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Abstract. The maximum likelihood estimator (MLE) using a ranked set sample
(RSS) usually has no closed expression because the maximum likelihood equation
involves both hazard and inverse hazard functions, and may no longer be efficient
when the judgment ranking is imperfect. In this paper, we consider a modified MLE
(MMLE) using RSS for general parameters, which has the same expression as the
MLE using a simple random sample (SRS), except that the SRS in the MLE is
replaced by the RSS. The results show that, for the location parameter, the MMLE
is always more efficient than the MLE using SRS, and for the scale parameter, the
MMLE is at least as efficient as the MLE using SRS, when the same sample size is
used. Under the perfect judgment ranking, numerical examples also show that the
MMLE has good efficiency relative to the MLE based on RSS. When the judgment
error is present, we conduct simulations to show that the MMLE is more robust than
the MLE using RSS.

Key words and phrases: Asymptotic relative efficiency, estimating equation, judg-
ment error, modified maximum likelihood equation, order statistics, ranked set sam-
pling, robustness.

1. Introduction

Suppose X1, ..., X, is a simple random samples (SRS) of size n from the cumulative
distribution function (cdf) F(z;6) with the probability density function (pdf) f(z;0).
Denote its order statistics by X1., < -+ < Xp.n. To estimate the mean and variance of a
characteristic of a population, if sampling units are difficult or expensive to measure, but
it is relatively easy to rank them by judgment without actual measurements, a ranked
set sample (RSS) can be used. McIntyre (1952) first proposed the RSS for the estimation
of the population mean. The RSS of McIntyre (1952) is described as follows. Suppose k>
sampling units are identified and partitioned into & sets, each having k units. In the i-th
set, sampling units are ranked by judgment in an ascending order, and the i-th judgment
ranked unit, denoted by X;), is selected for the actual measurement, i = 1,...,k. Thus
the RSS consists of X(q),...,X(z), which are independent random variables. This entire
cycle can be repeated for m times to obtain an m cycle RSS with total sample size
n = mk, denoted by X(;y;, 4 = 1,...,k and j = 1,...,m. Under the perfect judgment
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ranking, X(;); follows the same distribution as X, i.e., its pdf can be written as

L) fslet) = o PO @O - P o)

The RSS has many applications in biology, agricultural and environmental studies
(e.g., McIntyre (1952), Takahasi and Wakimoto (1968), Dell and Clutter (1972), Stokes
(1980), Stokes and Sager (1988), Yu and Lam (1997), Barnett (1999), Al-Saleh and Al-
Kadiri (2000), and Al-Saleh and Zheng (2002)). Kvam and Samaniego (1993, 1994) and
El-Neweihi and Sinha (2000) also applied the RSS to the reliability theory. Recently,
many parametric, non-parametric and Bayesian methods based on RSS are proposed.
For a bibliography, see Patil et al. (1999).

When the underlying distribution is unknown, to estimate the population mean
based on RSS of size n = mk, McIntyre (1952) proposed the following sample mean,

X B 1 m k
=1 i=1

Takahasi and Wakimoto (1968) showed that this unbiased estimator using RSS has
smaller variance than the sample mean based on SRS, Xsrs, with the same size n = mk.
To estimate the variance, a natural estimator based on RSS is

. 1 m k _
(1.3) 6kss = —— ZZ(XW — Xgrss)?.

j=1i=1

The properties of 63gg were discussed by Stokes (1980). When m is large enough, Stokes
(1980) showed that the variance of 624g is smaller than that of 62gg, where

1 mk
s2 -y
Osrs = —1—7 ;(Xz Xsrs)®.

Stokes (1980) also calculated the limiting relative precision (RP),
RP = lim Var(62rs)/MSE(635s),
00

for several distributions with set size 2 < k < 5, where MSE(634s) is the mean square
error (MSE) of the estimate.

When the underlying distribution is known, other parametric estimators have been
proposed recently. For example, the maximum likelihood estimator (MLE) and the best
linear unbiased estimator (e.g., Stokes (1995), Sinha et al. (1996), and Chen (2000)). For
the normal distribution N(u,0?), Xsrs and [(mk — 1)/(mk)]6srs are MLE’s for x and
o2, respectively, based on SRS of size n = mk. Generally, since both hazard function
f(%;60)/(1 — F(z;0)) and inverse hazard functions f(z;0)/F(z;0) are involved in the
likelihood equation of RSS, there is no closed expression for MLE for parameters of the
underlying distribution. Besides, the judgment error is inevitable in practice. When the
judgment ranking error is present in RSS, the MLE may no longer be efficient. Therefore,
we consider a modified MLE (MMLE) for general parameters. We will show the MMLE
is relatively easy to obtain and, for a small set size k, is efficient relative to the MLE
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based on the RSS when there is no judgment error, and that it is more robust than the
MLE based on RSS when the judgment ranking is imperfect.

The rest of the paper is organized as follows. We define the MMLE in Section 2. In
Section 3, the properties of the MMLE are studied under the perfect judgment ranking.
The asymptotic relative efficiencies (ARE) of the MMLE to the MLE using SRS and
MLE using RSS are given in Section 4. In Section 5, we consider the MMLE under the
imperfect ranking. Simulation results to compare the MMLE and MLE usmg RSS are
reported. Concluding remarks are given in Section 6.

