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Abstract. The ranked-set sampling (RSS) is applicable in practical problems where
the variable of interest for an observed item is costly or time-consuming but the
ranking of a set of items according to the variable can be easily done without actual
measurement. In this article, the M-estimates of location parameters using RSS data
are studied. We deal mainly with symmetric location families. The asymptotic prop-
erties of M-estimates based on ranked-set samples are established. The properties of
unbalanced ranked-set sample M-estimates are employed to develop the methodology
for determining optimal ranked-set sampling schemes. The asymptotic relative effi-
ciencies of ranked-set sample M-estimates are investigated. Some simulation studies
are reported.
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1. Introduction

The ranked-set sampling (RSS) proposed by Mclntyre (1952) is a sampling scheme
that can be utilized for gaining more information when actual measurement of the vari-
able of interest for an observed item is costly or time-consuming while the ranking of a
set of items according to the variable can be relatively easily done without actual mea-
surement. A ranked set sample is obtained by first drawing simple random samples, each
of size k, then ranking the items of each sample by judgment and measuring, in each
ranked sample, only one ranked order statistic with a pre-specified rank. If each ranked
order statistic is measured the same number of times the RSS is said to be balanced,
otherwise, it is said to be unbalanced. For details of a general RSS scheme, we refer the
reader to Bai and Chen (2001).

Many statistical procedures including parametric and nonparametric procedures
based on the balanced RSS have been investigated in the literature. The reader is
referred to, among others, McIntyre (1952), Takahasi and Wakimoto (1968), Dell and
Clutter (1972), Stokes (1980a, 1980b), Stokes and Sager (1988), Bohn and Wolfe (1992),
Shen (1994), Sinha et al. (1994), Stokes (1995), Hettmansperger (1995), Koti and Babu
(1996), Chen (1999, 2000a, 2000b) and Bai and Chen (2001). Recently, there is an
increasing interest in research on unbalanced RSS to seek further improvement over the
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balanced RSS. See, e.g., Stokes (1995), Kaur et al. (1997), Chen (2001), and Chen and
Bai (2000). ,

In this article, we consider the M-estimates using balanced and unbalanced ranked-
set sampling data. The idea of M-estimates arises out of concern on the robustness
of statistical procedures. For example, the usual estimate of the population mean, the
sample mean, is not robust if the underlying distribution is heavily tailed. In RSS,
the ranked set sample mean will be even more erratic when the tail of the underlying
distribution is heavy. This motivates our research on the M-estimates in the context of
RSS which, for convenience, are referred to as the RSS M-estimates hereafter. In this
article, we investigate the properties of the RSS M-estimates including their asymptotic
distribution and their relative efficiencies. We illustrate how unbalanced RSS can be
designed to gain more efficiency over balanced RSS. The article is arranged as follows.
In Section 2, we give some definitions and notations to be used in the article. The
asymptotic properties of the RSS M-estimates are established in Section 3. The method
for the design of optimal RSS schemes is discussed in Section 4. The relative efficiencies of
the RSS M-estimates are investigated in Section 5. Some simulation results are reported
in Section 6. Some concluding remarks are given in Section 7. Some technical details
are provided in the Appendix.

2. Notation and definition

Let the cumulative distribution function (CDF) and the probability density function
(PDF) of the underlying distribution be denoted by F and f respectively. The CDF and
PDF of the r-th order statistic of a sample of size k from F' are denoted by Fry and fr)
respectively. Let a ranked-set sample be represented by

X1 Xwyzs -5 Xyna
(2.1) X@ X@2s -0 X@ynas

ey ey eeey eay
Xy Xgy2s - +» X(B)nws

where, in the subscripts, indices within parenthesis indicate pre-specified ranks and in-
dices outside parenthesis represent repetitions of the same ranked order statistic. Define

the empirical distribution function of the ranked-set sample (2.1) as follows:
N k My
Fo(z) = Z _TF(r)nr(x)a
r=1 n
where
. 1 Ny k
Foyn, () = — ZI{X(T)i <z}, and n= an.
g r=1
If the n,’s are all equal, i.e., the RSS is balanced, we denote F, by F, to distinguish
between balanced and unbalanced RSS.

