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Abstract. The total number of successes in success runs of length greater than or
equal to k in a sequence of 1 two-state trials is a statistic that has been broadly used
in statistics and probability. For Bernoulli trials with k& equal to one, this statistic
has been shown to have binomial and normal distributions as exact and limiting
distributions, respectively. For the case of Markov-dependent two-state trials with &
greater than one, its exact and limiting distributions have never been considered in
the literature. In this article, the finite Markov chain imbedding technique and the
invariance principle are used to obtain, in general, the exact and limiting distributions
of this statistic under Markov dependence, respectively. Numerical examples are
given to illustrate the theoretical results.
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1. Introduction

One of the simplest and most fundamental models of outcome measurement in statis-
tics and probability is a sequence of two-state trials { X;}7_,;. For instance, the particular
dichotomized outcomes may be 1 and 0, success (S) and failure (F), or acceptance and
rejection. The total number of successes in n trials,

(11) Sp(l) = X1+ Xo+ -+ + Xn,

has a binomial distribution when the random variables {X;}{-, are independent and
identically distributed (i.i.d.) with P(X; = 1) = p and P(X; = 0) = ¢. In general, let
Sy (k) be the total number of successes in all success runs of length greater than or equal
to k (k > 1) in a sequence of n two-state trials; i.e.

n

(1.2) Sn(k) = iRn(i),

i=k

where R, (i), ¢ = k,...,n, is the number of success runs with length exactly equal
to 4 in the sequence {X;}? ,. For k = 1, it is easy to see that (1.2) and (1.1) are
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equivalent. The statistic S,(k) has been broadly used in various areas of statistics
and applied probability, such as estimation, hypothesis testing, and DNA sequencing,
especially when k = 1. For example, Benson (1999) used Sy(k) to form the basis for
a sophisticated algorithm to detect DNA tandem repeats, which are segments within
a DNA sequence that are repeated at least once in a contiguous fashion, and which
have been implicated in the causation of several genetic diseases, such as Huntington’s
disease (Huntington’s Disease Collaborative Research Group (1993)). Tandem repeats
are subject to random mutations, so that typically only approximate copies are present.
The idea of his approach involves finding matching k-tuples between two adjacent DNA
segments by aligning one on top of the other, and then converting them into one success-
failure sequence of matches. The statistic S, (k), defined in this application as the sum of
matches in matching runs of length k or longer, is then tested for statistical significance
to search for potential repeats within DNA sequences.

Markov-dependent two-state trials, only the limiting distribution of Sy, (1) has been
examined (Nagaev (1957)). There are several difficulties encountered in computing the
exact distributions for Sy, (k) with k > 2. The two main difficulties are (i) the probabilities
of sequences of outcomes, even among those with the same number of successes and
failures, are quite different due to the Markov dependence of the trials, and (ii) the
complexity of the joint distribution of success runs Ry (¢) with run sizes ¢ > k. The
traditional combinatorial approach is not efficient in dealing with Markov-dependent
trials. Currently both exact and limiting distributions of Sy, (k) for £ > 2 under Markov-
dependent trials remain unknown. In order to avoid the above-mentioned difficulties,
we adopt the finite Markov chain imbedding approach (see Fu and Koutras (1994), and
Fu (1986, 1996)) to study the exact distributions of S,(k), and show that the exact
probabilities of S,(k) = x can be expressed concisely in terms of transition probability
matrices of an imbedded Markov chain.

Using the invariance principle, we are able to show that

1
(1.3) W(Sn(k) — ES,(k)) - N(O,V(k)) as m— o0
for k = 1,2,..., where the variance V (k) is determined from the transition probability
matrices. '

Numerical examples are presented in Section 5, and show that the exact distributions
are highly skewed towards the right, and converge to normal distributions rather slowly,
especially for large k. The mean and variance do not provide complete information for the
distribution of S, (k). Since the computation we propose herein for the exact distribution
is simple and efficient, we would like to suggest that, in practice, the limiting distribution
be used only when n is very large.

