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Abstract. The Ewens sampling formula in population genetics can be viewed as a
probability measure on the group of permutations of a finite set of integers. Func-
tional limit theory for processes defined through partial sums of dependent variables
with respect to the Ewens sampling formula is developed. Techniques from proba-
bilistic number theory are used to establish necessary and sufficient conditions for
weak convergence of the associated dependent process to a process with independent
increments. Not many results on the necessity part are known in the literature.
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1. Introduction

Let S,, denote the symmetric group of permutations on {1,...,n}. Erdés and Turdn
(1965) established the weak convergence result,

(1.1) —1%# (or € 8, :logOrd(c) — —;—log2 n< :/y—-g log®/? n> — P(y),

as n — oo, where ® denotes the standard normal distribution function, and Ord(o)
denotes the order of a permutation o. Since each o € S, can be uniquely represented
(up to the order) by the product o = s - - - 35, of independent cycles sz; (Feller (1968),
X.6), where w = w(o) denotes the total number of cycles, S, can be partitioned into
equivalence classes of conjugate elements. As the elements in a conjugate class will all
have the same number k; of cycles of length j for all 1 < j < n, the conjugate class

containing an element o € S, can be identified by the vector k = (k1,...,kn), where
0 < k; = kj(o) denotes the number of cycles of o of length j. Thus the space S, of
conjugate classes can be taken as the set of vectors k = (k1,-..,kn), of non-negative

integers representing partitions of n,

(1.2) kg 4 -+ -+ nk, =n.
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Since Ord(c) and w(o) depend only on the conjugate class containing o, these can be
treated as functions on S,. Note that the function Ekj (0)>1 log j is closely related to

log Ord considered by Erdés and Turdn (1965) in (1.1).
A general family of measures vy g, 6 > 0, on S,, was described by Ewens (1972) in
connection with models in population genetics. The measure v, ¢ on Sy, known as the

Ewens sampling formula is given by

nl o (0\% 1
(1.3) Va (ks k) o= (_> 4
B 3 \i) Kl

where 6 > 0 and 8,y = 0(6 + 1) --- (0 +n — 1). Clearly, v for 6 = 1 is the measure
on S, induced by the uniform measure on 8, considered in {1.1). If the probability
gulo )/O(n) is assigned to o € S, then the measure of the class k is given by the Ewens
sampling formula (1.3). It is well known that the asymptotic distribution of k;(-) for a
fixed j > 1 is Poisson with parameter 8/j. The relation (1.2) makes k;(-), 1 < j<n a
dependent sequence. The dependency is rather strong for en < j < n. The details about
the Ewens sampling formula and its relation to population genetics can be found in the
monographs by Ewens (1979) and Kingman (1980).

The first functional limit theorem in the case § = 1 for the function w(c), was
established by DeLaurentis and Pittel (1985). The case of general @ for the function
w(o) was examined by Hansen (1990) and Donnelly et al. (1991). A short proof of
Hansen’s theorem is given in Section 2.C of Arratia and Tavaré (1992). Convergence of
more general partial sum processes to the Brownian motion was investigated by Babu and
Manstavicius (1999). It was shown that an analog of the Lindeberg condition is necessary
and sufficient for the weak convergence of the processes. However, by constructing an
example it is shown that the Lindeberg condition is not necessary for the one-dimensional
central limit theorem.

In this paper, we consider arbitrary limit processes with independent increments.
The main difficulties arise in proving necessity of the conditions. We base our analysis on
an idea that originated in probabilistic number theory (Timofeev and Usmanov (1984)).
For the sufficiency part, as in Arratia and Tavaré (1992), Babu and Manstavicius (1999),
and as in the earlier papers on probabilistic number theory of Kubilius (1964), Babu
(1973), Philipp (1973), Manstavi¢ius (1984, 1985), we exploit the idea of approximating
truncated sums of dependent and the corresponding independent random variables. For
a recent account of results on probabilistic number theory see Tenenbaum (1995).