Suppose that n,./n — p, as n — co. Let p= (p1,pa, ..., ) . We shall refer to p as
an allocation vector. Denote

k
Fy(z) = ZPTF(T) (z).
r=1



628 XIAOYUE ZHAO AND ZEHUA CHEN

It is clear that ., converges uniformly to F,, with probability 1. In the balanced case,
F,=F.

Let 1(z) be an appropriate function. Define the functional T(F) over all distribution
functions as the solution of Ar(t) = [¥(z — t)dF(x) = 0, if exists. Denote T, = T(E,)
and T, = T(Fn), respectively, when the RSS is unbalanced and balanced. In generic
notation, if F' is an unknown population distribution function and F is an appropriate
estimate of F', then T (F) is called an M-estimate of T'(F'). Thus, 7., is an M-estimate of
T(F3) in general, and T, is an M-estimate of T'(F) in particular. Our goal is to estimate

T(F). We shall find conditions such that T'(F') = T'(Fp) and hence both T,, and T, are
M-estimates of T'(F).
We also introduce the following notation:

A ® = [ ¥ - 0aFe @) - | [ w(x—t)dF(,.)(w]

d [ ¥(z — t)dF(x)

Xp(T(F)) = ”

t=T(F) .

Throughout the article, we assume that the underlying distribution is symmetric
and that 1(z) is odd. Under this assumption, the median, the mean of the distribution
F and T(F) are all the same.

3. The asymptotic properties of RSS M-estimates

We present the asymptotic properties of the RSS M-estimates in this section. The
properties include the strong consistency and the asymptotic normality. First, we give
conditions on the allocation vector p such that T(Fp) = T(F). The conditions follow
from the lemma below.

LEMMA 1. Suppose that ¥(z) is an odd function and F' is a symmetric location
distribution, then the population mean p is a solution of Ar(t) =0, i.e., p=T(F), and,
further, u satisfies

400 . 400
Pz — p)dF(z) + PY(z — p)dF(—rs1)(T) =0

—00 —00

Hence, if the component of the allocation vector p satisfies that pr = pg_ry1 for all r,

then p is also a solution of Ap,(t) =0, i.e., p = T(Fp).

An allocation vector p satisfying the conditions given in Lemma 1 will be referred
to as being symmetric.

THEOREM 1. Suppose that ¥(x) is odd, continuous and either monotone or
bounded, and that F is a symmetric location distribution. Let the allocation vector p
be symmetric. Then there is a solution sequence {T,,} of A (t) = 0 such that {T,,}
converges to u with probability 1.

There are other conditions on 1 such that the above theorem holds. However, since
the 1)’s in practical applications satisfy the conditions in Theorem 1, we will concentrate
on the 9’s satisfying these conditions.
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In the following, we give three sets of conditions each of which, together with the
conditions on F' given in Theorem 1, guarantees the asymptotic normality of the sequence
Tn.

Al. ¢(z) is odd and monotone; A\p(t) is differentiable at ¢ = u, with Ap(n) # 0;
[ ¢*(z — t)dF(z) is finite for ¢ in a neighborhood of u and is continuous at t = p.

A2. 9(z) is odd and continuous and satisfies

tim || 60,8) ~ $(- k) =0

Ar(t) is differentiable at ¢ = u, with Nz(u) # 0 and [ ¢%(z — t)dF(z) < oc.
A3. ¥(z) is odd and uniformally continuous; [ 8y (z — t)/8t|i=,dF(x) is finite and
nonzero; [¥%(z — p)dF(z) < oco.

THEOREM 2. Assume that F is a symmetric location distribution and that the
allocation vector p is symmetric. Then, under either (Al), (A2) or (A3),

(3.1) VAT ~ ) — N(0,0%(p, F)),
in distribution, where under (A1) and (A2),

k k 2
0'2(17, F) = ZprA('r) (/’L)/ [Zpr)‘%'(r) (U)jl )

and under (A3),

k k 2
U2(P: F)= ZpTA(,.)(/J,)/ I:Zpr / Mp(z — t)/Bt]t=“dF(r) (.’E)] .
r=1 r=1

The results in this section are straightforward extensions of the corresponding results
in SRS. A sketch of the proof of the theorems is given in the Appendix. The results can
be used to compare the efficiency between RSS and SRS. Furthermore, they can be used
to determine optimal RSS schemes for M-estimates, as will be seen in the next section.