2. Notation and preliminary results

Let {X,}™ ; be a sequence of two-state (1 and 0 or S and F) homogeneous Markov-
dependent trials with the transition probability matrix

1_
(2.1) A= D1 n ,
p21—po
where P(Xt=1|Xt_1 :l)zpl,P(Xt:0|Xt_1=1)-——q1 =1—p1, P(Xt-:ll
Xt_l=0):p2,andP(Xt=0|Xt_1=0):q2:1—p2,with0<p1<1,0<p2<1,
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and initial distribution 7; = (P(X1 = 1) = po, P(X1 = 0) = ¢o). The eigenvector matrix
B associated with the transition probability matrix A has the form

I p

where p = pa/(1 — p1 + p2), and ¢ = (1 — p1)/(1 — p1 + p2)- It then follows that

B lAB = 1 0
0 p1—p2

mA™ = (p—a(py — p2)" g +alpr — p2)" ),

and

where a = —poq + qoD-

Let L;, for j > 2, be the length of the success run located between the (j — 1)-th
and j-th failures in the sequence {X;}$2,, with Ly = 0 if the first trial is a failure and
Ly = [ if the first [ trials are successes and the (! + 1)-th trial is a failure. For given ¢,
let m; be the number of failures in the subsequence X1, X, ..., X;, and let L} represent
the number of successes that occur after the my-th failure in this subsequence. It is clear
that 0 < L} <t and 0 < L} < Lyn,+1. Moreover, S;(k), as defined by (1.2), can also be
written as

(2.2) Si(k) =Y Lj(k) + Ly (k),
J=1
where
(2.3) Lj(k) =L;-Itp,»ky, and Lj(k) =L} - Iizs>ky-

Here I >k} 1s an indicator function equal to one if L; > k and zero otherwise.
Further, we define a new sequence of random variables

(2.4) Y = (Si(k), Ey(k)), t=1,2,...,

where Ey(k) = L} -(1—I{zs >ky)+kt I{1s >4y is the ending-block random variable, and kt
is a symbol indicating that L} is greater than or equal to k. In words, E.(k) represents
the length of the success run counting backward from the ¢-th trial with E¢(k) = 0 if the
t-th trial is a failure and Ey(k) = k7 if the length is greater than or equal to k. If the
distribution of Y; is known, then the distribution of S, (k) can be obtained by projecting
the distribution of Y; onto Si(k). The finite Markov chain imbedding technique will
be used to accomplish this goal in the next section. The representation of S;(k) given
in (2.2) facilitates a direct application of the invariance principle to obtain the limiting
distribution.

Note that for each given ¢, the two components of the vector Y; = (S:(k), E:(k))
contain the vital information for the sequence X1, Xo,..., X;:

(i) S¢(k) indicates the total number of successes in success runs of length greater
than or equal to k in the first ¢ trials.

(ii) Ey(k) is the ending-block of the first ¢ trials, and also provides essential infor-
mation about the transition probability from Y; to Yiy1.

(iii) Given the sequence Xi,...,X,, the sequence {Y; : ¢t = 1,... ,n} is uniquely
determined.
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In view of these facts, we are able to obtain the exact distribution of S,(k), via
the projection of the joint distribution of S,(k) and E,(k) onto S,(k), using the finite
Markov chain imbedding technique. The details of this approach are provided in the
following section.

3. The exact distribution

Given n, the total number of successes S,(k) can take on the possible values of
0,k,k+1,...,n. The random variable S,(k), by itself, is not a Markov chain, even in
the case where X1, ..., X, are i.i.d. Bernoulli trials. However, we can show that S, (k)
is finite Markov chain imbeddable in the sense of Fu and Koutras (1994): (i) there exists
a Markov chain {Y; : t = 1,...,n} defined on a state space {2 with initial probability
& and transition probability matrices M;, t = 1,...,n, and (ii) there exists a finite
partition {Cy;x = 0,k,...,n} on the state space {2 such that

P(Sn(k) = z) = P(Yn € Cy | £o)

for all z = 0,%,...,n. For the sake of clarity in the following discussion, the two states
1 and 0 will also be denoted by success (S) and failure (F), respectively.