2. Results

Let h;(k) be a real double sequence, k > 0, j > 1 such that h;(0) = 0 for each j. Set
for brevity a(j) = h;(1), and u* = (1 A |u|)sgnu, where a A b := min{a, b}. Throughout
this paper the limits are taken as n — oo and we assume that the normalizing factors
B(n) > 0 satisfy B(n) — oco. The sequence {8(n)} need not be monotone. Define

B(u,n) = st; (%)2 % Alu,n) = eg (%) %
and

(2.1) y(t) := yn(t) = max{l < n: B(l,n) <tB(n,n)}, tel0,1].
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We shall consider the weak convergence (denoted by =) of the process
1

H, := Hy(o,t) = )

Z hj(kj(a)) - A(y(t)’n): teo, 1]

F<y(t)

under the measure vy g, in the space D[0,1] endowed with the Skorohod topology
(Billingsley (1968)). Let D denote the Borel o-field generated by the Skorohod topology.
The corresponding process X, with independent increments is defined by

Xpi=Xn(t)= Y Xnj—Aly(®),n), te[01],

F<y(t)

where Xn; = a(j)&;/B(n), and &; are independent Poisson random variables with E¢; =
9

In general, the limiting behavior of the dependent process H, is different from
the corresponding X,,. Since the summands h;(k;(c)) with indices j < en are nearly
independent (Lemma 2 below gives a quantitative version of this statement), the main
influencing factors are the dependent summands h;(k;(o)) for en < j < n. Intuitively, if
the normalizing sequence B(n) satisfies B(en) ~ B(n), where 0 < ¢ < 1 is fixed, then the
effect of the normalized sum over [en, n] of the random variables on the limit behavior of
H,, and X, should be negligible. Conversely, if h;(k;(0)) for en < j < n has influence on
the limiting behavior of H,,, then the limiting process had to have dependent increments,
at least, in the neighborhood of the point ¢ = 1. Thus in the case of limit processes with
independent increments the condition above on the normalizing sequence B(n) should
be necessary. This is presented below.

THEOREM 1. In order that H,, = X, where X is a process with independent incre-
ments such that the distribution of X (1) is non-degenerate, it is necessary and sufficient
that the following two conditions are satisfied:

(I) B(n) is slowly varying in the sense of Karamata;

(IT) the sequence of functions

wo= 2 (58)

Jj<n
a(j)<uf(n)

LEN R

converges weakly to some non-decreasing function ¥(u), 0 = ¥(—o00) < ¥(+00) < 00, s0
that ¥, (+o00) — ¥(+00).
Moreover, if Conditions (I) and (II) hold, then the limiting process X satisfies

(2.2) Ee?X®) = exp {/ (€M -1~ iAu*)u"‘—2 th(u)} , AMER,
R
where

u/k(t) s 2 .
M) = [ k@) and - K() = lim Bua(6)/0(0)

-0

The equation My(+00) = t¥(+00) can be used to compute k(t).
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Remark. If Condition (I) holds, then H, = X if and only if X,, = X. One of the
cases, when Condition (I) is given by Condition (II) implicitly is treated in Babu and
Manstavicius (1999). Condition (II) is essentially needed to establish weak convergence
of X,,.

For properties of slowly varying functions, see Bingham et al. (1989). The sufficiency
part of Theorem 1 is contained in the following result of independent interest.

THEOREM 2. Suppose that B(n,n) — B(un,n) = o(1) for each fired 0 < u < 1.
Then Condition (II) of Theorem 1, is equivalent to H, => X as well as X, = X, where
the distribution of X (1) is non-degenerate. Moreover, if Condition (II) holds, then the
limiting.process X is a process with independent increments satisfying (2.2).

In the case of limiting processes with independent increments, the normalizing con-
stants B(n) are necessarily slowly varying. Here one expects that on the average a(j)
are small. Apparently the converse also holds. This idea due to Timofeev and Usmanov
(1986) is exploited to strengthen the necessity part of Theorem 1.

THEOREM 3. Suppose that

*2
(2.3) > (@) Loo
. i<n n J
for each positive € > 0. In order that H, = X, where distribution of X (1) is non-
degenerate, it is necessary and sufficient that Conditions (I) and (II) of Theorem 1 are
satisfied.