4. Optimal RSS schemes for M-estimates

In this section, we describe a method for determining an allocation vector such that
the resultant RSS M-estimate is an asymptotically unbiased minimum variance estimator
among all RSS M-estimates.

First we present two lemmas.

LEMMA 2. Assume ¥(z) is an odd function and F is a symmetric location distri-
bution. Then for any r,

(i) A('r) (/"’) = A(k—r+1) (/"*)
(i) If, in addition, [(x)0f(x +t)/Otdz is finite, then Ay (1) = Neg_riny (u)-

(iii) If, in addition, [ Oy(x —t)/OtdF (z) is finite,

/3¢($ —t)/0t|1=pdF(ry(z) = /a¢($ = 1)/0t|s=pdF(—r1)(2)-
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LEMMA 3. (Kaur et al. (1996)) Assume, for a fized t,

At 111'
LA
S forall r#t,

and all A, > 0, then
>
Gt 7 {EraprCr)?

for all allocation vectors.

In order to obtain an asymptotically unbiased minimum variance RSS M-estimate,
we need to minimize o%(p, F) with respect to the allocation vector p. According to
Lemma 3, an optimal allocation can be found by allocating all the quantifications to the
r-th order statistic such that A(.)/C? is the smallest where C, = ’\IF(T) (1) under (Al) or
(A2) and C, = [8yY(z — t)/0t|;—ndF(r)(x) under (A3). By Lemma 2, we only need to
compare k/2 or (k + 1)/2 such ratios according to whether k is even or odd to obtain
the minimum.

In the remaining of this section, we apply the method above to two 9 functions and
a variety of distribution families. The first ¢ is given by

-1.5, z<-1.5,
¢1:{$7 I«'ElSl.s,
1.5, z > 1.5.

The corresponding M-estimator T, is a type of Winsorized mean. The other 9 is a
smoothed “Hampel” given by

o = sin(z/2.1), |z| < 2.1m,
270, |z| > 2.17.

The distribution families under consideration are: (i) standard normal distribution
N(0,1), (ii)) Cauchy(0,1) distribution and (iii) symmetrically contaminated normal dis-
tributions of forms (1 — €)N(0,1) + eN(0,9) and (1 — ¢)N(0,1) + e Cauchy(0,1), for
€ = 0.05(0.05)0.5. Here, Cauchy(0,1) denotes the Cauchy distribution with location
parameter 0 and scale parameter 1. We also examine the performance of the above RSS
M-estimators with the RSS mean which is obtained with 1 = x from the consideration
of robustness.

For each combination of the above 9 functions and distribution families, we mini-
mized A/ C? with respect to r for set size k = 3(1)10 and found that the minimum is
always attained at the middle rank, i.e.,, r = k/2 or r = (k + 1)/2 according to whether
k is even or odd. In other words, the optimal schemes prescribe to quantify the median.
Therefore, if k is even, the order statistic X(;/2) should be quantified for half of the
ranked sets and the order statistic X((x/2)4+1) should be quantified for the other half. If
k is odd, the order statistic X((x+1)/2) should be quantified for all the ranked sets.

We have tried to minimize A/ C? for general ¢ and F by treating r as a continuous
variable and found that r = (k 4+ 1)/2 is a stationary point of A /C2 but failed to
establish whether or not it is a minimum point. Nevertheless, we believe it must be
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true that the quantification of only the median in all ranked sets is the optimal RSS
scheme. It is in line with the principle, like that of importance sampling (see, e.g., Jones
(1988)), that sampling should be made at the data points such that it is more likely
for the estimator of a parameter to assume a value in the vicinity of the parameter.
Therefore, we suggest the use of the scheme of quantifying only the median in practice
for the M-estimates of the mean of a symmetric distribution. In any case, if the rule
is not beyond doubt, the ratio A/ C? can be checked for those suspected underlying
distribution families. It should be noted that if the family is a location family, A JC?
does not depend on the location parameter of the family.

