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Abstract. The independent variables of linear mixed models are subject to mea-
surement errors in practice. In this paper, we present a unified method for the
estimation in linear mixed models with errors-in-variables, based upon the corrected
score function of Nakamura (1990, Biometrika, 77, 127-137). Asymptotic normality
properties of the estimators are obtained. The estimators are shown to be consistent
and convergent at the order of n~1/2. The performance of the proposed method is
studied via simulation and the analysis of a data set on hedonic housing prices.
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1. Introduction

There has been a great deal of interest in mixed effects models recently. These
models are commonly used for analyzing longitudinal data and repeated measurements
in biomedical, social and economical studies (see, for example, Diggle et al. (1994);
Davidian and Giltinan (1995)). Statistical inference based on the common likelihood
analysis is much involved because of the intractable numerical integration. Various meth-
ods have been proposed to tackle this problem; see for example, Breslow and Clayton
(1993), Liu and Pierce (1993), Lin and Breslow (1996).

Independent variables, or covariates in the models are often measured with errors
(Fuller (1987); Carroll et al. (1995)). Ordinary maximum likelihood estimators, without
taking into account the measurement errors, are generally inconsistent (e.g. Armstrong
(1985); Fuller (1987); Stefanski and Carroll (1987)). There are two useful approaches
shown in the literature for dealing with measurement error models as pointed out by
Hanfelt and Liang (1997). The corrected score approach of Nakamura (1990, 1992) suc-
cessfully corrects for measurement errors in normal, Poisson, gamma and inverse Gaus-
sian regression models, and in proportional hazards models (Hanfelt and Liang (1997)).
Buzas and Stefanski (1996) expanded the potential for application of the methodology,
and described an application to extreme-value binary regression. The other approach
given by Stefanski and Carroll (1987) dealt with an unbiased score function based upon
the estimating equation method. A full treatment of measurement error models can be
found in Fuller (1987) and Carroll et al. (1995).
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The combination of random effects and measurement errors for linear models is
worth investigating. As pointed out by Davidian and Giltinan (1995) in their open
problems (Chapter 12, p. 328), “it is often the case in practice that covariate values
collected on individuals are measured with non-negligible errors” and the inference of
these models “is not well-developed”. Recently Wang et al. (1998) and Lin and Carroll
(1999) investigated the bias of parameter estimates and variance component tests in
generalized linear mixed measurement error models using the simulation extrapolation
(SIMEX) approach. Related work on methods for longitudinal data with measurement
errors was done by Palta and Lin (1996). In this paper, the corrected score function of
Nakamura (1990) was employed to study linear mixed models with measurement errors.

In Section 2, we introduce the corrected score function of Nakamura (1990) for
linear mixed models with measurement errors. Section 3 derives asymptotic results for
the corrected score estimates of fixed and random effects. The estimates are shown to
be consistent and convergent at the order of n~1/2. The asymptotic normalities of the
estimates are also described. Section 4 is concerned with the numerical aspect of the
model. A simple algorithm is developed to obtain the estimates of the parameters and
variance components. A simulation study is conducted. An analysis of a data set on
hedonic housing-prices is given to illustrate the results in Section 5. Concluding remarks
are given in Section 6.

2. The corrected score function
We study the following linear mixed model with errors-in-variables

(2.1a) Y =2ZB8+Ub+e, e~ N(0,0%0),
(2.1b) X=2Z+6 &~NOI®A).

In this model, Y is an n x 1 vector of random variables whose observed values comprise
the data points; Z and U are matrices of regressors with dimensions n x p and n X g,
respectively; 3 is a p x 1 vector of parameters, which is the fixed effect; bis a g x 1
vector of unobservable random effects with b ~ N(0,02X) for some %; ¢ is an n x 1
vector of random errors as shown in (2.1a); and X is the observed value of Z with the
measurement error § as shown in (2.1b) for some A. We assume that 02, ¥ and A are
known and should be replaced by precise estimates in applications (see Section 4).

