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Abstract. Gamma distribution is one of the most used methods of modeling life-
time data. However, testing homogeneity of parameters of m > 3 gamma distribu-
tions against order restrictions is almost non-existent in the current literature. We
propose two methods to this end: one uses quadratic forms involving ratios of cu-
mulants as test statistic and the other is a stepwise procedure which uses Fisher’s
method of combining p-values when shape parameters are equal but unknown. Both
procedures allow use of arbitrary sample sizes of m populations. Test of the inequality
restrictions as a null hypothesis against unrestricted alternatives is also considered.
A Monte Carlo study of power at various alternatives shows that both methods are
competitive when they are applicable.
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1. Introduction

Over last few decades, the gamma distribution has arisen as one of the most im-
portant vehicles to model life-testing situations. Because of the flexibility in choice of
the shape and scale parameters, a wide variety of lifetime data fits quite adequately to
it. Among situations that lead to the gamma distribution are waiting time problems as
it is well-known that the time to k-th occurrence of a Poisson process follows a gamma
distribution. In reliability studies and in life testing, the gamma distribution is used as a
generalization of the exponential distribution which is also a popular choice for modeling
purposes. The gamma, distribution is suggested as the failure time model for a system
under continuous maintenance, where the reliability may experience some initial growth
or decay but then reaches a stable state as time goes on. The gamma distribution has
also been used in weather analysis. In theoretical calculations, the gamma distribution
arises as the sum of independent, identically distributed exponential random variables.
Gamma distribution evolves in the testing of equality of variances of several independent
normal distributions. Johnson and Kotz (1970) provides a good review of the gamma
distribution including several applications in various fields.

The gamma, distribution denoted by G(z;,7), with 8 and -~y being the scale and
the shape parameters respectively, has density as

1
(1.1) OLE 70 >0, 0,7>0.

The maximum likelihood estimation of « can be approximated by the empirically deter-
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mined formulas of Greenwood and Durand (1960) as given below

_0.5000876 + 0.16488525 — 0.054427452
= . :
_ 8.898919 + 9.059950S + 0.977537352

© S(17.79728 + 11.968477S + S2)

~

0<85<0.5772

05772 < S <17

1
T e 1
5 7< 8
where S = In (A/G), and A and G denote the arithmetic and geometric means respec-

tively.

Inferences concerning the parameters of the gamma, distribution are rather difficult
mainly due to the fact that they are not of the conventional location-scale type. Bain
and Engelhardt (1975) derived the exact tests of v with 6 being an unknown nuisance pa-
rameter. Engelhardt and Bain (1977) developed a conditional test for testing the scale
parameter of a gamma distribution with unknown shape parameter. Grice and Bain
(1980) proposed an approximate test for the mean of a gamma distribution with both
parameters unknown. For the two-sample situation, Shiue and Bain (1983) proposed an
approximate test for testing the equality of the scale parameters of two gamma distribu-
tions with unknown but common shape parameter. Also, Shiue et al. (1988) proposed
an approximate procedure for testing the equality of means of two gamma, distributions
with unknown and unequal shape parameters.

Inference for parameters of more than two gamma distributions is quite rare in
the existing literature. Tripathi et al. (1993) proposed a test for the parameters of
m > 2 gamma distributions based on a generalized minimum chi-square procedure. This
m-sample test is applicable in versatile testing situations with general unrestricted al-
ternatives, it is asymptotic in nature, and for m = 2, the authors found the test by
Shiue and Bain (1983) performed better in the equal but unknown shape parameter
case. Mudholkar et al. (1993) considered a test of equality of variances of m normal dis-
tributions against restricted alternatives which essentially reduces to testing the equality
of the scale parameters of m gamma distributions with shape parameters being a func-
tion of the sample sizes and hence known. Robertson et al. (1988) considered likelihood
ratio tests for trend in the scale parameters of m > 2 gamma distributions when the
shape parameters are known. Large sample approximations for the significance levels
are obtained in terms of chi-bar squared distributions. For the simple order alternative
and equal sample size case, approximations are provided in terms of special functions.
Recently, Bhattacharya (2001) considered the problem of testing equality of scale pa-
rameters of m > 3 gamma distributions against nonincreasing order restrictions with a
common but unknown shape parameter using the Fisher’s method of combination of p-
values. This testing procedure is also applicable against various other order restrictions.

In this paper we consider hypotheses tests involving general linear combinations of
parameters for m > 3 gamma distributions against inequality restrictions. The first test
statistic we propose uses quadratic forms involving ratios of cumulants of the gamma
distributions as in Tripathi et al. (1993). We show that the asymptotic distribution of
this test statistic is of the form of chi-bar squared, a weighted combination of chi-square
distributions mixed over their degrees of freedom. We also consider testing the inequality
restrictions as a null hypothesis against unrestricted alternatives. The test statistic in
this case, also an appropriately defined quadratic form, has an asymptotic chi-bar square
distribution as well. This is the content of Section 2.
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In Section 3, we consider several applications of the results of Section 2. In par-
ticular, we have discussed the testing procedure for testing the equality of the means,
equality of the scale parameters, and equality of the shape parameters against nonin-
creasing alternatives. We have considered the calculations of the weights of the chi-bar
square distributions, known as the level probabilities, which are different for different
situations. We also point out that the choice of the matrix w* given on page 778 of
Tripathi et al. (1993) when testing for the coefficient of variations is incorrect, and show
the correct matrix w* to be used.

