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Abstract. Recently, a new technique to circumvent the ill-posedness of the decon-
volution problem has been suggested. This technique is based on what is known
as multi-channel convolution system. In this paper, we modify and develop this
technique in order to adapt it for statistical use. We then apply it to the problem
of estimation of deconvolution density in the case of different conditional densities.
This method enables us to combine equations efficiently for any set of conditional
densities and to construct estimators in cases where the characteristic functions of the
conditional distributions vanish at some points, as it happens in the case of uniform
and triangular distributions.
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1. Introduction

The convolution operation has been widely used in many statistical, mathematical,
physical, and engineering applications for more than seventy five years. For example, in
communication engineering the output signal of a linear filter can be represented by the
convolution of the input signal and the system impulse response function. In statistics,
the pdf of the sum of two independent random variables is the convolution of the pdf’s
of the random variables.

By a convolution here we mean the convolution operation, *, associated with the
Fourier transform, which is defined by

(11) W) = (F9)) = [ f@ale—tat
Define the Fourier transform of a function f as

(12) @) = i@ = [ 1@
so that the inverse transform is given by

(13) FANE) = @) = 5= [ Flw)e o
Then

h=fxg=f§.
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Equally important to convolution is deconvolution. The deconvolution problem,
which arises in many applications, is the problem of reconstructing one of the convolved
functions from the convolution, assuming that the other convolved function is known. In
better words, find f, given that g and f x g are known. Unfortunately, the deconvolution
problem is ill-posed and cannot be always solved as seen from the last equation, which

leads to L
f(=) =F'[h/g).

The right-hand side may not exist if § vanishes at some point. :

The ill-posedness of the deconvolution can be phrased as follows: if f is a continuous
function and g is a compactly supported finite Borel measure that is absolutely continu-
ous with respect to Lebesgue measure on the real line, in particular, if g is a nonsingular
probability measure with compact support, then there exists a continuous function p,
not identically zero, such that

§w)iw) = 0.

This leads to
(f+uxg=fxg,

which means that the solution of the deconvolution problem is not unique. Moreover,
if we assume that f € L%(R) and g as before, then it is known that the convolution

transformation Cjg
C,: L*(R) — L*(R)

defined by )
Co(f)=TFxg

is a continuous injective transformation from L?(R) into the range of Cy, but its inverse,
the deconvolution transformation, Dy, defined by Dy(f * g) = f is discontinuous.

In 1994, Casey and Walnut proposed a new technique to circumvent the ill-posedness
of the deconvolution problem by creating what they called a multidimensional channel
system. Each channel in the system is represented by a convolution and the channels
are grouped together in parallel so that the input (unknown) signal is fed to all the
channels for processing. From the out of these channels, the input signal can be perfectly
reconstructed. The underlying idea here is that perfect reconstruction of the input signal
is possible because any information that is lost by one of the channels is retained by
another. In other words, the system overdetermines the input signal f.

Symbolically, if f is the unknown function, ¢;, i = 1,2,...,n, is the system impulse
response of the i-th channel, and p; = f * ¢; is the output of the i-th channel, then f
can be reconstructed if ¢; and p; are known, provided that the Fourier transforms, §;’s
of the ¢;’s satisfy certain growth condition. This condition entails that the ¢;’s have no
common zeros, which in turn implies that no information about f is lost by the system.

Functions that satisfy that condition are called coprimes. It is shown in Casey
and Walnut (1994) that the indicator functions, I{_, r,j, and I|_, -, of the intervals
[—r1,71] and [—rg, o] are coprimes if

r
r_l =./p, p not perfect square.
2

The work of Casey and Walnut (1994) has its roots in earlier work by Wiener
(1949), Hérmander (1967), Berenstein and Yger (1989), and Berenstein and Gay (1991).
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Although we shall follow a parallel path to that of Casey and Walnut (1994), we find
that at some point we have to go back to the original work of Hérmander to extract
some results and adjust them to our needs.

