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Abstract. Let fo(z) be the exponential density and f,(z) the translation model.
Let (X:)i=1,» be i.i.d. random variables, with density g. We test that g is fo against
g is a simple mixture, using the LRT statistic. We prove that the LRT diverges to
infinity with probability 1/2 and it is equal to O with probability 1/2. Therefore, the
classical likelihood limiting theory does not hold.
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1. Introduction

Let X1, Xo,..., X, be independently and identically distributed random variables,
having the density g. We suppose that g is a mixture of densities. Let F = {f,;7 € '}
be a family of densities. The set I' is a compact subset of IR! for some integer [. The
densities f are known up to the parameter . By definition, the set of all p-mixtures of
densities of F is the set G, defined by

P
{gw,a = Zm’f%/ﬂ' = (71, Tp)y @ = (71, ,Y)
i=1

P
Vi=1,---,P,’Yi€F,OSmSl,Zm=1}.

i=1

The unknown parameters of the mixture are 7 and o.

The mixture models have enormous importance in applications, see e.g. Everitt and
Hand (1981), Titterington et al. (1985), McLachlan and Basford (1988), Lindsay (1995)
and Roberts et al. (1998).

An important problem is assessing the number of components, i.e. to test if g is
a mixture of p-densities or a mixture of g-densities, with ¢ < p. The Likelihood ratio
tests (LRT) are the most commonly used methodology for generating tests in parametric
models. The determination of the limiting distribution of the LRT statistic in the mixture
model has been for many years an open problem. One of the key difficulties is that
the parameters are not identifiable under the null hypothesis, so one cannot apply the
standard limiting distribution theory. For example, for 2-mixture of densities, the model
is:

(L.1) e = —m)fy+7fy, TE [0,1].
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The parameters are: m, 3 and 3. The model is not identifiable for these parame-
ters. There exists mixtures g which have different representations g -, v, with different
parameters 7, 71 and ys. For example, we can write:

vre0,1] Vyel: f,=0Q-mfy+nfy.

A partial solution for the mixture problem has been given by Ghosh and Sen (1985)
for testing one density against 2-mixture of densities. But they impose a rather strong
assumption concerning the distance between the parameters. They assumed that the
model (1.1) verifies |11 — 72| > &, for a fized positive e. Redner (1981) proved that
the maximum likelihood estimators for finite mixtures with compact parameter space
is consistent in the quotient parameter space. Bickel and Chernoff (1993) gave the
asymptotic distribution of the LRT statistic in a nonregular problem.

Dacunha-Castelle and Gassiat (1997) have proposed a complete solution without
any assumption on the parameters but with conditions of regularity on the densities
f. In their paper, a reparametrization: (0,8) € © x B, is introduced. The driving
idea is to parametrize in such a way that one of the parameters is identifiable at the
previously non identifiable point, so that it is possible to have asymptotic expansions
in its neighborhood, and the other parameter contains all the non identifiability. The
parameter 6 can be thought around the true point as something close to the Kullback
distance, the parameter 8 can be thought as a “direction”. It can not be consistently
estimated. This parametrization is used to derive the asymptotic distribution of the LRT
statistic. The key point for the asymptotic convergence is to assume that the closure D
of the derivatives of the log-likelihood with respect to 8, in any direction 3, at § = 0,
is a Donsker class. Roughly speaking, a Donsker class is a set of functions for which
the empirical distributions (with i.i.d. variables) verify a uniform central limit theorem,
with limit distribution a Gaussian process. Ciuperca (1999) gave accurately conditions
for the parametric densities f, so that the set D is Donsker.

A particular case is to test a p-mixture of densities against a density f,,, with
Yo € I'. The LRT statistic is:

T = 5up (n(e) ~ () =500 Y log |14 £ =90 (x,)

9 T =1

where go = gr,0 = fy, and l,(g) is the log-likelihood: I,(g) = Y i-; l0g(gr,a (X))

In this paper, we consider the translation model: f,(z) = fo(x — ), v € T, with
fo the exponential density. We test ¢ = fy against g = (1 — 7)fo + 7 f,, i.e. g is the
exponential density against g is a simple mixture. First, we prove that the set D is not a
Donsker class. It will be shown that the LRT statistic diverges to +o0o, with probability
1/2, and it is equal to 0 with probability 1/2. Therefore the limiting distribution cannot
be used to set critical values. This result is due to the fact that D is not relatively compact
even though the set of parameters is compact. The theoretical result is confirmed be a
numerical study.

To the author’s knowledge this is the first example of mixture hypothesis such that
the LRT statistic diverges to infinity when the parameters belong to a compact set. For
testing a mixture against an underlying function fo, Hartigan (1985) proved that the
LRT can converge to +oo if the parameters space is unbounded.

