1) deg(h;) < jr, where r=max(n—1,m), j=>1,
and strict inequality holds for some j if, and only if, m=n—1>1 and a(q) =i — jn
for some i € {0,...,5 — 1}.

Remark. We notice that in the special case of the Pearson family (r < 1), (2.1)
reduces to deg(h;) < j, a result that can be found in Diaconis and Zabell ((1991),
Theorem 1, p. 295). The condition yielding equality for some j then corresponds to
the condition derived by Beale ((1941), p. 99-100), namely either n = 1, or n = 2 and

Theorem 2.1 will be proved by using certain algebraic properties established in the
four following lemmas.

LEMMA 2.1. Forany0 < k < j, there exists some polynomial r; ;. of degree k(n—1)
such that ' '
(2.2) D*(pl) = p/Frjp.

PROOF. Obviously, D¥(p?) is a polynomial of degree jn—k. Thus, if (2.2) holds for
some polynomial 7; , then its degree satisfies the relation jn —k = (j — k)n + deg(r; k),
which yields deg(r; x) = k(n — 1) as stated. To establish (2.2), we proceed by induction
on k. (2.2) is true for k£ = 0. Assuming that (2.2) holds for k, we get

D¥(p?) = D(p~*r; 1) = pP ¥ (G — K)D(p)rik + pD(ri)] = PP gk,
hence the result. O
LEMMA 2.2. If for some k > 1, g is a polynomial of degree my, then
Ak \ _ ,9k+1
(2.3 D (fb;) - 12,
where qy1 s some polynomial of degree myy1 such that myy1 = mp +m if m > n, and
Mgy <mep+n—1ifm<n-1.
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ProoF. From (1.3), we get the representation
qk 1 _ 1
D fﬁ = fpk+1 laka + D(ak)p — kax D(p)] = fp"_—k+1 Qk+1-
We then easily obtain the stated result on gx41. 0

LEMMA 2.3. Assume that m # n — 1. Then, for any i > 1, there erists some
polynomial q; such that

(2.4) D(f) = 37

and m;, the degree of q;, is such that m; = im if m > n, and m; < i(n — 1) — 1 of
m<n-—2.

PRroOF. For i =1, (2.4) corresponds to (1.3) with m; = m. Arguing by induction
on %, we can then deduce (2.4) from (2.3). As for m;, again by induction, we find from
Lemma 2.2 that if m <n — 2,

mig1<mi+n—1<---<my+in-1)<n-2+in-1)=>G+1)(n-1) -1,
while m; = ¢m if m > n, which completes the proof. O

LEMMA 2.4. Assume that m = n — 1. Then, for any 0 < k < j, there exwists some
polynomial q; r such that

(2.5) D*(fp’) = fP' " a5k,

and its degree is such that deg(qjr) < k(n — 1), with strict inequality if, and only if,
n > 2'and a(q) = i — jn for some i € {0,...,k —1}.

Proor. Equation (2.5) being true for k = 0, we proceed by induction on k. If
(2.5) holds for k, we get, using (1.3),

(2.6) D*(fpl) = fpPFYaaik + (G — k)D(P)aik + pD(3x)) = P g k1

From the expression [...] of g; gx+1, it is clear that g; x+1 is a polynomial. By induction
and since m = n — 1, we then see that its degree satisfies

deg(gjk+1) < deg(gjp) +n—1<--- < (k+1)(n—1).

Now, for n > 2, suppose that a(q) # i — jn for all ¢ € {0,...,k — 1}. Proceeding by
induction, we have that deg(g;x) = k(n — 1). From [...], we then obtain that a(gjk+1),
the coefficient of the highest degree in g; 41, is given by

(2.7) a(gjk+1) = [a(q) + jn — kla(gj.k)-

Thus, we see that a(g;x+1) # 0 if, and only if, the additional condition a(q) # k — jn
holds. The result follows directly. O

PROOF OF THEOREM 2.1. We are going to discuss separately the cases where m #
or =n — 1. We note that in all cases, a(h;) can be determined explicitly.
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Case m #n — 1. We will show that here, h; is a polynomial with deg(h;) = jr.
First, we observe that h; can be rewritten as

(2.8) hj = 2; (Z) hji,

where
29) by = (D00 [ 3000

By Lemma 2.1, hj¢ is a polynomial with deg(h;o) = j(n —1). For any 1 <1 < j, we
get from Lemmas 2.1 and 2.3 that

R R
hji=p TJJ“"Lpi = Tjj—idi-

This shows that h;;,1 < i < j, is a polynomial, and that its degree is equal to (j —i)(n—
1) + ms, so that deg(h;;) = (j —9)(n — 1) +im if m > n, and deg(h;;) < j(n—1) -1
if m < n — 2. Therefore, we see from (2.8) that h; is a polynomial. Moreover, if m > n,
h; ; is of degree jm, while h;; for 0 < i < j — 1 is of degree strictly less than jm; thus,
deg(h;) = jm = jr. f m < n—2, h;; for 1 <1 < j is of degree strictly less than j(n—1),
which is the degree of hj¢; thus, deg(h;) = j(n — 1) = jr.