If the measurement error of Z is negligible, i.e. § = 0, then E(Y | b) = p' =
pf + pr where py = Z3 is the fixed component and p, = Ub is the random component,
which is the standard linear mixed model (Harville (1977)). For (2.1a), denote the joint
probability density of Y and b by f(y,b;8,2Z) and I(8,b; Z,Y) = log f(Y, b; B, Z), which
may be regarded as the joint log-likelihood (Robinson (1991)). From (2.1a) we have

1 1 _
(2.2) 1(B,b;Z,Y) = c(0?) - 5&—2—(}’ —ZB-Ub)T(Y — Z3 - Ub) - gzﬂ’z 1p,

where c(0?) = —(n/2)log(2n0?) — (q/2) log(2wo?) — (1/2)log |E|. For given variance
components o2 and ¥, Robinson (1991) proposed the best linear unbiased prediction
method to estimate the fixed and random effects by solving the equations 9I/98 = 0
and Ol/8b = 0 (see also Harville (1977)). Following this approach and taking 8!/0b = 0,
we get b(3,2) = (UTU + ~1)"WWT(Y — ZB). Substituting this formula into (2.2),
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rearranging the expression and using a well-known identity (I+USUT)~! = I-U(UTU+
2-1)"1UT, we obtain

(23)  LBZY)=UBHE:EY) = clo?) — 5g (¥ — ZO)TVNY ~ Z),

where
V=I+UsUT, and V'=I-U@WTU+x YUt

When the covariate Z is measured with non-negligible errors as shown in (2.1b) and
the correlated structure arises from the random effects, if we simply replace Z by X
in (2.2) and (2.3), then the expectations of 81(3,b; X,Y)/8b and 9l,(3; X,Y) /0B with
respect to Y and b, evaluated at the true parameter 3;, are generally not equal to zero.
Therefore, the estimates obtained from the score functions are not consistent in general.
Recently, Wang et al. (1998) discussed the bias of estimates due to measurement errors.
Various ways are proposed in dealing with measurement error models, and one simple,
yet useful approach is based upon the corrected score method by Nakamura (1990) (see
also Nakamura (1992), Hanfelt and Liang (1997), Gimenz and Bolfarine (1997) and
Zhong et al. 2000). The method proposes to find the corrected score function whose
expectation with respect to the measurement error distribution coincides with the usual
score function in Z (Nakamura (1990)). In the following, we will extend the idea to deal
with measurement error models containing random effects as well.

Let E* and Var* respectively denote the conditional mean and variance with respect
to X given b and Y. The corrected log likelihood I*(8,b; X, Y) for our model should
satisfy

(2.4) E*{01*(8,b; X, Y)/8b} = BI(6,b; Z,Y) /b,
(2.5) E*{0U3(8; X,Y)/88} = 0l,(5; Z,Y) | 08.

The following equation is useful to find such a I*,

(2.6) EXXTv1X)=ZTVv1Z + (VT HA.

Given A, I* is obtained as

(27) P85 X,Y) = cl0?) — 5o {(Y — X8~ UB(¥ - X — UB) - te(V )57}

1
—pTx"1p,
202

When V = I in (2.7), this reduces to the corrected log likelihood for normal regression
models proposed by Nakamura ((1990), p. 131). A corrected likelihood equation 1* /0b =
0 for b admits an explicit solution

(2.8) 5B, X) = (UTU + =Y~ WT(Y - XB) = SUTVY(Y - X ).

By an analogous derivation to (2.3), we have

(29) B(B:X,Y) = I'BH(B,X); X,Y) = e(o?) = 55(¥ = XB)TV LY — Xp)

+%2— tr(V1)BTAB.
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It is straightforward to verify (2.4) and (2.5) with the I* (2.7) and [ (2.9). A corrected
score function for 3 is then obtained as

oL (6; X,Y)
=
Using formula (2.6), we get (2.5), as expected.

1 1
(2.10) FXT‘V-I(Y ~XB)+ — tr(V-1)AB.