In this paper, we shall modify the work of Casey and Walnut (1994) in order to
adapt it for statistical use. More precisely, we shall apply it to the problem of estimation
of deconvolution density in the case of different conditional densities. Our approach,
however, differs from theirs in two main points.

Firstly, the work of Casey and Walnut (1994) was focused mainly on the case where
the ¢;’s were indicator functions of intervals and coprimes, while in this paper we deal
with more general examples of coprime functions. Admittedly, we do not develop a
general theory for coprime functions as Casey and Walnut (1994) did, but we focus our
attention on some specific functions that are coprimes yet not necessarily indicator func-
tions of intervals. To this end, we shall appeal to the original work of Hérmander (1967).
Secondly, the work of Casey and Walnut was tailored to signal analysis applications,
where the output signals p; = f * ¢; are usually known. In contrast, in statistics applica-
tions, usually the functions p; are also unknown, but fortunately can be estimated from
observations. This adds more complexity to the solution of the deconvolution problem.

The problem we shall address in this paper can be formulated as follows. Suppose

that n independent observations Y;,Ys,...,Y, are available to estimate an unknown
density f(z) of i.i.d. random variables Xj, j = 1,...,n, where
(1.4) 1/}=Xj+€j, j=1,...,n,

with independent measurement errors €; having known probability density functions
g;(-). Mathematically, the problem reduces to searching for a common solution f(z) of
the n convolution equations

(L5) pit) = [ Y G- f@de,  j=1,...m,

-0

where p;(y) is the unknown density function of Y;.

During the last two decades deconvolution problem has appeared in many contexts
and has been studied by Carroll and Hall (1988), Devroye (1989), Diggle and Hall (1993),
Fan (1991a,b,¢,1992), Efromovich (1997), Liu and Taylor (1989), Stefanski and Carroll
(1990), Taylor and Zhang (1990), Zhang (1990, 1995) among others. These authors were
mainly concerned with deconvolution of Rosenblatt-Parzen type kernel estimates in the
one-dimensional case, examination of MSE or MISE of these estimates, and the choice
of the bandwidth parameter.

Masry (1991,1993a,1993b) constructed estimates for the stationary random process.
Asymptotic normality of the estimator and asymptotic normality of its MISE were es-
tablished, respectively, in the papers of Masry (1993b) and Piterbarg and Pensky (1993).
Lower bounds for the errors of the estimators of deconvolution density were derived by
Carroll and Hall (1988), Stefanski and Carroll (1990), Zhang (1990), Fan (1991a, 19915,
1992, 1993) and Pensky and Singh (1994).

Abramovich and Silverman (1998) and Donoho (1995) constructed wavelet-based
solutions of linear inverse problems treating density deconvolution as a special case.
Pensky and Vidakovic (1999) and Walter (1994, 1999) studied density deconvolution
based on wavelet expansions.
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Yet, all these papers considered only the case when ¢; are identical. However, in a
variety of applications we cannot make this assumption. Let us consider, for instance,
a simple example of measuring systolic blood pressure (see Carroll et al. (1995)). It is
well known that a long-term systolic blood pressure X is an important predictor of the
development of coronary heart diseases. However, during a clinical visit the immediate
blood pressure Y is observed. The reason that the long-term X and the single-visit
Y differ is that blood pressure has major daily, as well as seasonal variations. The
other sources of error include simple machine recording error, administration error, etc.
Therefore, Y = X + ¢ where ¢ is the measurement error. It follows from the above
discussion that it is unreasonable to assume that ¢ has the same distribution for various
groups of patients and different types of equipment. In practice, for each chosen group
we can estimate the pdf of € by repeatedly measuring systolic blood pressure of patients
in that group and then use the estimator as the true pdf of e. Other examples where
different conditional densities are required in medical and pharmaceutical research are
given by Desouza (1991) and Louis (1991).

The present paper deals with the general situation when conditional densities are
not identical. Pensky and Singh (1994) investigated density deconvolution with different
conditional densities. However, estimators were constructed there under very restrictive
assumptions that all conditional densities are uniformly bounded from below and their
characteristic functions don’t vanish on the real line.