5. The asymptotic relative efficiency of RSS M-estimates

In this section, we deal with the asymptotic relative efficiency (ARE) of the RSS
M-estimates. We compare the RSS M-estimates (balanced or optimal) with the corre-
sponding SRS M-estimates. We compare the optimal RSS M-estimates with the balanced
RSS M-estimates. We also compare the RSS M-estimates with the RSS mean. The SRS
M-estimate of u is given by T,, = T'(F,,) where Fj, is the empirical distribution of a simple
random sample of size n. The SRS M-estimate has asymptotically a normal distribution
with mean p and variance o?(F) given by either

/ W2 (x — w)dF ()] Np(1)]?

[vte-war@ [ | [ owie - vyer |t=ﬂdF<w>]2

depending on the assumptions on ¢(x). Hence the relative efficiency of the balanced
RSS M-estimate to the SRS M-estimate is given by

ARE(To, T,) = / (& — p)dF(z)/d,

where
/¢2(x — w)dF(z) — = {/?ﬁ z— dF(r)(x)r.

Obviously, the RSS M-estimate is always more efficient than its SRS counterpart. The
relative efficiencies of the optimal RSS M-estimate to the SRS M-estimate and to the
balanced RSS M-estimate are given, respectively, by

of(F)

A 2 ~ ~
ARB(E,T) = 5L, ARE(, 1) = 5E .

o?(p, F)
where 9
AE) =l o af | [ova- 0)/0t]e-,dF )|
depending on the assumptions on ¥(z), and |

2 (p, F A((k+1)/2)( )/di, k odd,
’ [A(k/2)(#) + A(j2y+1) ()] /d2, & even,
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‘ 2
= Wi WP 08 | [ 0000 = 0/0thesdF ey (@)]

1

4
dp = Z[ Fox2 )+ A2y (1)

. 2
o 5 |[ vt = 0/otlecsdPisn (@) + [ B0te - 070t dFieman(a)]

]2

depending on the assumptions on ¥(z). The ARE’s of the balanced RSS M-estimates
to the RSS mean is given by

G2(F)

ARE(T,,,T,) = 2(F)’

where T, is the balanced RSS mean and 52(F) is its asymptotic variance.

Table 1. The ARE’s of the balanced RSS M-estimate w.r.t. SRS mean with ;1 for Cauchy,
Normal and some contaminated Normal distributions.

Dist. Cauchy(0,1) N(0,1) 09N(0,1)  0.7N(0,1)  0.5N(0,1)

k 4+0.1N(0,9) +0.3N(0,9) +0.5N(0,9)
k=2 1.49 1.49 1.50 1.49 1.49
k=3 1.97 1.9 1.9 1.98 1.96
k=4 2.4 2.48 2.48 2.47 2.43
k=5 2.90 2.96 2.97 2.95 2.90
k=6 3.36 3.45 3.45 3.43 3.36
k=17 3.82 3.93 3.94 3.91 3.82
k=8 4.27 4.41 4.42 4.38 4.27
k=9 4.71 4.90 4.90 4.85 4.72
k=10 5.16 5.38 5.38 5.32 5.17

Table 2. The ARE’s of the balanced RSS M-estimate w.r.t. SRS mean with 12 for Cauchy,
Normal and some contaminated Normal distributions.

Dist.  Cauchy(0,1) N(0,1) 0.9N(0,1) 0.7N(0,1) 0.5N(0,1)

k +0.1N(0,9) +0.3N(0,9) +0.5N(0,9)
k=2 1.30 1.49 1.48 1.46 1.44
k=3 1.54 1.97 1.94 1.89 1.84
k=4 1.73 2.44 2.39 2.30 2.22
k=5 1.90 2.91 2.83 2.69 - 2.57
k=6 2.06 3.38 3.26 3.06 2.90
k=17 2.20 3.85 3.67 3.42 3.21
k=8 2.33 4.31 4.08 3.76 3.51
k=9 2.46 4.77 4.48 4.08 3.79
k=10 2.58 5.24 4.88 4.39 4.07
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Table 3. The ARE’s of the optimal RSS M-estimate w.r.t. SRS mean with 1 for Cauchy,
Normal and some contaminated Normal distributions.