2. MMLE based on the RSS

Let Xi,...,X, be a SRS of size n from the cdf F(z;60) with pdf f(z;6), where
z € R! and 0 € ©, an open set in RP. Assume the distribution F(z;0) has the same
support and that the MLE for 6, denoted by éMLE,SRs, satisfies the maximum likelihood
equation

/ Xz,e
@1) Z J;(Xz,e)) 0

where the derivative is with respect to 6 = [0y ---8,]7, i.e.,

T
f'(x;m:[ Fls0)-+ oo /(0

Generally, solving MLE from (2.1) needs iterative numerical calculations. Under suitable
conditions (Lehmann (1983), p. 429), if 0 is the true value, the MLE is strongly consistent,
P(limp— 00 OMLE,srRS = ) = 1, and asymptotically normal,

(2.2) n!/2(Bywp,srs — 0) 2 Np(0,171(6)),

where () is the Fisher information matrix about 6 contained in the random variable
X, defined as

2.3) 1(6) = E { [ (980 log F(X; 9)] [a log f(X; a)]T}

We will use the following two basic identities of order statistics and RSS. If we
assume [p, f'(z;0)dx = 0, where the derivative is with respect to 6, then

k
(24) Z fin(z;0) = kf(z;0) and
f (X(’L)lﬁe)
(2.5) ZEO X =0,

where (2.4) was given by Takahasi and Wakimoto (1968), and (2.5) can be obtained from
(2.4) and the assumption.
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The log-likelihood function based on the RSS of size n = mk, X(;);, ¢ = 1,...,k
and j =1,...,m, subject to a constant, is given by

m k
D) {log f(X(5)5:0) + (i — 1) log F(X (53 0) + (k — i) log F(X ()5 6)},
j=11i=1

where F(z;60) = 1 — F(z;0). Then, under the suitable conditions, the MLE for 6 using
the RSS satisfies the maximum likelihood equation 4

FX@s0) F'(X(0)5;6) P (X3 0\
26) ZZ{ Zws®) TV F X0 TV F X0 } =0

§=14=1

where the derivative is with respect to 8 = [0; - - - 6,]7. Obviously, (2.6) is more difficult
to solve for 6 than (2.1), even for the normal and exponential distributions, since F’/F
involves the hazard function and F’/F involves the inverse hazard function. Once the
MLE for # from (2.6) is obtained, denoted by éMLE,RSS, it is strongly consistent and
asymptotically normal under the suitable conditions (Stokes (1995), Chen (2000), and
Bai and Chen (2000)).

In this paper, we modify (2.6) to obtain a modified maximum likelihood equation
by replacing the second and third terms on the left hand side of (2.6) by their expec-
tations. The idea. of replacing the hazard rate in the maximum likelihood equation by
its expectation was proposed by Mehrotra and Nanda (1974), who estimated parame
ters of normal and gamma, distributions based on Type II censored data. Mehrotra and
Nanda (1974) considered a single location or scale parameter of the normal and Gamma
distributions. In the following, we will consider general parameters. The asymptotics of
the results of Mehrotra and Nanda (1974) were considered by Bhattacharyya (1985).

Two things are worth noting about the modified maximum likelihood equation.
First, one referee pointed out that the modified maximum likelihood equation is still
an unbiased estimating equation (Godambe (1960, 1991)). To see this, denote (2.6) by
w(X;0) = 0. Then we have Eg(w(X;0)) = 0. Thus, from (2.5), the modified maximum
likelihood equation can be simplified as

(X (z) 51 ;0 )

2.7 =0

( ) lezz_: f(X(z)]’e) ’

i.e., the sum of the expectations of the second and third terms on the left hand side
of (2.6) is zero. Thus (2.5) implies that the modified maximum likelihood equation
given by (2.7) is still an unbiased estimating equation and (2.7) implies that we actually
use the partial likelihood for estimation. Second, in practice, the set size of RSS % is
usually small (2 < k£ < 5), because it is difficult to rank a large number of sampling units
without actual measurements. From Bhattacharyya (1985), using the modified maximum
likelihood equation for the Type II censored data, the estimates for the location and scale
parameters of the normal distribution are highly efficient relative to the MLE’s based
on the complete maximum likelihood equation. For example, the asymptotic relative
efficiency of the estimate based on the modified maximum likelihood equation relative
to the MLE based on the complete maximum likelihood equation is .80 for the normal
location parameter when only 20% of the data is observed. In the RSS setting, for each
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i=1,...,k in (2.6), we have either Type II (if ¢ = 1), or doubly (if 1 < i < k), or left (if
i = k) censored data. But we still expect the MMLE will retain good efficiency relative
to the MLE using the RSS when k is small. On the other hand, for each i = 1,...,k,
the first term in (2.6) corresponds to the partial log-likelihood for the observed data
while the second and third terms correspond to the probabilities for censored data,
i.e., there are i — 1 and k — 7 observations less and greater than the smallest and largest
observed order statistics, respectively. Thus, intuitively, the first term in (2.6) contributes
more information into the complete likelihood than the other two terms. However, as k
increases, the contribution of the first term decreases, so the loss of efficiency of MMLE
relative to MLE using RSS may increase as & increases.
Suppose the MMLE satisfies (2.7). From (2.1) and (2.7), we obtain:

THEOREM 2.1. The MMLE based on RSS for general parameters has the same
expression as the MLE based on SRS, but the SRS is replaced by the RSS. Moreover, if
the MLE based on SRS is unique, then the MMLE ‘s also unigue.