It is likely that the counter-example constructed in Babu and Manstavicius (1999)
or the functions with a(j) = j¢ with ¢ # 1, ¢ > 0 (Manstavi¢ius (1996)) may converge to
processes with dependent increments. We shall return to the topic of limiting processes
with dependent increments elsewhere. As mentioned earlier, the values of functions on
o with long cycles, will have a dominating effect. In this sense, the Ewens formula has
interesting connection to the Poisson-Dirichlet and Griffiths-Engen-McCloskey distribu-
tions (see Hirth (1997a,b,c)).

An Ezample to illustrate Theorem 1. If B(n) = logn and a(j) = {jv/2}~!, then
Conditions (I) and (II) are satisfied, with ¥(u) = 0, = u or = 2 — (1/u) according as
u<0,0<u<1oru>1 Toestablish this we clearly have ¥, (u) = ¥(u) = 0 for
u < 0. It is well known (Drmota and Tichy (1997), Corollary 1.65) that

(2.4) Bo(v) = 2 3 1({iV2} < ) - v =0((oga) ),

uniformly in v € {0,1]. Hence summing by parts we obtain, for 0 < u < 1 and logn >
1/u, that

Fo(u): = Z —171(a(j) > ulogn)

1 1 "1 1
= ]_ 1 An —Ar
ulogn(ogn+ )+ (ulogn) +/1 asA (ulogn) de
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As a result, uF,(u) is uniformly bounded in 0 < u < 1. Further, uF,(u) — 1 for each
fixed 0 < u < 1. Here we have exploited the relation that A;(v) — 0 as v — 0 for each
x > 1, and that

® 1
sup / =|Az(v)|dz < oo.
0<vgtJ1 T

Thus for 0 <u <1,
u U
U (u) = —/ $2dF,(s) = —u?Fy(u) + 2/ sF,(s)ds — u,
0 0
and for v > 1,

U, (u) = Uu(1) + Fr(1) — Fp(u) — 2 — (1/u).

Also note that ¥, (+00) — 2 = ¥(400). Hence Condition (II) holds in this case.
To find k(t) for our example, we use M;(oo) = t¥(0c0), to obtain

[ o]
/ (uk(®)* w* d¥(w)
—00
1 1/k(t) 00
=k2(t)/ du+k2(t)/ uzd—ZJr/ 5'!—’2‘ = 2k(t) = 2t.
0 1 U 1/k(t) U
So k(t) = t and log yn(t)/logn — t. A simple algebra leads to
0, if u<oO
Mi(u) = { tu, if 0<ux<l1
2t —tfu, if u>1
showing that our example models a homogeneous Cauchy process.
3. Auxiliary results

It will be shown later that the main results can easily be reduced to considering
processes with hj(k) = kh;(1) = ka(j), for all j > 1 and k > 0. Let

(3.1) H, = B0, 1) = ﬁ 3 a(h)ks(0) - A(),n)-

F<y(t)

For 0 < r < m, let A7 := H7(0,t), H, := H:(0,t) and X7, := X7 (t) be the processes
obtained from H,, H,, and X,, respectively by substituting y(¢) Ar for y(¢). For any two
non-negative functions f and g, it is often convenient to use the notation f(n) < g(n)
instead of f(n) = O(g(n)). The basic techniques and the main steps used in proving the
theorems are presented as several lemmas. In proving the main results, the condition
B(n,n) — B(un,n) = o(1) reduces the problem of weak convergence of X, to that of
truncated sums X7. Then we use Lemma 2 to show that the effect of truncation is
negligible. Lemma, 7 helps in establishing that 8(n) is a slowly varying function.

LEMMA 1. Foranyy>0,and0<r <n,

(3.2) P, (y):=P (sep | Xn(t) — X7 ()| > 7) < B(n,n) — B(r,n) + o(1).
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ProOF. Note that as f(n) — o
< OZ a(y)
B(n)

+ZZ

j=1k=

et
J

A 5

(3.3) ZEX — A(u,n)

Jjsu

B (n)

holds uniformly in > 1, which yields

> EX;; — (A(k,n) - A(r,n))

r<j<k

=o(1).