For 1 < t < n with n given, a possible ending block (the m;th F and the last
success run of the subsequence Xi,...,X:) can only be one of the following cases:
{F,FS,...,FS---8, or §---S(if my = 0)}. The random variable E;(k) is the num-
ber of successes in the ending block F'S--- S if it is less than k, and Ey (k) = k™ if it is
equal to or greater than k. We define a state space

(3.1) Q={(wv):u=0k,...,n—1,mv=01,...,k—1Ek"}

with size d = Card(Q) = (n — k + 2)(k + 1).
In our counting procedure, the sequence of random vectors

{ift = (St(k)»Et(k)))t =1,2,... 7n}

defined on {2 obeys the following rules:

(i) Given Y;—1 = (z,0), then Y; = (z,0) with probability g. if the outcome of the
t-th trial is F, and Y; = (z,1) with probability p, if the outcome of the ¢-th trial is S.

(i) Given Y;—; = (z,y) and 1 <y < k — 2, then Y; = (z,0) with probability ¢, if
the outcome of the t-th trial is F, and Y; = (z,y + 1) with probability p; if the outcome
of the ¢-th trial is S.

(iii) Given Y;—1 = (z,k — 1), then Y; = (z,0) with probability ¢; if the outcome of
the t-th trial is F', and Y; = (z + k, k™) with probability p; if the outcome of the t-th
trial is S.

(iv) Given Y;_; = (z,kT), then Y; = (z,0) with probability ¢, if the outcome of
the t-th trial is F, and Y; = (z + 1,k") with probability p; if the outcome of the t-th
trial is S.

In view of our construction, the sequence {Y; = (Si(k), Ex(k));t = 1,2,...,n} forms
a homogeneous Markov chain with transition probability matrix

M = (p(m,y),(u,v))dxd’
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where the paired states (-, -) are lexicographically ordered, and the transition probabilities
P(s,y),(u,v) Can be specified explicitly as follows. Given (z,y) € Q,

(¢o fv=y=0andu=z,

pp ify=0,v=1,and u =1z,

q ify#0,v=0,and u=rz,
pp Hi<y<k—-lv=y+1,andu=urx,
Plzy),(uw) = e — _
orify=k—-1,v=k, and u=z +k,
orify=kt,v=k%,and u=2z+1,

1 ifv=yandu=z=n,

| O otherwise.

Hence the random variable S, (k) is finite Markov chain imbeddable, and thence the
exact probabilities can be obtained by

(3.2) P(Sn(k) =) = EM™WU(C,),  ©=0,k,...,n,
where the 1 x d vector & = (go,Po,0,...,0) is the initial distribution of Y;, the partition
{C} is defined as

Cy ={(z,y):y=0,1,2,...,kt}, =z=0k,...,n,

and U’ (C;) is the transpose of the (1 x d) row vector U(Cy) = (0,...,0,1,...,1,0,...,0)
with ones at the coordinates corresponding to states (z,y) € C,.
The moments of S, (k) can be computed from

(3.3) ESy(k) =) &MU (@), r=12..,

x
where Y is the sum over z = 0,k,...,n, and U’ (z") is the transpose of the (1 x d) row
vector U(z") = (0,...,0,2",...,2",0,...,0) with 2" at the coordinates corresponding

to states (z,y) in Cy.
4. Limiting distribution

The sequence {X;}$2, is separated into blocks of consecutive successes by failures.
The size of the j-th block is denoted by L;, and L; = 0 if the (j — 1)-th failure is followed
immediately by another failure. It follows from the definition of L; given in Section 2
that P(L, = 1) = popll_lql if { > 1 and that P(L; = 0) = go. Further, it can be easily
calculated that for every ¢,

P(Lipi =1L =49 =pp 'qn if 121,
and
P(Ljt1=0|L; =i) = qa.