The other shortcoming of the approach of Pensky and Singh (1994) is that each of
the equations (1.5) was treated separately and then solutions were combined to obtain
an estimator of f(z). This technique does not allow one to derive estimators if the
characteristic functions §; vanish at some points as it happens when, for example, g; are
the pdf’s of uniform or triangular distributions.

In what follows, we propose an approach to density deconvolution with different
conditional distributions which enables one to combine equations (1.5) efficiently and
construct an estimator of f(z) even though §;, j = 1,...,n, vanish at some points. As
mentioned before, for this purpose we develop some ideas of Casey and Walnut (1994)
and apply them in statistical environment.

The rest of the paper is organized as follows. In Section 2 we introduce the notation
and terminology that will be used throughout the rest of the article and discuss some of
the ideas introduced by Hérmander (1967) and Casey and Walnut (1994). In Section 3
we use some of these ideas to construct estimators of the deconvolution density. Section 4
is reserved for examples. Section 5 concludes the paper with the discussion.

2, Mathematical background

In what follows, the set of all real numbers is denoted by R and the set of all complex
numbers by C. Let Q be an open set in the complex plane C. If p is a nonnegative
function defined on Q, we shall denote by Ap(f2) the set of all analytic functions ¢(2) in
) such that for some constants C; and Cy

(2.1) lp(2)] < Crexp(Caop(z)), ze€f

Let @1, @2, ..., v, belong to Ap(Q), so that

1< 3l ler explean(2)

=1
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for some constants ¢i, ¢z. Thus,
(2.2) dyexp(~dap(2)) < D _lpil2)l, z€Q,
i=1

for some positive constants dy, ds.

Hoérmander (1967) showed that condition (2.2) is both necessary and sufficient for
Ap(Q) to be finitely generated with generators ¢i,...,p,. The latter implies that we
can find g1,...,9n € Ap(Q) such that 1 =377 ; pig:. '

In the rest of this article, we will be interested in the case where p(z) = |2|. Since
[Im 2| < |z|, and for any nonnegative integer N, we can find a and 0 < d, such that
(14 |2 < aedl?l. it follows that

bre b2l < gmdllm=l (1 4 Izl)_N ,

for some appropriate constants b, and ba. Moreover, since

Do lei@PR <Y lwi(2)l,
j=1 j=1

we can now replace (2.2) by the stronger condition
1/2

ae—21rbﬂmz| (1+}z|)—-N < ZI‘PJ'(Z)P ,

for some appropriate constants e and b.

Now let us consider the system of convolution equations (1.5) in which p; and g¢;
are known. Writing the system of equations (1.5) in terms of the convolution operator,
we arrive at
(2‘3) pqu]*f1 j=1...,n

The problem of solving the system for f is well-posed if the §;(w) are entire functions
on the complex w-plane and

1/2

n
(2.4) ae” 2 mel (3 4wV < I S IgG )2 ),
j=1

for some constants a and b and a positive integer N. For, by Hormander’s result, it
follows that there exist entire functions 7;(w), j = 1,2,...,n, such that

(2.5) Z gj(w)pj(w) = 1.
Hence,

> (g5 * v3)(x) = 8(=z),

j=1
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and it follows that
(2.6) ij*uj:z:(f*qj)*yjzf* qu*l/j =(f*x6)=f.
j=1 j=1 j=1

It should be noted that Hérmander’s result is an existence theorem, and as such
it does not provide an algorithm for constructing the 7;(w)’s. In fact, finding the de-
convolvers v; explicitly is a very difficult problem, if not impossible in most cases. Yet,
approximations thereof can be found. Consider nonnegative weights o, j = 1,...,n.
Then, as a first approximation of #; one can take the function

- — ;95
)= S adai
which unfortunately is not analytic.
To devise an analytic approximation of the deconvolvers v;, j = 1,...,n, consider
a function ¥(z) such that its Fourier transform )(w) satisfies the following conditions
C1. ¥(w) has a bounded support, with supp ) C [—A4, A].
C2. P(0) =1.
C3. 1(w) is s times continuously differentiable with $()(0) =0if 1 < j < s—1 and
W @)] < Cy
Let ¥p(z) = h~19(h~1z), so that ¢ (w) = ¢¥(wh). From conditions C2 and C3 it
follows that )
(2.7) [P(w) = 1| < Cylwl’.