Let E* and Vart denote the expectation and variance with respect to ¥ and b, and
E = E1E*, then it follows from (2.5) that

ol (B, X,Y)\
(2.11) E{—-B-T} =0,

where (3; is the true value of 8. This indicates that the corrected score function is
unbiased.

Note that we can obtain the corrected log likelihood (2.9) from (2.3) and (2.6)
directly without (2.7). However, to obtain the estimates of random effects, the corrected
joint likelihood (2.7) must be employed. The estimates are obtained using the standard
procedures as described by Robinson (1991) which performed well for random effects
models without measurement errors; see also Harville (1977). These procedures will
yield meaningful random effects estimates.

From (2.10), we obtain the corrected observed information as

L (B; X,Y)

SgaAT = o HXTV X —tr(VHA}

(2.12) I'B;X,Y)=
A corrected observed information is given as

(2.13) I(6;2,Y) = E*{I*(6; X,Y)} = 0~ 2(2TV"'2),
and a corrected Fisher information is

(2.14) IY(8;Z2) = EYE*{I"(6; X,Y)} = 0" 2(2TV~12).
They are identical to each other since our model (2.1) is linear.

3. Corrected estimates and asymptotic properties

From (2.10) and (2.8), we have corrected estimates

(3.1) B={XTVIX —tr(V A} 1XTV "1y,
and
(3.2) b=UTU + = H)~"WT(Y - XB) = SUTV-YY - XP).

The predicted value V=X 3 +Ub of Y coincides with PY; and the residual vector
é=Y—-Y =QY,where P=1 V-1 4+ V-1IX(XTV-1X — tr(V-)A)"1XTV-! and
Q=1I—-P. IfV =1, ie. the random effects do not exist, then ¥ and é reduce to the
results of Nakamura (1990).

Thus, we need to derive asymptotic results for the estimates. It should be noted
that Propositions 1 and 2 of Nakamura ((1990), p. 129) may not be applicable to model
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(2.1), since the components of Y are not mutually independent. We assume that all
the derivatives related to the likelihood exist and the parameter 3 is identifiable. It
is also assumed that as n — oo, the following limits exist: n~1ZTV~-1Z, n~1Z7U,
n~HUTU + 7Y, n71Z2TV2Z, n~1tr(V~!), and n~1tr(V—2). The existence of the
first three limits is also assured in Lee and Nelder ((1996), p. 651), and the last three
limits always exist since V! is positive definite and its eigenvalues are all less than 1.

LEMMA 1. Under the above assumptions, we have

(3.3) XTV X = ZTV1Z + tr(V YA + O, (n/3).
PROOF. See the Appendix for details. O

THEOREM 1. ,3 is asymptotically normally distributed. The asymptotic mean and
variance of B are respectively given as 3, and

(3.4) avar(B) = o2(2TV1Z) 4+ (2Tv12)'B(ZTVv1Z) 1,
where B = {otr(V~1) + BT (ZTV~2Z)B:}A.
Proor. It follows from (3.1) and (3.3) that
B ={n12TV1Z +0,(n" V) In 1 XTV Y
= {I,+0,(n" )} Y 2TV 12) I XTV Y
= {I, + Op,(n~ 2} (n~1 2TV 2) " In XTV Y
where {I, + Op(n~'/2)}~! = I, + Op(n~'/2) is obtained from Taylor series expansion.

So we have 1
(3.5) VB = {I, + Op(n~ V) }(n 12TV 12)? %XTV‘IY.

We will obtain asymptotic properties of £ = XTV~1Y/\/n. Let V~1/2 = T'®I'T denote
the spectral decomposition of V~1/2, where I'TT = I,,, ® = diag(A\] V2 an 1 %) and
A;’s are the eigenvalues of V. Then we have

1 oy 1 gy —1/2 1 sras
S = —XTrerTv-1?y = ——XTeY,
¢ ﬁx v-ly ‘/ﬁx T
where

X=rTX~NTTZ,I,®A),

Y =1Tv-12y ~ N(0TVY/223,,6°L,).