Dist. Cauchy(0,1) N(0,1) 0.9N(0,1)  0.7N(0,1)  0.5N(0,1)

k +0.1N(0,9) +0.3N(0,9) +0.5N(0,9)
k=3 2.55 2.30 2.37 2.45 2.47
k=4 3.18 2.87 2.96 3.06 3.08
k=5 4.32 3.61 3.79 3.99 4.06
k=6 5.03 4.21 4.41 4.65 4.73
k=17 6.24 4.93 5.22 5.57 5.71
k=8 7.01 5.54 5.86 6.27 6.41
k=9 8.28 6.24 6.65 7.18 7.39
k=10 9.10 6.87 7.31 7.90 8.13

Table 4. The ARE’s of the optimal RSS M-estimate w.r.t. SRS mean with 12 for Cauchy,
Normal and some contaminated Normal distributions.

Dist.  Cauchy(0,1) N(0,1) 0.9N(0,1) 0.7N(0,1) 0.5N(0,1)

k +0.1N(0,9) +0.3N(0,9) +0.5N(0,9)
k=3 2.30 2.25 2.40 2.56 2.67
k=4 2.81 2.80 2.99 3.19 3.32
k=5 3.91 3.52 3.86 4.29 4.50

k=6 4.53 4.10 4.50 5.00 5.25
k=T 5.76 4.79 5.33 6.07 6.45
k=8 6.46 5.39 5.99 6.82 7.25
k=9 7.79 6.07 6.79 7.86 8.44
k=10 8.55 6.68 7.47 8.65 9.28

Table 5. The ARE’s of the optimal RSS M-estimate w.r.t. balanced RSS M-estimate with 9
for Cauchy, Normal and some contaminated Normal distributions.

Dist. Cauchy(0,1) N(0,1) 0.9N(0,1)  0.7N(0,1)  0.5N(0,1)

k +0.1N(0,9) +0.3N(0,9) +0.5N(0,9)
k=3 2.81 1.16 1.19 1.23 1.26
k=4 2.83 1.16 1.19 1.24 1.27
E=5 3.22 1.22 1.28 1.35 1.40
k=6 3.24 1.22 1.28 1.35 1.41
k=T 3.54 1.25 1.32 1.43 1.50
k=8 3.56 1.26 1.33 1.43 1.50
k=9 3.81 1.28 1.36 1.48 1.57
k=10 3.82 1.28 1.36 1.48 1.57

The ARE’s of the balanced RSS M-estimates with 11 and 1) for the Cauchy(0, 1),
N(0,1) and some contaminated normal distributions are given, respectively, in Tables 1
and 2. The ARE’s of the corresponding optimal RSS M-estimates with respect to SRS
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Table 6. The ARE’s of the optimal RSS M-estimate w.r.t. balanced RSS M-estimate with 12
for Cauchy, Normal and some contaminated Normal distributions.

Dist. Cauchy(0,1) N(0,1) 0.9N(0,1)  0.7N(0,1)  0.5N(0,1)

k +0.1N(0,9) +0.3N(0,9) -+0.5N(0,9)
k=3 1.50 1.14 1.24 1.36 1.45
k=4 1.62 1.15 1.25 1.39 1.50
k=5 2.05 1.21 1.37 1.59 1.76
k=6 2.20 1.21 1.38 1.63 1.81
k=7 2.62 1.25 1.45 1.78 2.01
k=8 2.77 1.25 1.47 1.82 2.07
k=9 3.17 1.27 1.51 1.93 2.23
k=10 3.31 1.28 1.53 1.97 2.28

Table 7. The ARE’s of the balanced RSS M-estimate w.r.t. RSS mean for some contaminated
Normal distributions.

Dist.  0.9N(0,1) +0.1IN(0,9) 0.7N(0,1) + 0.3N(0,9) 0.5N(0,1) + 0.5N(0,9)

k 1 2 P1 P2 1 2
k=2 1.51 1.46 1.85 1.65 1.69 1.42
k=3 1.63 1.56- 2.00 1.74 1.79 1.46
k=4 1.74 1.65 2.13 1.82 1.87 1.48
k=5 1.85 1.72 2.25 1.88 1.95 1.49
k=26 1.94 1.79 2.36 1.92 2.01 1.50
k=17 2.03 1.86 2.45 1.96 2.06 1.50
k=8 2.11 1.91 2.54 1.99 2.11 1.50
k=9 2.19 1.96 2.61 2.01 2.15 1.50
k=10 2.26 2.01 2.68 2.02 2.19 1.49

and balanced RSS ones are given in Tables 3, 4, 5 and 6. Table 7 gives the ARE’s of the
balanced RSS M-estimates to the RSS mean.