For example, for the normal distribution N(u,0?), we obtain the MMLE for p and
a? as

m k
AMMLE = _k ZZ ()g»
=1 i=1

and

1 m k
2 “
FMMLE = DD (X — vvee)?,
7j=11i=1

respectively. Note that, from (1.2) and (1.3), fimMLE = firss, and 62y E 1S asymptoti-
cally equivalent to 6Z¢q for the normal distribution. Thus it is very easy to obtain the
MMLE using RSS, when the MLE using SRS has a closed expression, or, if the iterative
procedures to solve the MLE using SRS have already been programmed, because we can
use these programs to find the MMLE without doing new iterative calculations, which
are required for the MLE using RSS from the original likelihood equation (2.6).

3. Properties of MMLE based on RSS

_ In this section, we show that, under the usual regularity conditions, the MMLE,
OvMLE, is strongly consistent and asymptotically normal. Let

f (X(z)gv
o= 530 Ty _Z (5:0)
_1 1 i=1 £
where g(Y;;0) = Zle (X373 0)/F(X()4:0), and 0 = [0y - -- 6,]T. First we have,

LEMMA 3.1. Suppose the judgment ranking is perfect. Assume that each coordinate
of 9(Y3;0) = [g1--- gp]* is a continuous function, that 0 < [g, g7(z)f(z)dz < 00, | =
1,...,p, and that (g, f'(x;08)dz =0. Let n =mk. Then, as m — oo and k is fized,

n'/2T,,(6) 2 N,(0,9(6)),
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where Q(0) = K21(0) —k Y%, Eq[b:(0))Es[bi(6)]T, I(6) is the Fisher information matriz
given by (2.3), and b;(6) = f'(X(1;0)/f(X@n;0), i =1,....k

PROOF. The normality follows from that g(Y};60), j = 1,...,m, are independent
identically distributed (iid) random vectors, that, from (2.5),

Eg[Tn(0)] = Eplg(Y1;6)] =0,

and that, by the independence of RSS,
. f (X(z)la ] f (X(z)l’e)
(3.1) Varg(Trn(9)) = {[E f(X(z)1,<9) [Z F(X 1 0)

_ 1y F(Xap;9)] [£/(Xn:0)
- m;EB{[f(X(m;G)_ [f(X(i)1;9)] }

F'Xay0)] o[£ Xars)]"
; [f(X(z)1,9) ’ [f(X(i'n;@)]

_ kg f'Xa f'(Xe)
= e (X0 (Xe)]

e o] =[]

_ ___I(g) . ZEg[b (0))Eq[b: ()],

where (3.1) is obtained by using (2.4) and (2.5). O

From the proof, we can also obtain another expression of Q(6) as

k k
Q8) =k _{Eo[bi(6)b:(6)"] — Eo[b:(0)1Es[b:(0)]"} = kD Varg(bs(6)).

i=1 i=1

The following lemma of uniformly strong consistency will be used to show the strong
consistency of MMLE.

LEMMA 3.2. Let Oy be the true value of § € © and B C © be an arbitrary
compact set such that 8o € B. Let the judgment ranking be perfect and h(Y;;0) =
Z Iogf(X(z)J,H) and L (0) = 3771, h(Y;;0)/m. We assume:

(1) h(y; 6) is continuous in 6 € B for every y.

(2) |h(y;0)] < M(y) and [z, M(z)f(x)dz < oo, for € © and all y.

Then, with probability 1,

k
sup | Lm(60) — Eg Y _log f(X(i)1;60)| — 0
ocB i=1
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ProoF. Using (2.4), Lemma 3.2 is a special case of Theorem 2 of Bhattacharyya
(1985). O

Before we state the properties of the MMLE, we need the following regularity con-

ditions.
(C1)

9
/Rl g5 f@0do =0, 1=1...p.

(C2) For 6 € O, the Fisher information I(0) satisfies 0 < I(6) = (I;;(6))pxp < 0.
(C3) There exists M(x) such that [, M(z)f(z;0)dz < oo for § € © and

33 log f(z;6)

< =1,...,p.
Bﬁaagbaec = M(I)’ G,,b,C 17 ' D

(C4) The distribution is identifiable, i.e.,
Poo (f(z;0) # f(z;60)) > 0.

THEOREM 3.1. We assume the judgment ranking is perfect. Let n = mk. Under
the conditions (C1) to (C4), the MMLE, ymig, solved from (2.7) has the following
properties:

(1) OmmMLE is strongly consistent as m — oo and k is fized.

(ii) Let 6p be the true value of . As m — oo and k is fized,

(3.2) n'/?(GumLe — fo) s Ny (0, A(6o)),

where A(8g) = I71(6o) — YoF_, I71(80) Eg, [b:(60)] Eoo [bi(00)|T I~ (60) /K, and b;(6) is
defined in Lemma 3.1.