The choise of the number of components p in a mixture model has been considered
using reversible-jump MCMC methods by Richardson and Green (1997). The acceptance
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probabilities for the split move have the form min(1, A) where A depends to likelihood
ratio. Our result implies that the MCMC algorithm for the exponential simple mixtures
chooses every other time to remove a component. '

The rest of this paper is organized as follows. Section 2 introduces the model of
simple mixtures. In Section 3, we prove that the set D is not Donsker. An useful
asymptotic result concerning the Brownian bridge on IR is established. Finally, we
study the asymptotic behaviour of the likelihood test statistic.

2. Preliminaries on simple mixtures

To fix the problem, we consider Xi,...,X, i.i.d. random variables with the density
g. Let F = {f,;7y € I'} be a parametric family of densities and v, € T".

DEFINITION 2.1. The model of simple mixtures (or contamination model) of den-
sity of F is:
09 ={gry=(1—7) fro +7f,/0<w <1, y€T}
The model is a subset of Go. We test:
Hy: g= fy against H;: g€ Gy

The log-likelihood ratio statistic is:

2.1) Zlog [1 +rdrt —fw (x, )]

Define the Hilbert space L?(f,,v), with v a positive measure on IR. Since the model is
not identifiable, in order to test the hypothesis Hp, Dacunha-Castelle and Gassiat (1997)
have proposed the parametrization: ,

(2.2) g = |[Imy —90 = ; B=n.
9o L2(frgv) fro Mez(s,om
Let be the norm in the space L?(f,,v):
fe—F
N(B) = H JB ~ JBo )
oo Neasom)

- The LRT takes the form

_ = g . fﬁ“fﬂo ]
Tn-—:%l%x;hg [1+N(,3) » (X:)| -

We denote by 920, ) (z) the partial derivatives of g(g g)(x) with respect to §. The set of
the derivatives of the log-likelihood with respect to @ at 8 =0 is:

(23) {d(ﬂ, z) = g;”"( )/ﬁeB}
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with:
_ Jp(®) ~ fa(z) 1
Wm) =g @ N

Before giving the asymptotic distribution of statistic T;,, we recall the definition of the
Donsker class (see e.g. Van der Vaart and Wellner (1996)).

Let Y1,...,Y, be iid. random variables with the common distribution P. The
empirical measure P, of Y1,...,Y, is the discrete random measure given by
1 k(3
=2 b%
i=1

with 6 the Dirac measure. Given a collection H = {h} of measurable functions, the
‘H-indexed empirical process Gy, is given by
1 n
—P)h=— (Y;)—Ph] h
Gnh =+/n (P, == > (¥ - €M

i=1

with Ph = [ hdP.

DEFINITION 2.2. The set of measurable functions H € L?(P) is a P-Donsker class,
if almost surely supycy |Grnh — Gh| — 0 where the limit process {Gh; h € H} is a zero-
mean Gaussian process with the covariance function E[GhiGha] = Phihy — PhyPhs.

We have the following asymptotic result.

THEOREM 2.1. (Dacunha-Castelle and Gassiat (1997)) Under the following regu-
larity conditions for f.,(x).

(M1) There exists a function u in L'(fy,v) such that Vf € F, |log f| < u v-a.e.

(M2) f., is continuously differentiable v-a.e. with respect to v = (11,...,%) in the
interior on T'. Moreover, there exists a function v such that

19y
f’y a’)’i ’

and under the condition that the set D defined by (2.3) is a Donsker class, the statistic
T, converges to the supremum of a square Gaussian process

Yy e,

i=1,...,1 Ef_m,,[’vz] < +00

1
5 sup (Gd) - lga>o
deD

with Gd a Gaussian process on D with covariance the usual scalar product in L2(f,,v).
3. Exponential case

Let fo be the exponential density: fo(z) = e *1,50 and fy(z) = fo(z — 7). We
consider the parameter set I' = [0, G}, G > 0. We take v = 0. For this density, the test

becomes:
(3.1) Hy: g=fo against H;: g€ Gjl.
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The log-likelihood ratio statistic is:
n
(3:2) n(7,7) = 1n(0) = > log[L + 7(€7 1,5 — 1)1x,50)
i=1

where I,(m,7) = S log((1 — ) fo(Xi) + 7 fo(X; — 7)) and 1,(0) = la(m,0) = S log
fo(X).
We take v the Lebesgue measure on IR and we denote the space L?(fov) by L2(fo).

PROPOSITION 3.1. Assume that we test (3.1) with fo the exponential density and
fy(x) = fo(z — ). Then the set D is not relatively compact in L2(fo).