(3.4) max Imax
0<r<n r<k<n

In addition, we also have

9 oo o0

(3.5) Y O PXaj X< Y, ;T >, Z

r<j<n i<n j=1 k=2
!a(J)|>ﬁ(n)

a(J)k

k e"o/j
K

Thus, for all v > 0, we have by (3.4) and (3.5), that

Pop() < P( U (X # X:;,-)) +P (Iggx > (X - EX;y)

r<jsn r<j<k
< B(n,n) — B(r,n) + o(1).

> 7/2) +o(1)

This completes the proof.

LEMMA 2. (Arratia et al. (1992), Theorem 3) For0<e<1land2<r <en,

sup |vn (AL € D) — P(X, € D)| <80+ (1 —€)7Y).
DeD

Recall that D denotes the Borel o-field on D[0,1].

Let for brevity, £(Z) be the linear space of real functions g on I C R with finite
supremum norm.

LEMMA 3. (Babu and Manstavicius (1999)) Let
h(o,t) = hi(k1(0),t) + - - + hp(kn(0), 1)

where hj(k,t), t € I C R, be a set of real array of functions on I such that h;(0,t) = 0
and hj(k,-) € L(T), for k>0, j < n, t € I. Denote Z,(t) = h1(€1,t) + -+ + ha(n, 1)
Then for any g € L(T) and x > 0,

vma (sup Ih(0,1) = 901 2 ) < €(0) (PPN (sup IEnt0) ~ 9] 2 073 + w?).
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Here C(0) is a positive constant depending only on 6 and P*"'(D) = (P(D))*".
At present we could not get rid of the exponent # A 1. However, this inequality is
sufficient for our purpose.
In the necessity part of Theorem 1 we will use an estimate of the mean values of

multiplicative functions defined on permutations having only long cycles.

LEMMA 4. (Babu and Manstavicius (1999)) Forb(j) €C,1<j<n,ando € 8,,
let '

f(@) = [16G)=.
j=1
Ifb(j) = 1 for all but j € J C (n/2,n], then

Mo (f) = al—; > 0@ fe) =1+ -1,

where |
di = _i("‘l)_

LEMMA 5. The measures vy g-H, 1 and Vn,g-fl,j 1 can only converge simultaneously
and to the same limit.

PROOF. Since 8(n) — oo we have by Lemma 3, for any v > 0 and K > 2, that

v(vin,0) 1 = vne (SUP |Hp(0,t) — Hn(0,8)] > 7)
t
< PPM(Ij<K:&>K)+ P (Ij>K:¢>2)

+poM (Z(]hj(sj)l +la(i)&;) = vB(n)/3,& < KVi < K) +o(1)

J<K
onl onl1
213> — ), Ty 052 k)
¢ TR ¢ TR oK
JSKk>K J2K k>2
< K~ 4 ok (1).
Hence v(v;n,0) = o(1) for arbitrary v > 0. This establishes Lemma 5.

For the infinitesimal independent array of random variables X,;,1 < j < n, we
recall the following result.

LEMMA 6. Let 0 < z(n) < z(n) < n be any sequences of real numbers. For some
sequence {c,} of real numbers, the weak law of large numbers

(3.6) P > g—%fj —cn| 27| =0(1)

z(n)<j<z(n)
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for each v > 0, holds if and only if
3.7) B(z(n),n) — B(z(n),n) = o(1).
If (3.6) holds, then it holds with
a(j) ) 4
Cp = ==L} =,
2. (ﬁ(n) j

z(n)<j<z(n)

Further, if (3.7) holds then for each v > 0,
(58 vno ( > Bie- ¥ (22)Y> '7) = o(1).

z(n)<j<z(n) z(n)<j<z(n)
Proor. The first part follows from Theorem 4 of Chapter 9 of Petrov (1975).
Lemma 3 and (3.6) yield (3.8).