PRroOF. Let B and L,,(9) be defined as in Lemma 3.2. To show (i), we consider
the log-likelihood ratio L,,(#) — L,,(6y) and obtain, from Lemma 3.2, as m — oo,

(3'3) d(ﬂ) = Lm(e) - Lm(90)
k k
~ Boy 108 f(X(31;6) — Eay y_log f(Xcyibo),

t=1 i=1

with probability 1 and uniformly in § € B. We want to show that d(d) has a local
maximum at §y. Note that d(6p) = 0. Thus we need to show that d(f) < 0 for 9 # 6,
and 6 € B. From (2.4) and (3.3), we have

d(0) — k[Eg, log f(X;6) — Eg, log f(X; fo)]

_ f(X;9) fX:0) ] _
= o [oe ] < s P g =

by Jensen’s inequality, where the equality holds if and only if § = 6. By (C4), we obtain
d(0) has a local maximum at fy. Since B is arbitrary, the strong consistency of ymLE
solved from (2.7) follows from the standard arguments. :
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To show (ii), let T}, be defined as in Lemma 3.1 and let fyre satisfy (2.7). We
consider the case of a single parameter. By the expansion of T, (fmmLE) at 6o,

N . 1 .
T (OmmLe) — Tm(60) = T, (60) (OmmLe — Go) + §T’I’,‘(E) (Ovvre — 60),

where T, (éMMLE) =0 and ¢ is between Oyvrr and 6. Hence
n}/2T,(8o)
1 R )
17,(60) + -2-T,’72(6)(9MMLE — 6o)

(3.4) 222 (Oynare — 0o) = —

where T (¢) is bounded from (C3) and by (i), fvmre — 6o — 0, with probability 1, and
from Lemma, 3.1,
n2T,,(60) 2 N(0,2(60))-

Finally, in (3.4), T},(60) — —kI(6o) in probability by the law of large number. Therefore,

" we have

n?(@ymre — 0o) EN (0, o) ) )

k2I%(6o)
ie., A(fo) = Q(60)/[K*I2(60)] = I (60) — iy Ej, [b:(00))/ [k (60))-

For the multiparameter case, the proof of (ii) is basically the same as that of
the single parameter case. However, the single equation derived from the expansion
of GymLe — 8o will be replaced by a system of p equations which must be solved for
éMMLE,j — 65, j =1,...,p. Thus the proof of the multiparameter case using RSS is

an analogy of the proof of the multiparameter case from a single parameter using SRS
(Lehmann (1983), p. 433). O

4. Asymptotic relative efficiency of MMLE

In this section, under the perfect judgment ranking, we compare the ARE’s of
MMLE relative to MLE using SRS and MLE using RSS with the same size. From
Theorem 3.1, we have

I71(8) - A(9) = kZI HO)Eb:(0)IED:(0)TI71(0),

where the right side is a non-negative definite matrix. Thus I=1(8) > A(9).
We are interested in the estimation of a function of 6, say, ¢ = ¢(6). From (2.2) and

(3.2), the ARE of éMMLE = ¢(9MMLE) relative to Q’SMLE,SRS = ¢(6MMLE,SRS) is given by
¢'(0)TI71(6)¢'(9)

(4.1) ARE(¢vMLE, $MLE,sRS) = ¢,(0)T NOYZ0
[¢"(0)TI1(8)E(b;)]?
R Z FOTAOFE)

This shows that the MMLE is at least as efficient as the MLE using SRS with the same
size. The above equality holds if and only if E(b;) =0, for all i = 1,...,k. We have the
following result for the location and scale parameters.
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THEOREM 4.1. For the location parameter, E(bg) # 0 for k > 2. For the scale
parameter and k = 2, if the distribution F is symmetric about the location, then E(b;) =
0,i=1,2. |

ProoF. For the location parameter, E(bx) = 0 is equivalent to
0= [ FH@@ = f@F @l — =D [ @@y
k-1 [ FEF e,
which shows that E(bg) # 0 for k > 2. For the scale parameter and k = 2, we have
Boy +0) = @/6") [ (f(@)+of @)z =0,
by integration by parts and
Bloa—b) = 2/8%) [ (/) +f @)1~ 2P @)z =0,

since the integrand is an odd function. Thus E(b1) = E(b2) = 0.0

Theorem 4.1 shows that, for the location parameter, the MMLE is always more
efficient than the MLE using SRS, and that, for the scale parameter, the MMLE with

set size 2 is as efficient as the MLE using SRS, with the same sample size.
Chen (2000) obtained the following asymptotic normality for the MLE of § using

RSS, fmie, Rss,

/2By rss — 0) 2 N(0,[1(8) + (k — 1)e(0)] ™)

where

F(X; 9) F(X 6)T
F(X,a)F(X;e)

e)=FE 50

is a non-negative definite matrix. To examine the loss of efficiency when the MMLE
is used instead of the MLE based on RSS, we obtain the ARE of qSMMLE relative to

PMLE,RsS 85

¢'(O)T[(8) + (k — 1)e(0)]"'¢'(6)
¢'(0)TA(0)¢'(9)

Here, kI(6) + k(k — 1)e(f) is also the total Fisher information about ¢ contained in one

cycle of RSS X(z)l, i=1,...,k (Chen (2000) and Zheng (2000)). For a single parameter

0., r=1,...,p, the above ARE’s in (4.1) and (4.2) can be simplified as,
I..(6) :

Lp(0) = St B(0i)/F

[£+(8) + (k — 1)e(6)]
71(60) — Yy B2(6:)/IRIZ(0)

(4.2) ARE(MmLE, PMLE,RSS) =

(4.3) ARE (6, MmLE, Or MLE,SRS) =

(4.4) ARE (6, mmLE, Or MLE,RSS) =
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respectively. We consider three examples.