In Section 4, we derive a closed form expression of power of the testing problem
discussed by Bhattacharya (2001). In Section 5, we compare the power of this procedure
with the previous in a Monte Carlo study at selected alternatives, shape parameters and
various sample sizes. In Section 6, we make some concluding remarks.

2. Using ratios of cumulants

We consider general linear hypotheses regarding means and scale parameters of m
gamma populations. We use notations similar to Tripathi et al. (1993). The hypotheses
of interests are

(2.1) Hy,:CO0=%,, H :CO>%®, H>:0 unrestricted

where C is a r x 2m given matrix of rank r, ®¢ is a given r-vector. Also 6 =
07,85 ,...,0%] with 07 = [05,0%] = [v0:,6:], i = 1,...,m. The inequalities in

m
Hj in (2.1) are coordinatewise.
Let X1, Xio,...,Xin, denote a random sample of size n; from the i-th gamma
population, ¢ = 1,...,m, and assume that these m random samples are independent.

Let the j-th cumulant of the i-th population be denoted by «;;. Then it can be easily
seen that )
kit =%bi, k== Db, §>1, Kij1/ki=7jb;

Let mio = Ki1,Mj = Ki,j+1/kKij, § > 1. As in Tripathi et al. (1993), we use first
four cumulants. This uses upto eighth order sample moments to estimate the population
moments occuring in the covariance matrix of the h vector (defined below). The higher
moments we use, more fluctuations there are in the estimate of the asymptotic covariance
matrix. Let 77: - (ni01ni1ani2ani3)7 t=1,... ,m,ﬂ' = [7’,11"7,21 .- ?n'lm,} Clea'ﬂyy n; =

w*0r,i=1,...,m with
. 1000
w = .
0123

Letting w = diag(w*,w",...,w*), we get the linear relation n = w6 where w is a
4m x 2m matrix of known constants.

Let the sample counterpart of x;; be denoted by k;;. Also let hjp = kii, hij =
ki j+1/ki j where hig, hij, h;, b are sample counterparts of m0,7:5, 11;, 7, Tespectively. By
the multivariate delta method h has an asymptotic normal distribution with mean 7 and
variance-covariance matrix 3 = JoJ; V. JJ, where V = diag(V1,Va,..., V) with

Hi2 — /"'1,21
1| paz — paopein pia — 1
T | Hig4 — MHisftal His — Pisli2 Hie — Mzza
iz — Mialbi1 thie — Hialli2 [i7 — Hia[ti3 Hig — sz4

Vi=
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is the asymptotic covariance matrix of (m;1,m;2, m;3,M;4), a vector of the sample mo-
ments from the i-th sample, y;; is the j-th raw moment from the ¢-th population. The
matrices J; and J2 are the Jacobians given by

J1 = diag(J11,J12,-- -, J1im), - J2 =diag(J21,J22,...,J2m)
where Ji; and Jo; correspond to the transformations
T @ (piv,s iz, P, phia) = (Ki1, Kiz, K33, Kid),
J i+ (Kix, Kiz, K33, Kia) = (10, i1, 2, Ti3)-

The elements of Ji; and Jo; are

1 0 0 O
—24i1 1 0 0
Jli = b}
~3(piz — 2p3,) —3pa1 1 0
| —4(piz — 6pd iy + 6pdy) —6(uiz — 2p3)) —4par 1
i 1 0 0 0
——I‘&iz/l‘é?l l/li‘,il 0 0
Jzi - 2
0 —Kig[Kiy 1/Ki2 0
0 0 ——K,i4/li?3 ]./Ii,;g

To test Hyp against H; — Hy, we propose the following test statistic
(22) Tu= len (h —wB)'S" (h w) — IIlll’l (h wh)'S (h — wh)

where 3 is a consistent estimate of . We reject Hy for large values of Tp;. The test
statistic To; can also be expressed as

. Covd Y oy Cavd-l
(2.3) Tm—c%g% (z-0)Q (z-0) i (z—6)YQ (2-0)

where {2 = (w'. > 'w)" and z = (w'S 1'w) Lyw'$S™"h. It can be seen that the matrix
Q= dlag(ﬂl, Q... Q,,) is a block diagonal matrix where each diagonal element Q; =

-1
(w3, w)lis (2 x 2) The alternative expression in (2.3) is, however, not needed for
hypotheses testing purposes.

It is easy to show that the minimum in the first term in (2.2) is attained at 6o =

2—QC'(CNC")~1(Cz—®,). However the minimum in the second term in (2.2) must be
found by numerical methods. Let the minimum in the second term in (2.2) be attained
at 6,. The distribution of Tp; is given by Theorem 1 below.