Without loss of generality by Lemma, 5, we assume from now on that

hj(k; (o)) = a(§)k;(o)-

LEMMA 7. If Hy(1) converges weakly to a non-degenerate random variable, then

© (3.9) liminf B(n,n) > 0.

If the sequence {v, ¢ - H;1} is tight in D|0,1], then

(3.10) B(n,n) <« 1

and for any r(n) — oo with r(n) = o(n),

(3.11) B(r(n)) < B(n).
Further, if H,(1) converges weakly, and if (3.9), (3.10) and

(3.12) B(n,n) — B(nu,n) — 0,  for some % <u<l
hold, then
(3.13) Bun) < B(n).

PrOOF. The inequality (3.9) follows from (3.8). To prove (3.10), now suppose it

is false. Then for a subsequence n := ny — 0o, B(n,n) — oo.. Set s, := B(n,n) /2
and r = r(n) := y(s,). If r > en for some 0 < & < 1, then clearly we have
B(en,n) < B(r,n) = B(y(ss),n) < spB(n,n) < B(n,n)'/?

and
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B(n,n) — B(en,n) <1+ log(l/e) < 1.

These inequalities together imply B(n,n) — B(n,n)l/ 2 « 1, which violates the assump-
tion B(n,n) — oo. Thus, if B(n,n) — oo for some subsequence n := ni — 00, then
r(n) = o(n) and s, — 0. Consequently, Lemma 2 and the tightness of the family of
measures vn, g - H, ! (see Billingsley (1968)) imply

= o(1)
for any v > 0. Hence by Lemma 6, B(r,n) = o(1). But as §(n) — oo, we have
B(r,n) = B(r +1,n) + o(1) > B(n, Y% + o(1),

which contradicts the earlier supposition that limsup B(n,n) = co. This establishes
(3.10).

To prove (3.11), let on the contrary 0, := 8(r)/B8(n) — oo, for some r := r(n) — oo,
and r = o(n) on some subsequence n := n’ — co. Now tightness of the family {vy,¢-H 1
implies stochastic boundedness in P[0, 1], hence v g(|Hn(0,tn)| > ¥11n) = o(1) for an
arbitrary v > 0 and any sequence t, € [0,1]. If t, = B(r,n)/B(n,n), then Y(tn) = 7.
By Lemma 2 we obtain that

(3.14) P(Iny" Xn(ta)] 2 7) = vno(|Hn(ta)] = 7n) + 0(1) = o(1).

As 0  Xp(tn) = 30,2, (a;/B(r))&; — c;., for some sequence of real numbers {c}.}, we have
by (3.14) and Lemma 6,

> a(4)k;(0)/B(n) — A(r,n)

jsr

ZXM — A(r,n)

Jj<r

> 7) +0(1)

Blrr) =3 (B%) 5= o(0).

J<r

This contradicts (3.9) establishing (3.11).
To prove (3.13), we substitute nu for n in (3.12) several times to arrive at

w3 ()

uKn<j<n

for any fixed K > 1 with 8(n, K) := maxo<i<k B(u'n). From (3.15) we can get a strictly
increasing sequence of integers n,, > 2™ such that for all n > n,,

= () ek

umn<j<n

Let K = K(n) := m for nyp < n < Ny and B(n) = B(n,K). As nu¥ > u Ny 2>
(2u)™, clearly u¥n — oo and (3.15) holds with K = K(n) — oo. Note that f(n) =:
B(u'on) for some 1 < lp = I(n, K) < K and r = r(n) := u¥n = o(n). If B(n)/B(n) — oo
for a subsequence 1 :=n’ — 00, then (8(n)/B(n))Hx(-,1) = 0 and by (3.15),

(3.17) -g-%ﬂ,';c, 1) — A, =0,
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for some sequence of real numbers A,. By (3.15), (3.17 ), and Lemmas 1 and 2, it follows
that A(n)™ 37 a(j)&; — cn = 0 for some sequence of real numbers c,. Lemma 6 now
yields that ’

S R

jgn

which violates (3.9). This proves boundedness of B(n)/B(n), which in turn 1mp11es (3.13).
This completes the proof of Lemma, 7.