PROOF OF PROPOSITION 3.1. We first observe that for any v, \, 0 and z > ¥,:

foE=1) = fo@) _ 50y and  N(1) = O/T).
fo(z)

So: Yz > Yn, Vm N\ 0, we have d(vn,z) — 0 for n — oco. Now, if d(vys,.) — d(-) in
L2(fo) then we can extract a subsequence (n,) of (7a) such that: d(¥n,,Z) . / (z) —

d(x) fg/ (z) pointwise, for almost every z. Then d(z) = 0 for almost every z > 0,
incompatible with {|d|| L2 = 1. O

Then, conforming to Van der Vaart and Wellner (1996), the set D is not a Donsker
class. To prove the main result, we need the following lemma:

LEMMA 3.1. Let S be a Brownian motion and B a Brownian bridge on IR,. Let
(@n)n>1 be the sequence such that: a, = nt/4 n > 1. Thus:

—_— S(t)
33 lim su ———>1 oas
(33) n—+00 anStSPZan V2tlog(logt) —
(3.4) lim  sup __BB >1 as.

noeo 1 gt y/2tlog(|logt]) T

ProoF oF LEMMA 3.1. Using Lemma 2.1 on page 610 from Hanson and Russo
(1983) one gets (where N is the set of positive integers)

lim sup 5(t) > lim  sup 5()

n—00 4 <t<2a, 1/2tlog(logt) — n—o anSt<2an V/2tlog(logt)
t€

and using the law of the iterated logarithm for Brownian process (see e.g. Theorem 1 on
page 72 from Shorack and Wellner (1986)) we have

lim  sup —ﬂ—— > lim ——-———ﬂ—@—»——— =1 as
n—>00 anSt<lan V/2tlog(logt) — m—o°4/2nlog(logn) o
te ‘

The inequality (3.3) follows.
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Since S(t) is a Brownian motion on [0,00), the process {tS(3),t > 0} is also a
Brownian motion (see Shorack and Wellner (1986)). Thus:

—  tS(} s
1< lim (5) £ Tim sup S(r)

~ oo /otlog(log )t n° e /2 log([logr])

Hence g
(3.5) 1<Tm sup () a.s.
N0 1 <r< ko /2rlog([logrl)

We can represent B(t) as S(t) — ¢t - S(1). Then:

Tim BY) ___ _m _S®) ~t5(1)

nmo0 1otk /2tlog(|logt])  mmoo Lca /2t log(|logt])

Inequality (3.5) and
t

lim
t=0 /2t log(]logt|)

prove inequality (3.4). O
Our main result is present in the following theorem:

THEOREM 3.1. If fo is the exponential density and f,(x) = fo(z — 7), then the
LRT statistic T,, = sup,. ., In(7,7) — 1.(0) converges, as n — 00, to +oo with probability
1/2 and it is O with probability 1/2.

PROOF OF THEOREM 3.1. Let Fj be the distribution function associated to f3. We
consider the random variable: U; = Fy(X;). Note that U; has the uniform distribution.
Making the change of variables Fy(y) = £, we get:

(3.6) E¢=1-¢7 with £€[0,1-¢7C]

It is easy to see that 1x,<y = ly,<¢. Let F;, be the empirical distribution function of
Uy, Ua,...,U,. The expression (3.2) of the log-likelihood ratio statistic becomes:

(3.7) nFy(€)log(l — ) + n[1 — F,(€)] log (1 + %) :

The new parameters (7, \) are defined by:
(3.8) T=mf, A=¢
with 7, A€ A, A=[0,1— e*G]. Now, the expression (3.7) takes the form:

Ln(7, A) = 1,(0) = nF,(A) log (1 - %) +nfl— Fy()]log (1 + I{'X> .

Let 72 = argmax, l,(7,\) be directional estimator of 7 when A is fixed. Its form is:
#2 = max(\ — F,,()\),0). Also, we have:

82L,,(7, A 1 1
'—“% = —nFn(A)(/\—_T)—i — n[l — Fn(/\)]m <0, V1 € A.
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Then 7 is a maximizator of I,(r, A). With regard to the sign of A — F,(\) we remark
that P[A < F,(\)] = P[A > Fn()\)] = 1/2 (see Dacunha-Castelle and Duflo (1990)). We

then consider two cases:

Case I. X\ < F,()): Inthis case 7} = 0and T}, = max(r x)eaxa ln(7, A) =1 (0) = 0.

Case II. X > F,()\). We have 7 = (A= F,(\)1asE.(0)-

The expression of sup,. [[,(7, A\) — [,(0)] becomes:

(39) nFn ()\) log [1 - —/\—_—f\?ﬁ—(-/—\—)-].)\>pn()\)]

A— Fo(A
+n[l — F,(X)]log [1 + “'—1#()1A>Fn()\)] :

Since 7} = [A — Fo(M\)]1x> Fn(,\)—>P 0, uniformly on X, as n — oo (see Dacunha-Castelle
and Duflo (1990)) we can use Taylor expansion for log[l — [A — F,(A\)]/(1 — AN)1xsp,(0)-
For the expression (3.9), we will check that [A — F,(A)]/A - Lasm,(0)—*° 0, as n — oo.
But

sup v/ - [F(A) = A] 230  for n— oo.