The a-th element of £ is given by
& y—1/2v 1 )
£o = —\/ﬁ ;—1 Xio); Y = Tn ;_1 0.

Since a;’s are independent and the limit of Var(£,) exists as n — 0o (see below), by the
central limit theorem, £, is asymptotically normal.
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Moreover, since the limit of n=1ZTV~1Z exists, let M =n"1ZTV~1Z, then (3.5)
can be written as :

(36) VnB= (n-lzTV“ZW-};;XTV‘lY + 0p(n™1/2) = M€ + Oy (™).

It follows from E(XTV-1Y) = ZTV-1Zp, or E(£) = M+/np; that v/r(B — B) is
asymptotically normal with mean 0. A
To find the asymptotic variance of 3, (3.6) is rewritten as follows:

VA(B — B) = M7 = M7 My, + Opfn /%) = M7 (€ — B(€)) + Opl(n™/%).
So we have avar(y/nf) = M~ Var(¢)M~1. The variance of £ can be obtained by
Var(¢) = E*{Var*(£)} + Var™{E*(¢)}
= n lEY(YTV?YA) + ntVart(ZTV 1Y)
= lEN(YTV7IYA) +n 10?27V 1 2).

Since EX(YTV~2Y) = o2tr(V~1) + BF(ZTV2Z)B;, Var(§) =n"Y{B+0%(ZTV12)}
whose limit exists as n — oo by the assumptions. This completes the proof. O

The variance decomposition (3.4) is useful in applications. If there is no measure-
ment error, i.e. A = 0, then avar(8) = ¢2(ZTV~1Z)~!, which is the variance for mixed
models. If there is no random effect, i.e. V = I,,, then B = {na? + 8L (ZT Z)B;}A.

The asymptotic variance (3.4) can be also expressed as

3.7) I*(B;2)" + I8, 2) (o * B (6, 2)

see (2.14). Thus, (3.4) is estimated by

(3.8) B X, Y) T + B X, V)T (6B (B X, Y)

Theorem 1 is an extension of Nakamura ((1990), equations (3) and (4)) to the linear

mixed models, and implies that 3 is consistent (see (3.6)). Thus, we have

COROLLARY 1. Let B be the irue value of B, then B is consistent in probability
and B~ Bi = Op(n~1/2).

The § is strongly consistent to the order n=1/2 under a fixed effect model (Nakamura
(1990)). However, it is weakly consistent with the same order of convergence in our
model, since it has an extra correlated structure arising from the random effects.

Theorem 1 considers the asymptotic properties of the fixed effect estimators 3. For
the estimation of random effects (Robinson (1991); Lee and Nelder (1996)) of which no
analogous results are obtained in Nakamura (1990), we have

THEOREM 2. Let b, = b(8;) given in (2.8), then b — b, = Oy(n~'/2) and it is
asymptotically normally distributed with the asymptotic variance

avar(b — by) = M My avar(8) MT M;?,
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where My = n~Y(UTU + 1) and My = n~'U” Z, whose limits eist by assumption.

Proor. From (2.8) and (3.2), we have

b—b = ~(UTU+E7)TIUTX(B - B)
= ~{n UTU + =)} UTZ 4 Op(nV2)}(B - Br)
= —M7'Ma(B — Be) + Op(n™);

here we use the result UTX = UTZ + Op(n/?) whose proof is similar to (3.3). Then
from Theorem 1 we get the desired results. O

The above results are similar to those given by Lee and Nelder ((1996), p. 651), for
models without measurement errors.