Ezample 1. Normal distribution N(u,02). For the location parameter, I;;(6) =
1/02, and €(0) = 0.4805/0% (Chen (2000)). Hence, from (4.3) and (4.4),

1
1-Y5, EX(Y;)/k’
[1 +0.4805(k — 1)] !
1-Yr, B2(Ya)/k

where Y; is the i-th order statistic of<a SRS from N(0,1). For the scale parameter,
I>o(0) = 2/0?, and €(f) = 0.2701/02. Thus

ARE(iMMLE, IMLE,SRS) =

ARE(fimMLE, AMLE,RSS) =

ARE(62 1 5, 62 = 2 ,
(OMMLE MLE,SRS) 9_ Zf=1[1 — Var(}’i) — E2(Yi)]2/k
[2+0.2701(k — 1)]1
0.5 — 3., [1 ~ Var(¥;) — E2(¥)|/(4k)”

A9 22 _
ARE(6yvLE, & MLE,RSS) =

where Y; is the same as before. Note that the' ARE(63pyipg, S3yg srs) for the normal
distribution is the same as the limiting RP, reported in Stokes (1980)

Ezample 2. Logistic distribution with pdf f(z;pu,0) = Lexp((z — p)/o)/{1 +
exp((z — p)/o]}?. Thus I;;(8) = 1/(302) and €(@) = 1/(602). From (4.3) and (4.4),
it can be shown that

. R 2
ARE(fiMMLE, AMLE,RsS) = Prl

i ARE(AMMLE, IMLE,SRS),

where

—1
ARE(fiMMLE, AMLE,SRS) = [1 -z ZEZ(b )]
z—l
and b; = (exp(Y;) — 1)/(exp(Y;) + 1) where Y; is the ¢-th order statistic from f(z;0,1).
It can be shown that b; is the i-th order statistic of a SRS from the uniform distribution

U(-1,1). Thus E(b;) =2i/(k+1) —1, and

kL k(k—1)
ZE2(b) (k+1)222 k_+1 AR ST

Hence ARE(jimMLE, iMmLE,srs) = (k + 1)/2, which implies that there is no loss of effi-
ciency for the MMLE of p for the logistic distribution relative to the MLE using RSS.

Ezample 3. Weibull distribution W(0,a) with cdf F(z;0) = 1 — exp(—(z/8)%),

where a is known. Thus I(0) = (a/6)? and €(0) = .4041(a/0)?%. From (2.7), the MMLE
for # has the closed form,

1/
m k
~ 1 o
mmLE = (5;; ZZX(i)j) :
J=1i=1
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Table 1. Asymptotic efficiencies of the MMLE relative to the MLE using SRS and MLE using RSS.

Parameter § Distribution Set size & ARE(OmMLE, IMLE SRS) ARE(fmMLE, OMLE RSS)

Location Extreme value 2 1.3333 .9496
3 1.6364 .9050

4 1.9200 8679

5 2.1898 .8369

Logistic 2 1.5000 1.0000

3 2.0000 1.0000

4 2.5000 1.0000

5 3.0000 1.0000

Normal 2 1.4669 .9906

3 1.9137 9759

4 2.3496 .9623

5 2.7702 .9480

Scale Extreme value 2 1.0101 .8875
3 1.0898 .8539

4 1.1812 .8539

5 1.2743 .8208

Exponential 2 1.3333 .9496

(Weibull) 3 1.6364 9050

4 1.9200 .8679

5 2.1898 .8369

Logistic 2 1.0000 .8693

3 1.0958 .8425

4 1.2119 .8352

5 1.3340 .8330

Normal 2 1.0000 .8810

3 1.0822 .8521

4 1.1792 .8392

5 1.2791 .8305

To evaluate ARE’s, we obtain
1

ARE (OmmLE, OMLE SRS) = )
1—YE, 1 - E(Y)2/k

[1+ .4041(k —1)]!
1-Y0,[1— B(Y»)2/k

where Y; is the i-th order statistic of a SRS from W(1,a). Thus the denominators in
the above ARE’s are independent of o, since Y;* is the i-th order statistic from W (1,1),
which is the exponential distribution. Hence the ARE’s for # do not change with the
shape parameter a.