Case m =n —1. From (1.2) and Lemma 2.4, we have

1 . .
h;j = ?D](fpj) = g5
so that h; is a polynomial with deg(h;) < j(n — 1) = jr. Moreover, deg(h;) < j(n —1)
for some j if, and only if, n > 2 and a(q) = — jn for some i € {0,...,7 —1}.O

3. Algebraic analysis of the density curves

We now propose to point out some reciprocal effects of the structure of the polyno-
mials h; on the generalized Pearson curve f.
The following lemma will play a central role.

LeEMMA 3.1. Let f be of the form (1.3) with n > 2. If deg(h;) < jr and deg(hx) <
kr for some integers 1 < j < k, then k —1 > (k— j)(r +1).

PrROOF. By Theorem 2.1, we know that under the above condition, we have m =
n—1=rand a(q) = iy —jn = ip—kn for some i; € {0,...,j—1} and iy € {0,...,k—1}.
Thus, we see that

k-1>i=01+(k—jin>(k—-jin=(k—j)r+1),
as stated. O

This result allows us to obtain a characterization of the Pearson family within the
family of generalized Pearson curves through properties of the polynomials h;. Let £(.)
denote a linear span, and let us consider the subspace LH = L({h;,j > 0}) in a linear
space of polynomials £LP. We recall that the codimension of LH is the dimension of its
supplement (roughly, it is the difference |LP| — |LH|). We observe that LH is finite for
r = 0, so that hereafter we will consider the case r > 1.
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THEOREM 3.1. Let f be of the form (1.3) with r > 1. Then, f is a Pearson curve
(with v = 1) if, and only if,

(3.1) the codimension of LH 1is finite.

Another equivalent characterization is that

(3.2) deg(h;) < j and deg(hy) < k for some integers 1 < j < k such that 3j <2k + 1.
PROOF. We have to establish that r = 1 may be expressed as in (3.1) or (3.2). For

the former, we are going to show that

(3.3) deg(h;) = jr forall j, but a finite number.

Indeed, if 7 < 1, then r = m and by Theorem 2.1, deg(h;) = jr' for all § > 1. Consider
n > 2, and let us assume that deg(h;) < r for some i > 1. Note that

j—1l<(—-92<(j—i)n forall j2>2i

From Lemma 3.1, we then deduce that deg(h;) = jr for all j > 2i. Therefore (3.3) is
proved, and the equivalence follows now directly.

For the latter, we have by Theorem 2.1 that r > 1 yields deg(h;) < j for all j > 1.
Now, we will show that (3.2) implies r = 1. To the contrary, assume 7 > 2. We then
have that deg(h;) < jr and deg(hg) < kr for some 1 < j < k. Thus, from Theorem 2.1
we know that n > 2, and by Lemma 3.1 we get

k—1>(k—35)(r+1)>(k—j)3.
This is in contradiction with the assumption 3j < 2k+ 1.0

Note that the condition (3.2) can be replaced equivalently by

(3.4) deg(h1) <1 and  deg(hg) <k for some integer k > 2,
or also by
(3.5) deg(hy) <2 and  deg(hy) <k for some integer k > 3,

(since in both cases the restriction 3j < 2k + 1 is automatically verified). We mention
that (3.4) with k = 2 corresponds to the characterization obtained by Diaconis and
Zabell ((1991), Theorem 1, p. 296).

Lemma 3.1 being formulated for an arbitrary r, it can be applied to derive a sufficient
condition for determining the value of the index r of the generalized Pearson curve.