It can be seen from Tables 1-6 that, as expected, the balanced RSS M-estimates are
much more efficient than their SRS counterparts and the efficiency increases as set size k
increases, and that the optimal RSS M-estimates improve the balanced RSS M-estimates
significantly further. Table 7 shows that the RSS M-estimates with 11 and 1, are more
efficient than the RSS mean when the underlying distribution is not normal. It can also
be noticed that the efficiency with v, is uniformly higher that the efficiency with ,.
This might be attributable to the fact that 1o throws away entirely the information of the
extreme observations while 1) still makes use of those information but with adjustment.
We do not elaborate this aspect further since it is beyond the scope of this article.

6. Results of simulation studies

In this section, we present some results of our simulation studies. The protocol of our
simulation study is as follows. For each distribution and a given n = mk, we generate
1000 simple random samples of size n and 1000 ranked-set samples of size n and set
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size k (either balanced or optimal) by using the random number generating functions
in Splus 4.5. For each sample, the M-estimate T, T, or 1), is computed according to
whether the sample is simple random, balanced RSS or optimal RSS. Then the computed
M-estimates are used to compute an approximation to the MSE by using the formula:

N
1 N
MSE = + > (15 — w)?,
j=1

where j; is the M-estimate from the j-th sample, p is the theoretical mean of the
underlying distribution and N is the simulation size (N = 1000). The ratio of the
approximated MSEs of the simple random sample M-estimate and the ranked-set sample
M-estimate is then computed.

We report the results for four distributions: N(0,1), Cauchy(0,1), 0.9N(0,1) +
0.1N(0,9) and 0.7N(0,1) + 0.3N(0,9), with ¥ = 1, n = 20,60,120,240, and k = 2,4,5
for balanced case and k = 3,4, 5 for unbalanced case. The balanced RSS case is reported
in Table 8 and the optimal RSS case is reported in Table 9. The simulation results show
that, for small sample sizes, the balanced RSS M-estimates and optimal RSS M-estimates
can achieve relative efficiencies comparable with the asymptotic relative efficiencies. It
can also be seen that when n is large, say n = 240, the simulated relative efficiencies are
quite in line with the theoretical asymptotic relative efficiencies. A noticeable feature
is that the simulated relative efficiencies for small sample sizes are larger than their
corresponding asymptotic relative efficiencies. This is not accidental. In fact, we can
express the variances of the estimators in the form:

1 1
;A1(Xn) + ﬁgAz(Xn) +o
where X,, represents a sample of size n. Each of the SRS versions of the A terms can

be improved by its RSS version. The asymptotic relative efficiency only accounts for the
improvement on A; involved in the order O(1/n) while the relative efficiency for small

. Table 8. Simulated relative efficiencies of balanced RSS M-estimates with ¥ = 1.

n

20 60 120 240
1.62 143 148 149
248 259 246 247
3.09 297 3.01 295
1.52 1.47 151 1.49
2.56 247 246 242
3.00 294 291 288

dist.
N(0,1)

Cauchy(0,1)

0.9N(0,1) 150 148 148 1.50
+0.1N(0,9) 2.50 251 251 246

2.88 293 295 294
0.7N(0,1) 153 153 151 1.48
+0.3N(0,9) 246 247 247 247

Gt A NTOT A N R DO

292 293 294 296
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Table 9. Simulated relative efficiencies of optimal RSS M-estimates with 9 = ;.

n
dist. E 20 60 120 240
N(0,1) 3 239 237 234 232
4 285 284 290 289
5 368 367 3.66 3.59
Cauchy(0,1) 3 259 251 254 258
4 315 3314 319 3.19
v 5 436 435 4.35 4.29
0.9N(0,1) 3 235 242 236 2.37
+0.1N(0,9) 4 294 298 298 295
5 375 3.81 3.77 380
0.7N(0,1) 3 246 246 244 245
+0.3N(0,9) 4 3.00 3.07 3.09 306
5 4.04 404 401 3.98

samples also reflects the improvement involved in higher orders of 1/n. In general, we
can expect that the relative efficiencies for small samples be larger than the asymptotic
relative effienciencies.