A€A

Then a sufficient condition for [A — F,(A)]/A - Iaxs g, (0~ 0 is that A € [A,,1 — 7],
where (\,,) is a positive sequence decreasing to 0 and:

(3.10) lim +/n -\, = oo.

n—o0

Under these conditions, we make the expansion

2
lAﬁJ}JJm=nﬂ@%4t%%&—%<i:%gg}1»&wﬁ+dm
2
+nll — Fa(V)] [:\%,\Q_) -1 (’_\“l_fn./éi\l) } Ly roy[1 + o1)]

~ FE,(\)]? R0
- %n'[)\)\_(lp__()):—))]‘l,\>pn(>\) [1 +0 (Q/_\_/V_(_))_H
1 A= Fa ()2
En—————

(B Lisr,on[1 +o(1)].

Since (A — Fn(N) - Lisp,(y—" 0, uniformly over A, as n — oo, then the o(1) term
is uniformly so in A. We study the behaviour of sup[[A — Fr.(\)]/v/\] using Komlos-
Major-Tusnady theorem (see Shorack and Wellner (1986)): for any a € [0,1] and y > 0,
we can find a Brownian bridge Bp(\) such that:

(3.11) P {Oiliga[\/ﬁl\/ﬁ()\ - Fn(/\))]-)\>F,,()‘) - Bn(z\)” >y+Ch log(na)} < Ag- e~ MY
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where C;,A; and A; are positive constants. Take a = 1 — e~ %, y = log?n, L(n) =
log?n + Cy log[n(l — e=%)], an = Are™ log”n_ We then have: lim,_,c0 £(n)/nY/4 =0
and > o0 ; an < 0o. Inequality (3.11) leads to:

(3.12) P{ sup [V~ Fa(N) s mn — BaV)] 2 %} <an

0<AL1—e—€

which implies that for any sequence A,:

P{ sup VA = Fa(M)asran) — Ba(V)| 2 E%l} < tp.

An <ALl ~e—C
Define the function:
fa(X) = [V — Fo(W) s r.0 — Be(A)]

and the event:

~ £ - £(n)
An = {AnSAS;llp—e—G v = nl/4 } '

For A > A\, (An)n satisfying the relation (3.10), we have:

L)\ - | £V - L)
{f"(”z W}Q{mz N }

Thus:
L(n

an > P su n(A) > —=} > P(A,).

{)‘ns)\S]I_)._e-—Gf( ) \/ﬁ} ( )

So:

(3.13) P {—IET [ sup

N0 1), <A<1—e—C

A—F, (A B,(A L{n

This implies that:

A= F,(A B,(A L(n
B B0 2]

(3.14) P{E[ sup

B0 I AaZAL20,

In particular, we take A, = %n‘l/ 4, The previous lemma, and relation (3.4) yield:

T )

sup >1
n—00 5 <A<2x. v/2Xlog(|log A|)

Hence, we deduce that:

a.8.

(3.15) lim sup B (M) =00 as.

n>00 \ <A< VA
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Table 1. Divergence of the LRT statistic.

n N supln(7) — 1n(0)

103 103 6.45
108 104 29.2
104 108 6.69
104 104 36.5
105 3.104 79.5

Let (cn) be a sequence converging to +oo. Using the triangular inequality, we have

P{lllg[ sup \/—/\ F(A)1A>F()\)>6n}}

n—00 | A€[An,2)n] VA

. B.(\)
>P<S lim | su >
{n—»oo Lemgm va T

\/ﬁz‘_:j’}_?(%‘_)_l)‘>Fﬂ()\) - %&H } ‘

+  sup
AnSAL2An

Relations (3.14) and (3.15) imply:

) A= Fp())
P{ lim su V- =00y =1.
{Mo Leungxnl VA M"“’] }

Then, the conclusion of theorem holds:

P(T, = 0,A < Fy(\) =% P(lim T = 00, A > Fa(Y)) = % O

Remark. The methodology here used is adapted for testing an exponential density
against a simple mixture. For testing p against ¢ mixtures, ¢ < p, it would find another
reparametrization. In our opinion, the LRT statistic will converge with non zero some
probability to +oo (since D is not relatively compact).

A numerical study confirms that the maximum of the relation (3.9) diverges slowly
to +oo for the half of the case and for the other half it is equal to 0. We take the
maximum value of (3.9) on a grid of IV values for A\. The results are exhibited in Table 1.
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