In Table 1, we report the results of the ARE’s for the location parameter of the
extreme value, logistic and normal distributions, and the scale parameter of the extreme

ARE(Avimie, OMLE,RSS) =
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value, exponential (Weibull), logistic, and normal distributions for the set size 2 < k < 5.
From Table 1, the MMLE has higher ARE relative to the MLE using SRS or RSS for
the location parameter than the scale parameter. ARE(@MMLE, OmLE,srs) increases and
ARE(@MMLE, éMLE,RSS) decreases with the set size k. From Section 2, the decreasing of
ARE(@MMLE, éMLE,RSS) as k increases may be due to the less contribution of the partial
log-likelihood (the first term in (2.6)) as k increases. In Table 1, over 10% efficiency is
lost using the MMLE for the scale parameter relative to the MLE. Overall ARE’s are
over 82% for these distributions with 2 < k < 5. From the numerical results, the ARE
for the location parameter of extreme value distribution is the same as that for the scale
parameter of exponential distribution. In fact, they are exactly same for any k, because
they have the same ¢(f) and I(#) and because E2(b;) of the extreme value distribution
is the same as E2(b;) of the exponential distribution.

In the following we consider general parameters. We are interested in the MMLE
for the mean and variance of Gamma and Weibull distributions where the shape param-
eter is an unknown parameter. For the Gamma family with pdf f(z;0,a) = (z/6)*!
exp(—z/6) /[T ()], from Chen (2000), the mean and variance are y = af and 0% = af?,
respectively, and its Fisher information matrix about (a, 6) is given by

[{wa)r"(a) - [ (@P}Hr@] 2 67! ] .

-1 0f~2

For the Weibull distribution with cdf F(z, 8, a) = 1—exp(—(z/8)*)/0, from Chen (2000),
the mean and variance are, respectively, u = 6['(1+1/a) and 02 = §2[['(1+2/a) —T2(1+
1/a)], and the Fisher information of («,8) is given by

o241 0~1(1 —amn — 1)
01— an —10) af?[(a+ 1)1 —1] |’

where 7; = E(X%(log X)), i =0,1,2, and X ~ F(z;a,1). Chen (2000) also calculated
the information gain matrix €(8, @) for these two distributions. Using (4.1) and (4.2), in
Tables 2 and 3, we present the results of the ARE for the mean and variance of Gamma
and Weibull distributions for various values of shape parameter.

Table 2. Relative efficiency for the Gamma distribution (k = 2,6 = 1).

ARE(imMLE, ARE(dMMmLE, ARE(6Zr AREGIvie

o  [IMLE,SRS) AMLERSS) 6215 5Rs) 6% e Rss)
1.5 1.3702 .9654 1.0867 8817
2 1.3913 9727 1.0766 .8984
2.5 1.4049 9750 1.0682 .8846
3 1.4144 .9782 1.0612 8951
3.5 1.4213 9799 1.0554 .8939
4 1.4267 .9812 1.0506 .8928
4.5 1.4309 9822 1.0465 8926
5 1.4343 .9831 1.0431 .8923

10 1.4502 9874 1.0245 .8881
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Table 3. Relative efficiency for the Weibull distribution (k = 2,6 = 1).

ARE(imMmLE, ARE(immie, ARE(G¥npp ARE(GuLe:

a AAMLE,SRS) AMLE,RSS) 53LE.sRS) 6% e Rss)
1.5 1.3943 9727 1.0660 9135
2 1.4025 9731 1.0598 .9208
2.5 1.3985 9719 1.0499 .9269
3 1.3923 9706 1.0408 .9326
3.5 1.3862 9693 1.0334 9379
4 1.3808 .9682 1.0275 .9425
4.5 1.3762 9672 1.0230 .9468
5 1.3722 .9663 1.0195 .9505
10 1.3528 .9607 1.0061 L9720

5. Under imperfect judgment ranking

In the previous sections, we consider the MMLE and its properties under the perfect
judgment ranking. In this section, we consider the imperfect judgment ranking. In
practice, without the actual measurements, the judgment error is inevitable, especially,
for the large set size k. We use the model of the imperfect ranking considered by Bohn
and Wolfe (1994), Hettmansperger (1995), and Chen (2000). Suppose the probability
that the unit in SRS of size k with actual rank r is judgment ranked as s is p,s. Thus
Ef=1prs =1, for r =1,...,k. Denote the RSS by X;;, ¢ = 1,...,kand j=1,...,m
where [i] is used to indicate the judgment error in ranking r. Assume prs = psr. Then
the pdf of X[;j;, denoted by fi.x(z;6), is given by

k
fiije(z;0) = Zpitft:k($§9)
t=1

where fi.x(z;0) is given by (1.1). Note that fi.x(x;0) = fir(z;0) if p = 1 and that
fii(z; 0) = f(x;0) if pi; = 1/k, for j = 1,...,k. It can be shown that the analogies of
(2.4) and (2.5) still hold under the imperfect judgment ranking, i.e.,

k
‘ ) _ ) f (Xz]me)
(51) ;f[z]k(m10) - kf(x,&) and ZEf(X[.L 1,9) =0

However, the sum of the expectations of the second and third terms in (2.6) is no longer
zero if the ranking is imperfect. In practice, we do not know whether the judgment
ranking is perfect or not. Therefore, we will still solve the MMLE for 6, denote by
OvLe, from

e S (X5 0)

>2) Sy fged g o

J=1 i=1

When the ranking is imperfect, Bai and Chen (2000) show that the MLE based on RSS
for 6 is still asymptotically normal, and that it is at least as efficient as the MLE based
on SRS. Here, the properties of 8%, are summarized in:
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THEOREM 5.1. Under the above judgment ranking model and the conditions (C1)
to (C4), for n = mk, the MMLE, 0%, g, s0lved from (5.2) has the following properties:

(i) Btprg 15 strongly consistent as m — oo and k is fized.