PROPERTY 3.1. Let f be of the form (1.3). If
ax(deg,(hj) deg(hg)

(3.6)

)

> = 1 for some integersw > 1 and 1 < j <k
jw kw

such that (w+2)j < (w+ 1)k +1,

then r = w.
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PROOF. From Theorem 2.1 and (3.6), we can write that jr > deg(h;) = jw or/and
kr > deg(hy) = kw, so that r > w necessarily. Let us show that 7 > w is impossible. If
r > w+ 1, we get from (3.6) that deg(h;) < jw < jr and deg(hi) < kw < kr. Thus we
have n > 2, and Lemma 3.1 yields

k=12 k—-j)r+1) 2 (k-j)w+2),
which is in contradiction with the assumption (w+ 2)j < (w+ 1)k +1.0

As a special case of the condition (3.6), we have, for instance,

e (deg(hl) deg(hg)

)

) =1 for some integers w > 1 and 7 > 1.
w kw

4. Covariance identity, Orthogonality, Characterizations

Throughout this section, we assume that f is a probability density function which
is strictly positive on its support (a,b). Let X be a continuous random variable with
density function f. '

4.1 Covariance identity
We are going to derive some variant of the covariance identity (1.4). For that, we
will impose the condition

(4.1) lim z'p(z) f(z) =0 = lin}) z'p(z) f(z) for all integers i > 0.
T r—

Note that under (1.3), (4.1) implies that » > 1. Indeed, by Theorem 2.1, deg(h;) < r,
and by (4.1), f: f(@)h1(z)dz = 0 so that deg(hy) > 1.

THEOREM 4.1. Let f be of the form (1.3) and satisfy (4.1). Then, for any infinitely
differentiable function g such that its derivatives D*(g), k > 0, do not grow faster than
polynomials,

(42) (~1Y Elh; (X)g(X)) = Elp (X)Dig(X)], > 1.
PROOF. Integrating by parts we have
(43) / *hy(@)g(a)f(z)de = / " gD (i = / " gD ()
= [;gr%)ng"l(fpi) - lim ng‘l(fp")]
-/ ’ (o) ().

Arguing as for (2.6), we find that for all & < j, (1/f)D*(fp’) = pu where u is a
polynomial. Thus, the condition (4.1) and the assumption made on g imply that the
term [...] in (4.3) reduces to 0, giving

/ o D3 (fp?)dz = — / D(g) DI~ (fp)d.
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By iteration, we then deduce that

b . b . .
/ ghjfdz = (—1)’/ D’(g)fp’dx,
which is (4.2). O

Remark. Taking g(z) = 27 in (4.2), multiplying both sides of this identity by
27 /§'%, 2 € IR, and summing up, we get the formal series expansion

(4.4) E explzp(X)] Z %E[h (X)(—-X)7],

a result which seems to be new. For instance, let us choose p(z) = 1. Then, {h; =

(1/£)D?(f),j = 0}, and

exp(z) = Z 2—2 (-X)],

which includes a remarkable identity for a standard normal distribution when {h;(x)
(=v/2)7,5 > 0} are Hermite polynomials. Similarly, taking p(z) = z (resp. z(1 — z))
yields a series expansion (4.4) which includes a remarkable identity for a gamma distri-
bution when {h;(z)/j!,j > 0} are the associated Laguerre polynomials (resp. for a beta
distribution when {h;(z)(—1)7/j!,j > 0} are the associated Jacobi polynomials).

4.2 Orthogonality
As a direct corollary, we now show that the polynomials h; are, after some indice
lag, orthogonal with respect to such a density function f.

COROLLARY 4.1. Let f be of the form (1.3) and satisfy (4.1). Then, h; and hy
are orthogonal whenever j > kr, that is

(4.5) Ehj(X)he(X)] =0  forall j> kr
PROOF. Writing (4.2) for g(z) = 2%,1 <4 < j—1, wesee that h; LL{1,z,..., 2771}
By Theorem 2.1, deg(hg) < kr, so that h; LAy if j — 1> kr. O

Thus, for r > 2, we can easily extract an orthogonal subsystem of polynomials from
the system of polynomials {h;,j > 1}.

PROPERTY 4.1. Given a subsequence of indices j(r) = 1+r+---+7ri71 j>1,
the polynomials {k; = hj(y),j > 1} are orthogonal.

Now, let us consider the case r = 1 (Pearson family). Taking g = h; in (4.2)—if it
is valid—yields

(4.6) (—1 E[R3(X)] = jla(hy) Elp’ (X)].

This means that either a(h;) # 0 (i.e. deg(h;) = j), or h; = 0.
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Note that in general, h; = 0 may happen. For instance, define f = ¢/p’, c being
a normalizing factor. When j = 1 and deg(p) = 2, f belongs to the Pearson family.
Obviously, D?(fp’) = 0, i.e. h; = 0. It is shown below, however, that this is not possible
under the condition (4.1). The result, not new, is recalled for reasons of clarity.

PROPERTY 4.2. Let f be a Pearson family satisfying (4.1). Then, the Beale con-
dition holds for all j > 1, so that {h;,j > 0} is a complete orthogonal system.