4. Estimation procedure and its performance in simulation

We have obtained the corrected score function estimates and their asymptotic prop-
erties in the last section. This is done by computing the variance components o?, 0%
and A, by applying the method of Harville (1977), which has been found to be successful
in estimation in various random effects models (see for example, Fellner (1986) and Schall
(1991)). The method-of-moment estimate is employed for A (Fuller (1987); Carroll et

al. (1995)).
Following Harville (1977) and Schall (1991), the linear models with random effects

and errors-in-variables can be formulated as
(4.1) Y =28+ Ub; +Usbg+---+Uch.+e, X=2Z+6,
where € ~ N(0,0%,), U;isnx ¢, biisggxlandg=q +q + - +¢. Let U =
(Uy,Us,...,Us), bT = (T,b%,...,bT). We take b ~ N(0,0°%), and by,...,b;,&, X are
all independent, where ¥ = diag(oZo2I,,, 030 %1,,,...,020721, ), as discussed by
Harville (1977), Fellner (1986) and Schall (1991). Under this formulation, let D; =
02/c2UTV -1, then from (3.2) we have b; = D;(Y — Xf3).

Since 3 and b are solutions to the simultaneous equations, 01* /08 = 0 and Ol* /b=
0, we have

(42) XTX —te(VHA  XTU Bay () (XY

' UTx vTu+xs-tJ\b) " \b) \UTY )’

These equations form the basis for the following algorithm which is regarded as an
extension of Harville (1977) and Schall’s (1991) to deal with the extra measurement

€rrors:
Step 1: Given estimates 2 and 62,...,62, compute estimates B and by, ..., b as
the solutions to the linear equations (4.2), where ¥ is evaluated at the current estimates

of the variance components.
Step 2: Let T* be the matrix formed by the last g rows and columns of w1,

partitioned conformably with ¥ as

3 *
- 17,

% *
cl 7 ch
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Table 1. Simulation of linear mixed model with errors-in-variables based on 1000 repetitions
for case(i): with measurement errors and case(ii): without measurement errors. The corrected
score function estimator (CSFE), naive estimator based on X and that based on true Z are
employed. The mean, standard error (SE) and mean squared error (MSE) of each estimator
are obtained based on repetitions. ASE denotes the asymptotic standard error.

g=5 m=3 ¢g=50 m=38
Parameter Method Mean SE MSE ASE Mean SE MSE ASE
case(i)
B=1 CSFE 1.005 0.132 0.0175 0.144 0.998 0.077 0.0059 0.070
Naive 0.798 0.090 0.0488 0.090 0.801 0.053 0.0428 0.055
True Z 0.998 0.057 0.0033 0.056 1.000 0.032 0.0010 0.032
B2 =2 CSFE 2.013 0.134 0.0182 0.134 2.011 0.079 0.0064 0.070
Naive 1.603 0.092 0.1661 0.091 1.601 0.057 0.1626 0.054
True Z 1.996 0.056 0.0032 0.056 2.000 0.032 0.0010 0.032
a% = 0.25 CSFE 0.250 0.179 0.0323 — 0.249 0.080 0.0065 —
Naive 0.267 0.151 0.0232 — 0.355 0.073 0.0163 —
True Z 0.256 0.071 0.0051 — 0.250 0.060 0.0036 —_
o2 =0.36 CSFE 0.380 0.200 0.0403 —_— 0.384 0.080 0.0070 _—
Naive 1.323 0.151 0.9505 — 1.336 0.073 0.9584 —
True Z 0.356 0.071 0.0051 — 0.358 0.060 0.0036 —
case(ii)
Bf1=1 CSFE 0.997 0.055 0.0030 0.062 1.000 0.032 0.0010 0.033
B2 =2 CSFE 2.000 0.056 0.0031 0.062 2.000 0.032 0.0010 0.033
o’f = 0.25 CSFE 0.249 0.050 0.0025 — 0.250 0.051 0.0026 —_
o? = 0.36 CSFE 0.377- 0.050 0.0028 — 0.361 0.051 0.0026 —
Compute the estimates of 62 and 0%,...,02 as
52 = (Y - XB)TV-HY — XB) — tr(V 1)BTAB 52 — bF'b; — tr(DT D,V 1)
n—q* o g — v} ’

where v} = 62tr(T};)/62 and ¢* = >_;_,(g; — v}) evaluated at their current estimates
are penalties under the general linear mixed measurement error models, and the term
tr(V—)BTASB and tr(DTD ;V=1) are the corrections for extra measurement errors.