Hence {L;,j > 2} is a sequence of i.i.d. random variables. This crucial fact provides the
foundation for finding the limiting distribution of S, (k) when the sequence {X;}2; has
a Markov-dependent structure (note that the distribution of L; differs from that of L;,
j > 2). As we will see, the distribution of S, (k) is closely related to the partial sums of
{L;(k)} and {L;}. To obtain the limiting distribution, we need the following lemma:
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LEMMA 4.1. Given k > 1,

(i) pi = E(L.(k)) = p2p’f‘1(kq1 +p1)q1‘1, ,

(ii) o? = Var(L1(k)) = [p2pt™ (kth +p1)2(1 - papt~ )+P21]:'f]¢1f , ,
(iii) 14 = Cov(L1, L1(k)) = [p2p¥ " ((kar + p1)? + p1) — P3Py ™' (kau + p1)lay

PRrROOF. Results (i) and (ii) may be obtained directly, with

(4.1) e = ELi (k) = lewlp

= popt (kg + p1)ar !,
and

[e o]
(4.2) E(Li(k)) = Z Ppaqrpi”!
[p2q1p1k(k — 1)pF 2% + 2kpF qn + 20807 + ke
= papt (kg1 + p1)? +p1)q1 -

Note that Ly = Ly(1) and E(L;Ly(k)) = E(L?(k)). Therefore, Result (iii) also follows
from (4.1) and (4.2). This completes the proof.

From Lemma 4.1, it can also be shown that

o0
E(L{(k)) = Zi3p2Q1p§_l
i=k
= pop® (kg1 + p1)® — 2¢2p1 + 3kqip1 + 3qip1 + 3q1p; + 5pYlay

THEOREM 4.1. If the sequence {X;} is a homogeneous Markov chain with transi-
tion probability matriz A as given by (2.1), then

%(snac) _ES.(K) SN, V() as n— oo,

where
V(k) = q(1, —qu) Sk (1, —qux)

~1 0']% O1k
g=q(l-p1+p)~, and ZEx= 5 |-
Ulk 0’1

PrOOF. From the invariance principle (see Billingsley (1968) or Mcleish (1974)),
it follows that

L; (k) 172 [ Wi(6)
4y vep- Z ( ) % <W2(§)>

on ¢ € [0,1] as n — oo, where W1 (§) and Wy(£) are two independent standard Brownian
motions.
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It follows from equation (0.4) of Nagaev (1961) that m,/n — ¢ in probability. Then
by (4.3) and noticing m,, + 1 is a stopping time, we have

(4.4) % ; (LL(’“)_;"“ ) . N(0,¢Z).

Note that n = m, + > ;o L; + L. It follows from the definitions of L; and L3, and
from EL1 = M1 = pg/ql, that l

M
(4.5) My, —ng = np—ZLi—L:l
=1
= =Y (Li— m) + pa(ng — mn) — L}
i=1

Mn
= —q ) (Li —m) - qL}.
i=1

Since E(S,(k)) = E(m,)ur + E(L%(k)) = nguk + O(1) and 0 < L% < Ly, 41, the next
result follows immediately from (4.4) and (4.5):

1 1
——7—=\Pn — ESy(k)) = n — Mn —=\Mn —

TS0 (k) = BS,() = —=(Suk) = moar) + —=(mn = na)ise -+ 0p(1)

n

(Li(k) ~ px)

Mn
—quk X 0”2 (L — ) + 0p(1)

i=1

(4.6)

3

Si- 5l

.
il

5 N0, V(K)),
as n — oo. This completes the proof.

For k = 1, S,(1) is the total number of successes and ¢(1,—p)Z1(1, —p) = pg. In
this case our results reduce to the well-known fact

n~Y2(S,(1) - np) 5 N(0,pg).