ProoF. Let us assume to the contrary that the Beale condition is not true for all
Jj 2 1. By Lemma 2.4 and (2.7), we then know that for some j > 1, a(h;) = a(g;,;) = 0.
Thus, (4.6) gives h; =0, i.e. DI(fp’) =0, so that

(4.7) f(z) = pr(z)/p’ () for some polynomial py, of degree k < j — 1.

As a consequence, (4.1) implies that a and b are finite. Furthermore, let us put t =
J—k. By Theorem 2.1, hj: = (1/f)DI*(fpi*?) is a polynomial. We also observe that
fp’*t = ptpy is a polynomial and, since deg(p) < 2, of degree

deg(p'pr) = k+2t=k+2(j —k)=2j— k=7 +t.

Thus, hji can be expressed as h;y = cp’ /pg, so that it is a polynomial if, and only if,
the roots of px correspond precisely to the roots of p. Since p has at most two roots and
condition (4.1) holds, we deduce from (4.7) that f is of the form

(4.8) f = c(z — a)*(b — z)P for some integers a and 3.

Now, f being integrable, we have a and § > —1. Moreover, from (4.8) we see that
a{q) = a + B. Therefore, a(q) > —2 > —j — 1, which means that the Beale condition
is satisfied, hence the contradiction. The implication that {h;,j > 0} is a complete
orthogonal system, then follows from Corollary 4.1. O

Remark. Without condition (4.1), a Pearson family can give rise to a finite sub-
system of orthogonal polynomials. For instance, given any real € > 1, define f(x) =
k(1 + z%)7¢,z € IR (a Student’s-type distribution). Thus, f is a Pearson curve with
f(z)/f(z) = —(2ez)/(1 + x?). Obviously, (4.1) is not satisfied. Using integration by
parts and Lemma, 2.4, it can be shown that any polynomials h;, by are orthogonal when-
ever j £k <e.

4.3 Characterizations
We start with the following characterization of the Pearson family, which seems to
be little known.

PROPERTY 4.3. Let f be of the form (1.3) and satisfy (4.1). Then, {h;,j > 0} is
a (complete) orthogonal system if, and only if, f belongs to the Pearson family.

ProoOF. By Property 4.2, it suffices to establish the necessity part. Let us suppose
to the contrary that r > 1. By Lemma 3.1, we can then find some integer k£ > 1 such
that deg hoy = 2kr. From (4.2) with j = 2kr and g = hox(z), we now find that

Elhokr (X )ho (X))
= (=1)* " E[p*™"(X)D**" hoi (X)] = (—1)**7 (2kr)a(hak) E[p™ (X)] # 0,
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so that hog, [ hog. O

Remark. It is well-known (see, e.g., Ord (1972)) that within the Pearson family,
the only density functions which generate orthogonal polynomials through a Rodrigues’
formula are:

(C.1) on the real line R = (—00,00): the normal densities f(z) = kexp[—(z —
1)?/20?], which generate Hermite polynomials,

(C.2) on a half real line [a,00): the gamma densities f(z) = k(z — a)® exp(—6z)
with a > —1,8 > 0, which generate Laguerre polynomials,

(C.3) on a ﬁmte interval [a,b]: the beta densities f(z) = k(z — a)*(b — z)P with
o, 8 > —1, which generate Jacobi polynomials (and in particular Legendre (when o =
B =0) and Gegenbauer (when a = 3) polynomials).

Note that all of these satisfy the condition (4.1).

This property leads us to a characterization of the normal, gamma and beta densi-
ties.

COROLLARY 4.2. Let f be of the form (1.3) with max(n — 1,m) > 1 on the real
line R. Then, {hj,j > 0} is a (complete) orthogonal system if, and only if, f is a
normal density.

ProOF. The sufficiency part follows immediately from (C.1) above. By Theorem
3.1, we know that if {h;,j > 0} is a complete orthogonal system, then f is a Pearson
curve, which implies that f is a normal density by the previous remark. Thus, it remains
to show that if {h;,j > 0} is an orthogonal system, then it is complete. First, observe
that by Lemma 3.1, h; is of degree jr for all j > jo, so that £H is infinite. Now, f being of
the form (1.3), f' has at most a finite number of roots. As for j > 1, [ |z}J f(:l:)da: < 00
(by the assumption of orthogonality), we then have

(4.9) lim .’L'Jf(x) =0= lim xjf(m), j>0.

r——00 r—00
This is equivalent to the condition (4. 1) at the point b = oo, hence the result by Prop-
erty 4.2. 0

COROLLARY 4.3. Let f be of the form (1.3) with max(n—1,m) > 1 on a half real
line. Then, {hj,j >0} is a (complete) orthogonal system if , and only if, f is a gamma
density.