4. Proofs of the results

Recall that as mentioned earlier, we assume without loss of generality that
hj(k;(0)) = a(j)k;(o). We first establish Theorem 2.

PROOF OF THEOREM 2. Let ny, be a strictly increasing sequence tending to infinity
and satisfying,
B(n,n) — B(nk™,n) < k7%,

for all n > ng, k > 1. By taking r = r(n) = nk™! for ngy < n < ngy1, we get that
r(n) = o(n) and B(n,n) — B(r,n) = o(1). By Lemma 1, the processes X, and X7 can
converge only simultaneously and to the same limit. By Lemma 3 we also have

Voo ( sup |Hn(o,1) — HL(o,8)] > ’r) < PN (7) + o(1) = o1).
0<t£1

Hence the processes H,, and HY, can converge only simultaneously and to the same limit.
Thus by Lemma 2, we have H,, =+ X if and only if X, = X. The conditions for the
weak convergence of X, => X may be established from the general results on weak
convergence to additive process (see for example, Sato (1999)). For the form of time
function considered here, the derivation is not trivial and it requires some additional
work. Such details are given in Manstavi¢ius (1985). Thus, the assertion of Theorem 2
now follows from Theorem 1 of Manstavi¢ius (1985) on the equivalence of Condition (II)
and X,, = X.

PROOF OF THEOREM 1. Sufficiency. Let 0 < u < 1 be fixed. By Condition (I), we
have for B(un) < 28(n) all large n. Hence (|v|B(un)/B(n))* < 2{v*|. The representation

@ s [() e 2 ()

j<un
a(j)<vB(un)

- () s

the dominated convergence theorem, and Condition (II) imply that

B(un,n) — /R 40 (v) = T(+o0)
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for each 0 < v < 1. Hence an application of Theorem 2 establishes sufficiency part of
Theorem 1. Note that from (2.2) we can infer that X (1) has a non-degenerate distribu-

tion.
To prove necessity part, recall that we now have H, => X. Hence there exists a

countable set 7' C [0, 1) such that H,(-,t) — Hn(-,s) = X(t) — X(s) for all £, s ¢ T. By
Lemma 7,

(4.2) 0<co < B(n,n) <c1 < oo,

for some constants cg, ¢; and for all sufficiently large n. We shall now prove that

(4.3) Tn = sup{u < 1:y(u) < (2/3)n} — 1.
We then use (4.3) to establish
(4.4) B(n,n) — B(en,n) =o(1) foreach 0<e<1.

If on the contrary 7,, — t' < 1 for some subsequence n := n’ — oo, then we can
choose points s, t ¢ T such that ¢’ < s < t < 1. Since (2/3)n < y(s) < y(t) < n
for sufficiently large n, we use Lemma 4 for each of the characteristic functions of the
increments of H, in the intervals [s, 1], [s,t], [¢,1]. As the limit process has independent
increments, we arrive at the equality

1 . .
1+ Y (PO —1)ds, +0(1)
y(s)<i<n’

1 . . 1. . .
=11+ Z ;(ew\a(a)/ﬁ(n) ~ 1)djn 1+ Z _'(ez/\a(a)lﬁ(n) — l)djn
y(s)<i<y(t) y(t)<jisn

uniformly in [A] < K for any K > 0. Hence uniformly in [A| < K,

Lemaovem g | [ 3 Lenewrsm g, | = o).
y(s)<j<y(?) y($)<j<n

Since these sums are uniformly bounded, there exists a further subsequence such that
the real part of one of these sums tend to zero on the X set A of Lebesgue measure
at least K. The set A is symmetric with respect to the origin and by the inequality
1 — cos(u + v) < (1 — cosu) + (1 — cosv) we see that A+ A C A. Hence A = R by
Steinhaus’s lemma (see Bingham et al. (1989), Theorem 1.1.1). If, for simplicity, this
was the first sum, since dj, > ¢(6) > 0 for (2/3)n < j < n, we have