Numerical examples for & > 1 are given in the following section, and comparisons between
the exact and limiting distributions are also provided.

5. Numerical examples

It can be seen from the construction of the imbedded finite Markov chain described
in Section 3, and from Theorem 4.1 given in Section 4, that both the exact and lim-
iting distributions of S, (k) are functions of &, p; and ps. To gain further insight on
the effects of these parameters, the distributions of S, (k) for some selected parameters
are graphically presented in Figs 1-3 for n = 15, 30, and 60, respectively, where the
initial distributions & = (1,0,...,0) are assumed. For purposes of comparison, the
expectations are also included.
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Given n, the effect of £ and p; can be summarized as follows. For small k (e.g.
k = 2), the distribution becomes smoother and bell-shaped as p; increases, and this
tendency is amplified for larger values of ps. The distributions are highly skewed to the
right and drift away from a normal shape as k increases, even though the changes are
somewhat less pronounced for larger p;. When n increases, as from Figs 1 to 2 to 3
(n = 15,30,60), the distributions are better approximated by a normal distribution for
small k and large p;, and less well for large k (e.g. k = 7) and small p; (e.g. p1 = 0.2).

In view of Figs 1-3, it appears that the distribution of S,(k) is predominantly
determined by p’f“l and seems to have a linear relationship with p;. These findings based
on the exact distribution are consistent with the results for the limiting distribution.

6. Discussion

In our numerical studies, almost all distributions of S, (k) are highly skewed, espe-
cially when k is large. Here we provide an intuitive explanation of this phenomenon.

Let n; = L;(k) — quL;. From (4.6), Sp(k) — ESn(k) = (1/y/n) Y iy mi + 0p(1). In
order to understand the asymptotic normality of S, (k), we study the Edgeworth expan-
sion remainder term (see Petrov (1975)) of the distribution F, of [1//nV (k)](Sn(k) —
ES,(k)). In this case,

(6.1) |Fn(z) — ®(2)| < C-[8/vVEmad(z) + B Em; "D /(1 + |z)7],

where @ is the standard normal distribution, 3 is the skewness of 71,

B8 = En}/[(Elm[*)*/?),
and
B, = Elm["/(Elm[*)"*

for any r > 2. B, is an index of the tail probability of 7; and is expected to be bounded
for large 7. We choose r large, so that the right-hand side of (6.1) is dominated by the
skewness of ;.

Roughly speaking, the skewness of 7, is determined by the skewness of L;(k) and
L,. The skewness of L, (k) is tabulated in Table 1 for k = 1,4,7, and 15 with p =p, =
pa = 0.1 to 0.9. It is clear that, when k is large, there are no common values of p such

Table 1. Coefficient of skewness 3 for Li(k), with k =1,4,7,15 and p=0.1 to 0.9.

P k
1 4 7 15
0.10 2.15035 24.2097 444.15 2092118.26
0.20 0.71554 5.7268 38.43 11447.58

0.30 —0.14606 2.2325 9.01 540.39
0.40 —0.82219 0.8776 3.08 61.46
0.50 —1.41421 0.0831 1.15 11.25
0.60 —1.96231 -—0.5576 0.21 2.71
0.70 —2.48608 —1.2185 —0.48 0.63
0.80 —2.99633 —2.0274 -1.26 —0.28

0.90 -—-3.49990 —3.0662 —2.48 —1.38




730 JAMES C. FU ET AL.

that the distributions of L;(1) and L;(k) are both not skewed. This is the main reason
why the normal approximation is not appropriate when k is large with moderate values
of n.

With respect to computational time, the finite Markov chain imbedding technique
for obtaining the exact distribution is very efficient. As can be seen easily from (3.2), it
involves only the construction of the transition probability matrices and their multipli-
cation. For all the examples considered, the CPU time is usually less than a fraction of
a second using the S-Plus software package on a SUN Ultra-Sparc Unix workstation.
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