If a necessary convergence criterion is satisfied, repeat Step 1 and quit; otherwise
return to Step 1 to continue. Following the argument of Schall (1991), this algorithm is
analogous to the algorithm yielding the maximum corrected likelihood estimates of the
parameters in the normal random effects model; see also Fellner (1986).

The performance of estimators described above is evaluated using simulations. The
response ¥;; is simulated from the model y;; = z(l) G+ z ,[5’2 + by +ei5,t=1,...,m,
j=1,...,q, where g can be interpreted as the number of independent clusters and m
is the cluster size in a longitudinal study, and the total size is n = mq (Wang et al.
(1998)). When this model is formulated in a matrix form as in (4.1), we write ¢ = 1,
bl = (blly'“’blq)Ti Y = (y117"' Y1 Y215+ Y2¢5 -+ - s Ymily - - - ;qu)Ta and Z and ¢ are
rewritten in accordance with Y. The following combinations were taken for simulation:
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qg=250,m = 3 or 8, which are common sample sizes in longitudinal studies, B =1,
By =2, zij ~ N(0,1), by; ~ N(0,0%), €ij ~ N(0,0?), where o7 = 0.5%, 0> = 0.6%. We
consider two cases: (i) with measurement errors (A = diag(0.5%,0.5%)) and (ii) without
measurement errors (A = 0). These parameter values are similar to those treated by
Wang et al. (1998) and Nakamura (1990) in their simulation studies. The simulation
study was conducted using the MATLAB software. For each combination of parameters,
1000 repetitions were performed.

The proposed corrected estimators, usual naive estimators ignoring measurement
errors in X and score function estimators based on the true value Z are investigated.
The summary results are presented in Table 1.

For the smaller sample size of n = mg = 150 with measurement errors, the corrected
estimators perform very well. The mean values of 8; and [ are very close to their true
values. By contrast, the naive estimator are biased towards zero. The biases cause, in
turn, the error variance estimate 62 to be overestimated to a rather large extent. On the
other hand, the corrected score method for estimating o2 is nearly unbiased. The method
also performs well for estimating the variance component 02, but the naive estimator
for o2 is nearly unbiased just by coincidence. The estimators based on Z are obviously
consistent, as shown in Table 1. The entry ASE gives the asymptotic standard error of
,3 using equation (3.8), which is in agreement with the observed standard error given in
entry SE based on the 1000 repetitions in the simulation.

For the larger sample size ¢ = 50, m = 8, we also observe a similar phenomenon; see
the right columns of Table 1. The corrected score method gives nearly unbiased estimates
for the regression coefficients and the variance components. However, the estimates of
the naive method are biased. The corrected estimates outperform the naive estimates
when measurement errors exist.

5. An example

Harrison and Rubinfeld (1978) constructed a hedonic housing price model to mea-
sure the willingness to pay for clean air. Their study utilized data for census tracts
in the Boston Standard Statistical Area in 1970. The (logarithm) median value of the
owner-occupied homes in the census tract was taken as the dependent variable in a fixed
effects regression model. The independent variables chosen include attribute variables,
neighborhood variables, accessibility variables, and one air pollution variable on the
concentration of nitrogen oxides (NOX). A description of these data can be found in
Harrison and Rubinfeld (1978).