Therefore, |t (w) — 1| < Cyph®|w|® and 9, (w) =~ 1 for small h. Define
" -1

(2.8) Din(w) = 25 (W)b(wh) = [Z o;g; (w)lz] x a;q; () (w).
i=1

It is easy to see that vjn = v; * ¥, and 37, Pjn(w)dj(w) = P(hw). Moreover, if fj is
defined by fj, = f % ¢y, then

NPYRRD ST 1) BN
(2.9) fo=Fn =SS0 =N g
7=1

> @105 (w)|?
3. Statistical estimation

As the mathematical foundation has been developed, we apply the theory to estima-
tion of deconvolution density. Suppose that n independent observations Y, Ya,...,Y,
have been obtained with Y; ~ p;(y) where p;(y) is defined by (1.5), j = 1,...,n. Assume
that g; satisfy condition (2.4) and f belongs to Sobolev’s space H3, that is

(3.1) /oo [F ()P (@? + 1)%dw < o0.

—00

To construct an estimator of f(z) note that the function 1(z) can serve as a Parzen’s
kernel. Therefore, it is the standard technique to approximate f by

fata) =17 [ T BNy — ) F(2)dz = [ * P
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It follows from (2.9) that fj, can be written as

n
fo =) pj*Vjn-

7=1
Hence, fr(z) = 375, [ 2o vin(z — y)pi(y)dy = Y5, Evjn(z —Y;) and the estimator of
f(z) has the form

(3.2) falz) = vin(z — ;).
j=1

J

Let us calculate the mean integral squared error MISE(f},) and choose the weights
aj,j = 1,...,n, minimizing it. It is well known that

(63) MISEGi(@) - [ " (o) = ful0))do+ / " (@) = F(@))de = Ay + A,

Using Parseval’s identity and (2.8) we can show that the variance component A; is
bounded by

(34) Ay = 2":/“’ Varvj(z — Y;)de
j=19 =0
= ; /:o /_Z Vin(z — y)p;(y)dydz
= (2n)7t Z/w 193n(0) 2o
j=1v

n A n -2
= (2rh) > / {Z a,-lqj(h—lw)ﬁ} o} (h ™ w) P[4 (w)Pdw.
k=1Y"4 {j=1

The bias component does not depend on «;:

o o]

(49) Bo= [ (o) f@)ds <m0 [ () Pudw = O(*)

due to (3.1), (2.7) and Parseval’s identity. Therefore, to find optimal o, j = 1,...,n,

we need to minimize A; with respect to a;, j = 1,...,n. Applying Cauchy inequality
to the denominator of (3.4), we obtain
2
n n n
(36) {Z ajl«jj(h'lw)d < Dol Y 1ai(h T w)f?

and the equality in (3.6) takes place when a1 = ap = --- = an. Hence, the estimator
fr{z) has the form (3.2) with :

. ~1
(3.7) Dpp(w) = {Z 14, (w)IQ] G () (hw)
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and

oo A blw)|2
8)  wise(i) <o [ IfPurao+ e [ o BOE

For MISE(f}3,) to converge to zero as n — oo we need a somewhat stronger condition
than (2.4). Namely, if

1/2
n
(3.9) BAm) (1+ )™ < (Z Iéj(W)lz) :
. =1
for some positive B, N and A(n) — oo as n — oo, then

MISE(f,) < Cyh* / ” |f () Pw?dw

A
+2rh X ()] /_ ) (14 b ™)™ a
= 0 (h*) + 0 (h"2N-1\"2%(n)).
Choosing h ~ [A(n)]~2/(2s+2N+1) we ensure that
(3.10) MISE(f) = O([A(n)] e/ o+2N+1)),
5o that lim,_,., MISE(f,) = 0.
4. Examples

Let us consider several examples of applications of the theory developed above.