PROOF. An argument similar to the one in the proof of Corollary 4.2 above is
applicable, so that it remains to show that f satisfies (4.1). Let us take, for instance,
a < 0o and b = co. As above, we see that the condition (4.9), and its equivalent (4.1),
are satisfied at the point b = co. Since h; is orthogonal to hg = 1, we have

0= / ) hi(z) f(z)de = / oo(fp)’(w)dﬂf = —p(a)f(a),
and thus,
lim 27p(z) f(z) = a’p(a) f(a) =0,  j =0,

as announced. O



GENERALIZED PEARSON DISTRIBUTIONS 741

COROLLARY 4.4. Let f be of the form (1.3) on a finite interval and satisfy (4.1).
Then, {hj,j > 0} is a (complete) orthogonal system if , and only if, f is a beta density.

Remark. The proof is straightforward once (4.1) is assumed. It seems difficult,
however, not to insert that condition in the case of a finite interval (a,b). We notice
that (a,b) is usually chosen as the maximum interval where p does not have roots, thus
implying that p(a) = p(b) = 0.

4.4 On condition (4.1)

A condition analogous to (4.1) is given in several papers related to the present work,
especially through the concept of z-function in the sense of (1.5) (see, e.g., Papathanasiou
(1995) and Cacoullos and Papathanasiou (1995) and references therein).

Let us assume that p corresponds to the z-function associated with some function
h, that is

Wi = [ “[BA(X) - R f(Hdt,  t€ ab]

Then, pf satisfies
lim p(x)f(z) = 0 = lim p(z) f(2)-

Clearly, this restriction to a finite interval [a, ] is equivalent to (4.1).

Now, let us consider the special case where h(z) = z. As shown by Korwar (1991),
the Pearson family of curves can be characterized on the basis of the associated z := w-
function. Specifically, it can be seen that if w is a polynomial of degree at most 2, then
f is a Pearson curve, and that the converse holds true under the additional condition
(4.1).

Note that in general, the w-function associated with a Pearson curve family is not
necessarily a polynomial. For instance, define f(z) := 1/(zIn2),z € [1,2]. Thus, f is
a Pearson curve with f'(z)/f(z) = —x/x%. We see that (4.1) is not satisfied while the
Beale condition holds for all 5 > 1 (since a(q) = —1 # i — 25,0 < < j — 1). Moreover,
we obtain that w(z) = zlnz/In2 — z(x — 1) and is not a polynomial.
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Appendix

We point out here a special class of generalized Pearson curves.

Clearly, a generalized Pearson curve is logconcave if ¢'p < gp’. Moreover, it can
be shown that a symmetric curve can be represented as f'/f = ¢,/pe, where g,(z) =
3 a:z% ! and pe(z) = Y, aiz®.

Within the Pearson family, the only symmetric logconcave curves are the normal,
uniform and symmetric beta densities. Symmetric logconcave densities are rather fre-
quent in the generalized Pearson family. In particular, this is the case for f of the form
f(z) = exp(— Zf:o a?z?) = exp [~I(z)]; such a density is named quasi normal.
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To close, it is worth deriving an upper bound for the variance of a quasi normal
distribution. Following Borovkov and Utev (1983), let us consider, for any r.v. X, the
functional Rx = sup,{Var[g(X)]/E[g'(X )]2}, the sup being taken over all absolutely
continuous functions ¢ with 0 < E[¢'(X)]? < co. It is known that Var(X) < Rx, and
equality holds if, and only if, X has a normal distribution. Moreover, the characteri-
zation is robust in the sense that an upper bound for drv (X, Nigx var( x)]), the total
variation distance between X and a normal random variable N|gx var(x)], is provided by
drv (X, Nigx var(x)]) < 3v/Rx/Var(X) — 1 (Utev (1989) and Cacoullos et al. (1994)).
Now, assume that X has a quasi normal density. To estimate Rx, we can apply the
variational inequality for logconcave densities of Brascamp and Lieb (1976), giving

lg' ()1 } —E o' O < EldX)P

varla(301 < £ { (e (i a2i(zs - nxee-n] [ 7 2ok

so that Rx < 1/2a2. We then deduce that

Var(X) <1/202, and  drv(X, Novar(x)) < 3y/1/20% Var(X) — 1.

Note that the bound for Var(X) and the related characterization can also be easilly de-
rived from (4.2) with j = 1, which yields a Stein-type identity E[l (X)g(X)] = E[g (X)].
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