7. Concluding remarks

The M-estimates arise from the concern on the robustness of statistical procedures.
We have dealt with the M-estimates in the context of ranked set sampling in this article.
In particular, we obtained the asymptotic properties of the M-estimates for the mean
of symmetric distributions and developed the method for finding optimal RSS scheme
for the M-estimates. 'We also investigated the relative efficiencies of balanced RSS M-
estimates and optimal RSS M-estimates. We found that the scheme of quantifying only
the median in all the ranked sets is optimal for all the distribution families which we
have considered including Normal, Cauchy and contaminated Normal distributions.
Though we are unable to establish the result in general for any symmetric distribution,
we have a reasonable ground to believe that it must be true in general. In any case,
the method we developed can be used to check whether the scheme is optimal for any
suspected underlying distribution. Of course, further research in this respect for a general
theoretical result will be interesting and worthy.

In our discussion we assumed tacitly that the ranking in RSS is perfect. However,
in practice, ranking errors have to be taken into account. Here we briefly discuss the
case of imperfect ranking to end this article. Let us denote the distribution function
of the r-th judgment ranked order statistic by Fj,j to indicate the existence of ranking

errors. A basic assumption we need is that F' = %Z’f:l F},; which is satisfied if the
judgment ranking is made consistently. In the balanced RSS case, though ranking errors
could reduce the efficiency of the M-estimate, the consistency and asymptotic normality
of the M-estimate remain intact and the RSS M-estimate is still more efficient than its
SRS counterpart. In the case of unbalanced RSS, if we further assume the symmetry
property that Fy,j(p + z) = Fjg—ry1)(¢ — 7), the lemmas and theorems in the previous
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sections still hold if wherever F(;) is replaced by Fj,j. The prescription of measuring
only the median still provides a consistent and asymptotically normally distributed M-
estimate. Though it might not necessarily be optimal, it can still be expected to be
more efficient than the balanced RSS by reasons we argued at the end of Section 4. In
the following, we describe a particular situation such that the symmetry property holds.
Let ps, be the probability at which the actual s-th order statistic is ranked as the r-th
order statistic. For symmetric underlying distributions it is reasonable to assume that
Dsyr = Ph—st1,k—r+1- Without loss of generality, assume that = 0. Then we have

k k
Fyy(z) = ZPS,TF(s)(x) = Zpk—s+1,k~r+1F(s) ()

s=1 s=1

k k
=) Pop-rt1Fp-st1)() = Y Pa-ri1(l — Fi) (7))

s=1 s5=1

1 — Fig—ry1)(—2).
Appendix
Here we sketch the proofs of Theorem 1, Theorem 2 and Lemma 2.

PROOF OF THEOREM 1. Assume that ¢(z,t) is nonincreasing in t and thus Ag, (t)
and Ay (t) are nonincreasing. Since y is an isolated root of App(t) = 0, p is the unique
root and thus we get

Arp(+€) <0< App(p—e€), forany e>0.
By the SLLN, Ay (t) converges to App(t) wpl, each . Thus,

linéoP(Aﬁ.m(u+e) <0< A (p—¢g), allm>n)=1
Since Ap_(t) is nonincreasing and Az (Tn) = 0, thus

lim P(p—e<Tp <p+e allm>n)=1

n—r00

Assume that 1(x) is bounded. It’s easy to get that Ap,(t) and Ay (t) are continuous.
Since 9 is odd and F' is symmetric location distribution, we can get App (1+€) X App (1t —
€) < 0. Assume that Ap,(p+€) > 0. By the SLLN, Az (t) converges to Ap, () wpl,
each t. Let &3 < min{3[App (1 + )|, 3| AFp (1 — &)} Thus we have

P(Ag (n+e)>App(p+e) —e1(>0), allm >n) -1,

and
P(p (p—¢€) <App(p—e)+ei1(<0), allm>n) — 1.