Ezample 1. Uniform distributions. Let g;(x) be density functions of the uniform
distributions

gj(z) = (2a;) "' I(|z| < aj), @a;>0,j=1,...,n.
Then §j(w) = 2(a;w) !sin(a;w) and §j(w) = 0 if w = wk/a; where k is an integer.

Therefore,
n

n
- -2 —2 2
S las(@)P =0 a5 sin?(as)
does not vanish if there are at least two different a;’s, say, a1 # ag, such that the ratio
a1 /as is irrational. Under this assumption,

o0

-~ ~ A ~
MISE(f) < Cuh [ 17(@)Pu?*du + (2m)hCun) [ )Pl

where

-1
n
Cu(n) = [inf Z aj_2 sinz(ajw)} >0
j=1
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is the constant depending on a3, as,...,a, and n only.

Consider, for example, the case when a; = a for k out of n cases and a; = b
for the rest (n — k). Assume that the ratio a/b is irrational. Denote k/n = p and
Cap = inf,[pa"?sin?(wa) + (1 — 0)b~2sin?(wb)]. Then condition (3.9) is valid with
A(n) = 4/n and

0o A
(4.1)  MISE(fy) < Cyh®® / | (@) Pw®dw + (27Can) " h™2 [ | (w) ]} |w]?dw.
—A .

—00

Note that since sin?(wa) and sin?(wb) both vanish at countable number of points,
the estimators constructed for each group of conditional densities separately have infinite
variances. However, according to (4.1), estimator (3.2) has

MISE(fy) = O(n~2/(25+3)),

Ezample 2. Triangular distributions. Assume that g;(z) are triangular distribu-
tions, i.e.
qj(x)zaj_l(l——aj_llml), a; >0, j=1,...,n

Then, §;(w) = 4(a;w)~?sin(0.5 a;w) and, similarly to the case of uniform distributions,
D=1 185 (w)|? does not vanish if there are at least two different a;’s with irrational ratio.
For mstance if on of conditional densities have a; = a and (1 — g)n of them have a; = b,
where 0 < ¢ < 1 and a/b is irrational, then assumption (3.9) is valid with A(n) = v/n
and

A
MISE(fn) < Cyh* / |f (@)PPw?*dw + (8nCyn) 1R / ()P |w]?dw
- —-A
with C%, = inf,[pa*sin*(0.5wa) + (1 — g)b~*sin* (0.5 wb)]. Hence,
MISE(f,) = O(n~2/(2s+3)),

Ezample 3. Scale-parameter family. Consider a sequence of positive integers o,
J=1,2,3,... and let g;(z) be a scale parameter family

gi(z) = qu(ffjfc)

with |§(w)| > Co(|w|? + 1)~¢ for some positive d and Cp, so that §(w) does not vanish
for real w. Assume that o;’s are bounded from above or from below.
If 0; < 09 for some positive o, then for some Cy; > 0

Zl%(w)l >001_Za4d L+ )~

and condition (3.9) holds provided the series }: 1 J 4 is divergent. If ; < op for some
og > 0, then for some C,5 > 0

Z 16; ()2 > Coan(l + |w]?)~24,



710 MARIANNA PENSKY AND AHMED 1. ZAYED

that is (3.9) is valid with A(n) = /n. _
To obtain a more precise asymptotic expression for MISE(f,), observe that

= 2wCEh Joa 3i o (R + o) 72

If we denote 0'ns = SUP; <<y, 75, then from the previous inequality it follows that

n A
(42) A <h 41 E a}g‘d (2%)_100_2/ h@(w)|2(}w]2 + h%02,) 2 dw.
"y

Jj=1

Thus, combining (3.3), (3.5) and (4.2), we arrive at
-1 ~1

(4.3)  MISE(fp) = O (A®*)+0 | h=%71 |y " of¢ +O [ h7lond D o3
=1

j=1

It is interesting to examine the behavior of (4.3) in the situation when o;, j =
1,2,..., are either increasing to infinity or decreasing to zero. We will consider the cases
when 0; = 0¢j* or 0; = 0oj ~* with a > 0.