S 10— cos(a(i)/B()) = o(1).
y(s)<j<u(t)

We now consider two parts of the sum; one over j satisfying |a(j)| < #(n) and the other
over |a(j)| > B(n). Using the inequality 1 — cosu > cu?, ¢ > 0, for |u| < 1 in the first
sum case and integrating over A € [0,2] in the second case, we obtain

M\ 1
(t—s)B(n,n) = ORI o(1) = of1),
y(s);sy(;) (ﬁ(n)) J
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contradicting (4.2). So 7, — 1. Hence we have, for all large n and (3/4) < v < 1, that
B(y(m) +1,n) < B((2/3)n+ 1,n) < B(un,n) <1

< < .
Lto() S =5 S Blnn = Bmn) =
Since by (4.2), B(n,n) is bounded, it follows that for each (3/4) <u <1,
(4.5) B(n,n) — B(un,n) = o(1).

Consequently, (3.13) holds by Lemma 7. Now (3.13) and a repeated use of |

B(n,n) — B(u?n,n) = B(un,n) — B(u’n,n) + B(n,n) — B(un,n)
= B(un,n) — B(u?n,n) + o(1)
< (B(un,un) — B(u?n,un)) + o(1) = o(1)

yield (4.4). By Theorem 2, this leads to Condition (II). Another application of Theorem 2
yields that X, = X. Hence X,,(1) = X(1) and by (4.4), Xp™(1) = X(1) for each
0 <u < 1. As X(1) has a non-degenerate distribution, it follows that S(un)/B(n) — 1
for all 0 < u < 1, which implies Condition (I). This completes the proof of Theorem 1.

Proor oF THEOREM 3. It suffices to deal with the necessity part only. The
idea is rather simple. From (2.3) and H,, = X we need to construct a subsequence
1 := n’ — oo such that X,, = X. Since in this case, X being the limit process of a partial
sum process of independent summands, it has independent increments. Theorem 1 then
yields Theorem 3. Nevertheless the details are a bit involved. We divide the proof into
several steps.

Since X (1) has non-degenerate distribution, we first note that (3.9) holds by
Lemma 7. Now suppose for some 0 < § < 1,

(4.6) B(n) >2B(6n) for all n > ng =ng(f).

We use (4.6) repeatedly for &'n, i = 1,2,...,t, where §*~1n > ng > &'n, to get B(n) >
2t3(6tn) = 2tc;, where ¢; = ¢1(6) > 0. Therefore

log
log

4.7 B(n) > ¢; exp{tlog2} > c1 exp { z(log ng — log n)} =: con’

where ¢ > 0 and p = —(log2)/log§ > 0 provided n > ng. By (2.3) we get that

B(n,n) < (9%2)1 =o(1),

j<n N J

which contradicts (3.9). Hence (4.6) is false for all 0 < § < 1. Thus by taking § = 1/,
k=2,3,..., we get an increasing sequence ny such that ng > k2 and 8(n;) < 28(ni/k).
If we put r := r(ng) = ng/k, then as the subsequence n := ng — 00, we have

(4.8) B(n) <2B6(r), r=o(n) and r— 0.

We now partition the interval [r, n] by the points r; := r(log(n/r))}, i =0,1,...,m~—
1, so that 7, > n. Thus m > (log(n/r))/loglog(n/r) — oo as n := nx — oo. Since
B(n,n) is bounded, there exists at least one index 0 < s < m — 1 such that

(4.9) B(rsy1,n) — B(rs,n) = o(1).
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By (3.11), (4.8) and as 7 = 0(7s41), we have

() 385 2 <54’

Hence from (4.9),

(4.10) B(rsi1,Ts41) — B(Ts, Ts41) € B(rs41,n) — B(rg,n) = o(1).

Since 75 = 0(rs41), we have by (3.8) and (4.10) that if H, = X, then H: = X.
Lemmas 1 and 2 along with another application of (4.10) now imply that X, , = X.
Since X is a limit process of some partial sum processes of independent summands, it

must have independent increments. Theorem 3 now follows from Theorem 1.
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