The data of n = 132 census tracts within the 15 districts of the Boston city is
selected for our study. We follow the regression model of Harrison and Rubinfeld (1978).
However, the census tracts within districts are taken as repeated measurements and so
a mixed effects linear model is employed. All independent variables can be measured
precisely except the pollution variable NOX which is taken to have measurement errors.
Table 2 gives the parameter estimates and t-ratios for our mixed effects model with
errors-in-variable. The corresponding results under the fixed effects model of Harrison
and Rubinfeld (1978) are listed for comparison. It is found that several parameter
estimates of the two models are not too close to each other. If we look at the t-ratios,
the magnitudes are generally smaller for our model. This is often the case since the
standard errors for our model are higher due to random effects and measurement errors.
In particular, the ¢-ratio for the pollution variable NOX? shows that the variable may not
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Table 2.
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Corrected score function estimates (CSFE) of the linear mixed model with er-

rors-in-variables, and maximum likelihood estimates (MLE) of Harrison-Rubinfeld fixed effects
linear model, for the hedonic housing price data of Boston city. The t-ratios are in brackets.

Variable CSFE MLE
Intercept 9.14(15.5) 8.87(21.4)

RM? —2.3 x 1073(-0.49)  —5.3 x 10™3(—1.38)
AGE 1.1 x 1073(0.31) 3.3 x 10~3(0.98)
Log (DIS) 1.4 x 10~3(0.005) 2.87 x 1072(0.19)
(B —0.63)? 3.46 x 10~1(1.18) 1.76 x 10~1(0.85)
log (STAT) —5.75x 1071(—5.08) —6.71 x 10~1(—7.94)
CRIM —7.6 x 1073(~3.12)  —9.8 x 10~3(-3.88)
CHAS 2.2 x 10™%(0.02) 1.86 x 10~1(1.29)
NOX?2 ~1.18 x 1072(~1.40) —1.15 x 10~2(~2.79)
o 0.255 0.330

o1 0.198 —

be statistically significant in our model, while in the fixed effects model it is significant.
6. Concluding remarks

In this paper, we propose the corrected score method for correcting for the measure-
ment errors of independent variables in linear mixed models. We show that the proposed
estimators are consistent to the order of n=/2. This order of convergence of the esti-
mators is the same as that in the estimation for standard measurement errors models
without random effects (Nakamura (1990)), and in the estimation for mixed-effects mod-
els without measurement errors. The combination of measurement errors and random
effects does not decrease the order of convergence. The proposed estimators are also
found to perform well in finite sample cases of the simulation study.

In the analysis of the hedonic housing price, our method does not indicate any
significant effect of the NOX level after correcting for the effect of the measurement
errors. Lin and Carroll (1999) also found a lower significance level after adjusting for
measurement errors. In general, the signficance level after correcting for measurement
errors may be higher or lower than naive ones depending on particular data, though both
levels are asymptotically equal with each other (Stefanski and Carroll (1990)). Thus,
more comprehensive investigation into the data would be needed in the future for further
understanding of the data.
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Appendix
ProoF OF LEMMA 1. Using (2.1b), we have

nHXTVIX - 2TV 1Z — e (VYA = Y (ZTV 6 + 6TV Z + ),
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where C = 6TV =16 — tr(V—1)A. Since § ~ N(0,I, ® A), we have
n~Y2ZTy =15 ~ N(0,n 12TV 2Z @ A).

By assumption, n~1ZTV =27 exists as n — oo. So we have n1ZTV 1§ = O,(n~1/2).
Similarly, n~6TV-1Z = O,(n~'/?) holds. Now let the elements of C at the (a,b)
position be Cgp. Then

Cab = i En: é"icz‘/ij(sjb - zn: ViiAaba
i=1

i=1 j=1

where 6 = (6;5), V™! = (V¥), A = (Ag), ¢, j = 1,2,...,n, and a,b=1,2,...,p. It is
easily seen that E(6;06:) = Aqp and E(C,p) = 0. Further, we have

E(Cuw)? = Y. Y EBiabjpbrabin) VIV ~ A {tr(V 1)}
.5 ki
= (Agalos + AZ) tr(V72).

The above result is obtained by summing the non-zero expected value terms with equal
indices and with pairwise equal indices, while the other terms are all zeros. By as-
sumption, n~! tr(V—2) exists, so we have E(n™1/2Cq)? = Op(1) as n — oo and then
n~1C = O,(n~/?). Combining all the above results, we get (3.3). OI
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