If 0 = 00j%, @ > 0, then oy, = oon® and Y__; 0% = O(n****1). Hence,

(4.4) MISE(f,) = O(h?®) + O(h~4d-1p=4ed"1) L O(h~In"1).

Formula (4.4) implies that in the case when a > (2s + 1)~! choosing h = O(n~1/(2s+1))

we arrive at

MISE(fy) = O(n~25/(2s+1)),

This means that for a > (2s + 1)~ the presence of errors €1,...,&, does not affect
convergence rate of the estimator and we can construct the estimators with the same
precision as if the observations Xi, Xa, ..., X,, were available. Nevertheless, if a < (2s+
1)~1, the estimator converges slower than the estimator based on original observations,
that is

MISE(fh) — O(n~2s(4ad+1)/(23+4d+1)).

If 0j =00j7%, o> 0, then 0,4 = 01 and E?:l j4ed = 0(n1—4ad). Therefore,
(4.5) MISE(f}) = O(h2°) + O(h—*4Lnted-1).

It follows from (4.5) that lim,_,co MISE(f,) # 0 if & > d/4, so that the estimator (3.2)
is not mean square consistent in this case. However, if @ < d/4, we obtain Z;L:l - tod
O(n'~%29) and

MISE(f},) = O(n~25(1—-4ad)/(2s+4d+1)y

Note that the asymptotic expressions (4.4) and (4.5) are exact in the sense that
if G(w) < Co(w? + 1)™¢, then there exist absolute constants C; and Cy such that
MISE(fr) > Cy (k2 + h~4d-1p~ded=1 4 p=1p=1) if 5; = 00j%, @ > 0, and MISE(f3) =
Ca(h?® + h~4d-1ptad=1) if 5, = g9j =%, & > 0. This means that the analysis conducted
above is adequate.
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5. Discussion

In the present paper, we modified the work of Casey and Walnut (1994) in order
to adapt it for statistical use. For this purpose, we appealed to the original work of
Hormander (1967) and developed the technique which allows to construct a common
solution of convolution equations in a wider variety of situations than those on which
Casey and Walnut (1994) concentrated.

This method is applied to the problem of estimation of deconvolution density in
the case of different conditional densities. Although this problem has been studied ear-
lier by Pensky and Singh (1994), the estimators were constructed under very restrictive
assumptions that all conditional densities are uniformly bounded from above and their
characteristic functions don’t vanish on the real line. The other shortcoming of the
approach of Pensky and Singh (1994) is that each of the equations (1.5) was treated
separately and then solutions were combined to obtain an estimator of f(z). This tech-
nique does not allow one to derive estimators if characteristic functions §; vanish at
some points as it happens when, for example, ¢; are the pdf’s of uniform or triangular
distributions.

In the present paper we overcame both defects of the method of Pensky and Singh
(1994) and proposed the method which allows one to construct the estimators even if all
conditional characteristic functions vanish at some points. Moreover, this method allows
one to combine equations efficiently and derive coefficients a;, j = 1,...,n, that are
optimal for any set of conditional densities g;. The MISE of the estimator is calculated
and, under fairly non-restrictive condition, is shown to turn to zero as n — oo for the
appropriate choice of h.

The theory is illustrated by examples when the family of conditional distributions
is uniform or triangular, or a scale parameter family. In the case of the scale-parameter
family of conditional distributions, we consider the wide spectrum of situations including
the ones when the scale parameters are increasing to infinity or decreasing to zero. The
estimators are constructed and their mean integrates square errors are analyzed.
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