(i) Let 6y be the true value of . As m — oo and k is fived,

n1/2(é;/IMLE — o) 5 N(0,A%(6o)),
where A*(6p) = I71(8p) — Zfﬂ I71(8) Eg, [b:(60)] Ee, [b: (60)) T 11 (0) /K, and where

bi(00) = f'(X11500)/ f(Xjign; o)-

Theorem 5.1 can be proved similarly as Theorem 3.1 using (5.1). Theorem 5.1 shows
that, under the imperfect ranking, the MMLE is still at least as efficient as the MLE
using SRS with the same size. When p; = 1, i.e., no judgment error, Theorem 5.1
reduces to Theorem 3.1. When p;; = 1/k, i.e., the RSS is equivalent to the SRS, then
Eg,[b;(69)] = 0 and Theorem 5.1 reduces to (2.2).

Given (5.1), the modified maximum likelihood equation (5.2) with the judgment er-
ror is still an unbiased estimating equation. However, the original maximum likelihood
equation (2.6) may not be unbiased when the ranking is imperfect. In this sense, the
MMLE should be more robust than the MLE when the ranking is imperfect. Thus we
conduct simulations to compare MLE using RSS and MMLE when the ranking is impex-
fect. We use the simulation method considered by Dell and Clutter (1972) and David and
Levine (1972). In the simulation, we choose k = 2,4 and m = 10. So the total sample size
is n = 20,40. We consider two underlying distributions, the normal distribution N(6,1)
with the location parameter 6 and the exponential distribution E(6) with the scale pa-
rameter . We choose two random error variables, N(0,02) and the Laplace distribution
L(0,05?) with zero mean and variance o2, where 02 = 0.25,0.50,1.00,3.00 for each dis-
tribution. Given k, m, F(z;0) and the random error distribution, in the first stage, we
generate k sets of simple random samples, X, of size k each from F(z;0), s,t =1,...,k,
and also k sets of random error variables e, ¢, of size k each, where X, ; and e, ; are in-
dependent. Define Y, ; = X, + e, ;. Then we can obtain two one cycle perfectly ranked
RSS’s X(;)1 and Y31, i = 1,...,k. We repeat this process for m times and obtain m
cycles of RSS’s: X(;); and Y{;);. For the pairs (Y(;);, X(3);),i=1,...,kand j = 1,...,m,

define the concomitants of Y(;); as X fori =1,...,kand j = 1,...,m, i.e., for each
J, if Y3); = Yi= j then Xpy; = Xi» 5. Thus X5, ¢ =1,...,k and j = 1,...,m, are the
RSS with judgment error unless e, = 0 for all s,t = 1,...,k. For each replication, we
find estimators éMLE,BSS and Gyve based on {X@;t=1,....,k,j = 1,...,m} and
é&LE’RSS and OAI’{,[MLE based on {X[;j;,4=1,...,k,j =1,...,m}. Werepeat this process

for 30,000 times. The estimate for the 6 is the average of the estimates from these
replications and the variance (Var) of the estimate is the sample variance. We compare
the MSE of the estimates for § by MLE and MMLE. The simulation results are reported
in Tables 4 to 7. In Tables 4 and 5, we present the MSE and the estimates with their
variances for the location parameter of the normal distribution, respectively. The results
for the scale parameter of the exponential distribution are presented in Tables 6 and 7.

We choose the normal and Laplace as the random error distributions because the
Laplace has heavier tail than the normal distribution. From Tables 4 and 6, not sur-
prisingly, the MLE has smaller MSE than the MMLE when there is no judgment error.
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Table 4. Compare the mean square error {MSE) of MLE and MMLE based on RSS for the
location parameter of the normal distribution N(8, 1) where 8 = 0.

Random error from

N(0,0%) L(0,02)
MSE
o? MLE* MMLE* MLE* MMLE*
2 .25 .03732 [.03384] .03733 [.03406] .03898 [.03381] .03890 {.03405]
.50 .03944 [.03365] .03931 [.03388] .04117 [.03340] .04008 (-03371]
1.0 .04202 [.03368] .04178 [.03393] .04382 [.03364] .04347 [-03390]
3.0 .04598 [.03338] .04555 [.03361] .04735 [03369]  .04704 [.03402]
4 25 01358 [01036] .01372 [.01079] .01519 [.01032] .01520 [.01077]
50 01550 [.01023] .01547 [.01061] .01763 [.01020] .01739 [.01061]
1.0 01782 [01019] .01760 [.01063] .01992 [.01024] .01957 [.01067]
3.0 .02168 [.01035] .02134 [01077] .02280 [.01024] .02239 [.01062]

* Here the first number is the MSE for the imperfect ranking and the second number in
bracket is the corresponding MSE for the perfect ranking.

Table 5. Compare the estimates and their variances of MLE and MMLE based on RSS for the
location parameter of the normal distribution N(8, 1) where 8 = 0.