Since A (t) is continuous, there is a solution sequence {T,} such that

lim P(p—e<Tp <p+e, allm>n) =1. O
n—oo



638 XIAOYUE ZHAO AND ZEHUA CHEN

Proor oF THEOREM 2. Under Al, to obtain (3.1), it is equivalent to show that

1/2 'I‘/\ 2 .

lim P (an < Zr—'lp F(r>( ”’)> =®(z), each z,

n—00 Sz,n,y
where

k Mr
np — { —1/2ZZ¢(X(T)1 tz nP n'/? Zpr)‘F(r) tz "aP)} /éz'“vl”
r=1 i=1 r=1

and

. 1/2
§z,n,p = I:Z prA(r) (Ez,n,p)} ’ Ez,n,p = p+ ZU(P, F)'nul/2

r=1
Tt thus suffices to show that

lim P(Vyp < 2)=®(z), each z,
n—oo

and equivalently

P (n;‘l/2 ZYWM- < z) is AN(0,BZ,),
i=1

where
'lp(X(-,—)z - fz,n,p) - AF‘(r) (fzan’p)
Y"l’”i = A )
Szmip
and

= [/ Tﬁz(fl’? - fz,n,p)dF(r) (z) - (/ P(z - fz,n,p)dF(r) (;c)>2] /§Z,n,p'

Since Yypni, 1 < i < ny, are LLD. with mean 0 and variance B,?‘m, each n, we may apply
the double array CLT to get the result and it remains to verify the Lindberg condition

1/2
n—r0o /E

lim deFy"ml(y) =0, every €>0,
ly|>n, .

or equivalently

lim [’IP(SII - fz,n,p) - )‘F(r) (taz,n’p)]zdF(r) (:L')

n—00 [(z— tzn,,) )‘F(r)(th’)|>n1/2

=0, every &>0.

For any n > 0, we have for n sufficiently large that

’(ﬁ(ﬂ) - (/“L + 77)) - /\F(,.) (/‘l’ - TI) < ¢($ - fz,n,p) - /\F(,_) (fz,n,P)
< ’(!)(Il?— (#*’7)) *)‘FM(H“HI), all =z
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So pu:ting p(z) = max{|$(z — (u+n)) = Ar,, (e — )|, [¥(@ = (1 = 1)) — Ar, (1 +mI},
we ge

[ A [0~ E2m) — Meg ()08 2)
I’lp(z—tz,n,p)—AF(r)(tz,n,p)’>n 5

< [, @)
ulx)>n,

Hence the result follows.
In the following, we sketch the proof of normality under A3. Since ¥(x — t) is
differentiable in ¢, so is the function z,’f___l Yoir ¥(X(r)i — t), and we have

E n, -
Z Z ,l)b(X(r)z - n) - Z Z ¢(X(r)z l‘l‘) /‘l') Z Z 3¢(X(T)z ) |t.-T* )
r=1 i=1 r=1 {=1 r=1i=1

where |T* — ) < |T}, — p]. Since Mg (Tr,) = 0, we thus have

A A
nl/Z(Tn _“) — __én_f’7 .

np

where

) k n-

Anp =n"1/2 Z Z ¢(X(r)i - ﬂ)y

r=1 i=1
and
(X —
Dy pracic i
r=1 i=1 t=T3

Complete the proof using the CLT and Theorem 1.

To prove Theorem 2 under A3, a very important and critical step is to replace F
by Fp and thus use the result Ag, (1) = 0. Other steps are replacing F, by E,, T, by T,
and o2(T, F) by o2(p, F). O

PROOF OF LEMMA 2. Suppose F(z) = Fy(z—u) and f(z) = fo(r—p). According
to Lemma 1, to get (i), it suffices to show

+oo +o0
(A1) P2 (z — p)dF ) (z) — P2 (z — w)dFg—ri1y(z) =0

—O0 —o0
To obtain (ii) and (iii), it suffices to show that

8 [ ¥(z - Oh(e - p)do

(A2) o

t=p
and

(A3) / O (x — £)/0ts bz — p)dz = 0,
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respectively, where

h(z — ) = folz - w)(Fg 7z ~ p) (A~ Fo(z — p)*"
~F3 (@~ p)(1 = Fo(z — p))" ™).

We apply transformation y = z — p1 to (A.1) and (A.3), and z = z — ¢ to (A.3). By the
odd property of ¥ and symmetric property of F, it is not difficult to get the results. O
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