Random error from

N(0,02) L(0,02%)
é Var of § [/ Var of §
a? MLE MMLE MLE MMLE MLE MMLE MLE MMLE
.25 —.00031 —.00045 .03732 03733 .00253 00265 .03897 .03889
.50 .00165 .00163  .03943 .03931 00061 .00067 .04117 .04098
1.0 -—-.00036 —.00032 .04202 .04178 00111 00115 .04382 .04346
3.0 -—.00142 —.00134 .04598 .04554 —.00013 —.00030 .04735 .04704
4 .25 —.00027 —.00014 .01357 .01372 .00051 .00049 .01519 .01520
.50 —.00028 —.00031 .01550 .01547 .00004 .00007 .01763 01739
1.0 .00061 00057 .01782 .01769 .00096 .00094 .01992 01957
3.0 -—-.00062 —.00069 .02168 .02134 .00016 .00025  .02280 .02239

However, for some moderate judgment error (o2 > 0.5), the MMLE has smaller MSE
than the MLE. For the normal case, the larger MSE for the MMLE is due to the larger
variance of the MLE under the imperfect judgment ranking (Table 5), since the MLE
and MMLE for the location parameter of the normal are very close to each other and
seem to be unbiased. But for the scale parameter of the exponential distribution, in Ta-
ble 7, the MLE is biased under the imperfect judgment ranking while the MMLE is still
unbiased. In addition, the MMLE has a smaller variance than the MLE for a moderate
judgment error. From Tables 4 to 7, we can also see that the heavier tailed distribution
has more effect on the efficiencies of the MLE and MMLE. From Table 6, for o2 = 3.00,
we also see that the MSE for the MLE is greater than .05 when k& = 2 (n = 20) and
greater than .025 when k = 4 (n = 40). This implies that when the judgment error is
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scale parameter of the exponential distribution E(8) where 6 = 1.

Random error from

N(0,02) L(0,02)
MSE

E o MLE* MMLE* MLE* MMLE*

2 025 .04024 [.03643] .04118 [.03814] .04163 [.03572] .04166 [.03747]
0.50 .04219 {.03572] .04240 [.03757] .04484 [.03575] .04344 {.03746]
1.00 .04572 [.03587] .04389 [.03763] .04964 [.03591] .04572 [.03783]
3.00 .05376 [.03542] .04670 [.03715] .05715 [.03545] .04704 [.03728]

4 025 .01504 [01140] .01570 [01311] .01850 [.01129] .01664 [.01289]
0.50 .01039 [01137] .01727 [.01312] .02292 [.01139] .01855 [.01317]
1.00 .02492 [01146] .01902 [.01309] .02996 [.01132] .02060 [.01293]
3.00 .03740 [01112] .02165 [.01284] .04312 [.01133] .02275 [.01309]

* Here the first number is the MSE for the imperfect ranking and the second number in
bracket is the corresponding MSE for the perfect ranking.

Table 7. Compare the estimates and their variances of MLE and MMLE based on RSS for the
scale parameter of the exponential distribution E(8) where 8 = 1.

Random error from

N(0,0%) L(0,02)
9 Var of 8 6 Var of 6

o? MLE MMLE MLE MMLE MLE MMLE MLE MMLE

2 0.25 1.01695 1.00068 .03995 .04118 1.02403 1.00127 .04105 04166
0.50 1.02265 99818 .04168 04240 1.03112 99788  .04387 .04344

1.00 1.03704 1.00124 .04434  .04389 1.04577 1.00083 .04755 04573
3.00 1.05919 1.00081 .05025 .04670 1.06730 1.00068 .05262 04750

4 0.25 1.02793 .99964  .01516 01570  1.04052 .99968  .01686 .01664
0.50 1.04500 1.00056 .01737 01727 1.05924 .99894  .01941 .01854

1.00 1.06724 1.00087 .02040 .01902 1.08242 .99848  .02317 .02060
3.00 1.10889 1.00057 .02554 .02165 1.12400 1.00055 .02774 .02275

present, the MLE based on RSS may be less efficient than that based on SRS, since .05
and .025 are the MSE’s for the MLE using SRS of size n = 20 and n = 40, respectively.
However, the MMLE based on RSS ha s smaller MSE than the MLE using SRS of same
size, regardless of judgment errors.

6. Concluding remarks

In this paper, we consider the MMLE based on RSS for general parameters, and
examine the large sample properties. Compared to the MLE using RSS, the MMLE
has high efficiency (ARE is 1 for the location parameter of the logistic distribution) for
the location parameter with small set size when the judgment ranking is perfect and is
relatively easy to obtain, especially when the MLE using SRS has a closed expression
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or is already programmed. When the judgment ranking is imperfect, the simulations
show that the MMLE is more robust than the MLE. In addition, the MMLE based on
RSS is also more efficient than (at least as efficient as) the MLE for the location (scale)
parameter based on SRS with the same sample size. Based on Theorem 3.1, we can also
construct modified 100(1— )% confidence intervals for the location and scale parameters
(cf. Chen (2000)). When the judgment ranking is imperfect, this modified confidence
interval is shorter than that of Chen (2000) based on MLE.
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