When testing H; against Hs — Hj, we propose the following test statistic

o1
- mi _ ! _ _ ;
(24) Tie= c'%lzlgo(h w6)'Y (h — wb) eumerpsixrlicted(h w0)'S (h w0).
We reject Hy for large values of Tio. It is easy to show that the minimum in the second
term in (2.4) is attained at the value @ = z. As earlier the test statistic 715 can be
expressed as
s &L . 11
) = - _)— — _
(2.5) Ti2 Cglzlgo(z 0)Q2 (z—6) min  (z2-6)2 (z-6)

@ unrestricted
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although this alternative expression in (2.5) is not needed for hypotheses testing pur-
poses. The distribution of T4 is also given by Theorem 1 below.

Let @ = (w'E 'w)~!. For 0 < i < r, let P(i,m — 1,CQC"), called the level
probabilities, be the probability that C6; — &, has i distinct positive components under
Hy. The proof of Theorem 1 follows from the work of Shapiro (1985, 1988) and Kudd
(1963). -

THEOREM 1. For a constant ¢, the asymptotic distribution of Tyy under Hy is
given by
-
lim P(Toy > 1) =Y Pli,m—1,CQC")P(x; > c1)
n;—00,Y1i —o
where x? is a chi-square random variable with i degrees of freedom with x3 = 0.

For Ty, Hy is least favorable within Hy, and for a constant co, ils asymptotic
distribution under Hy is given by

lim P(Ti2 > ¢p) =Y P(r—i,m—1,CRC")P(x} > cz).

700,V :
=0

For computations, the {2 appearing in the asymptotic distributions above is esti-
mated by €2 given earlier. In the next section, we discuss several applications of Theo-
rem 1.

3. Applications of Theorem 1

The procedure described in the previous section may be used in a versatile ways
for hypothesis testing purposes. We discuss testing homogeneity of the means, the scale
parameters and the shape parameters of m gamma distributions against nonincreasing
order in the next three examples. We also discuss the calculations of the level probabil-
ities.

Example 1. When testing equality of the means of m gamma distributions against
nonincreasing order, the hypotheses are
Hy:00,=03=---=60;, versus Hy:0], 205 >--->0;,
which can be expressed as in (2.1) using

10-1000060--- 00

0010-1000---00
C =

0000060---10 -10
and ®; = (0,0, ...,0) with r = m— 1. The asymptotic distributions of the test statistics
To1 and Ty, are obtained from Theorem 1.

_ Now we consider approximations for the level probabilities in this case. Let W =
CQC’'. When m = 2, we have P(0,1,W) = P(1,1,W) = .5. When m = 3, we have
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P(0,2,W) = .5 — (cos™! p12)/2m, P(1,2, W) = .5, P(2,2,W) = (cos™! p1p)/2m, where
p12 is the (1,2)-th element of the matrix [diag(W)]~1/2[W][diag(W)]~1/2, and can be
expressed as pip = —§21/ \/ (O + QAH(QL + 2111) where 27 is the (4, 7)-th element

of . If p12 < 0, the approximate critical values of Tg; and 174 can be taken from Table
Al of Robertson et al. (1988) by setting their p equal to p;s.
For m = 4, we have

1
P(0,3,W) = 5~ (cos™ p1a + cos™! p1g + cos ™! pag) /4,

3 _ - -
P(1,3,W) = i (cos™! pra.3 +cos™! prg.g + cosT! pag.1) /4,

1
P@,3,W) =3~ P(0,3,W), and P(3,3W)= % ~ P(1,3,W)
where piji = (pij — pinpie) /) (1 = P3) (1 — %) with
QL a1

, p13=0, pag=—

P12 = —

V@l + 0@y + a3 V(@ + 0@yt + i)

For m > 5, expressions for the level probabilities are available in terms of orthant
probabilities for a multivariate normal distribution. However, numerical techniques are
needed to compute these arbitrary orthant probabilities. For this purpose, the programs
of Bohrer and Chow (1978) and Sun (1988) are useful.

Ezample 2. When testing equality of the scale parameters of m gamma distribu-
tions against nonincreasing order, the hypotheses are

Hy:07,=059=---=807,, versus H;:0[2>605 > --->06;,
which can be expressed as in (2.1) using

010-100 00.--00
00010-100---00

000000 ---010-1
and ®; = (0,0,...,0) with r = m — 1. Again, the asymptotic distributions of the test
statistics Tp; and 115 are obtained from Theorem 1.
Note that we do not assume equality of the shape parameters as in Bhattacharya

(2001) and Shiue and Bain (1983). The calculations for the level probabilities are similar
as in Example 1, except replace Q! by Q22 for k = 1,2,3,4.

Ezample 3. Tripathi et al. (1993) proposed a test of equality of the coefficients of
variation of m gamma distributions which essentially reduces to testing equality of their
shape parameters. This requires modifying the 6@ parameters from Section 2. However
the derivation given in page 778 of Tripathi et al. (1993) is incorrect. In the following
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we propose a correct procedure for testing the equality of the shape parameters of m
gamma, distributions against nonincreasing order.

We reparameterize @' = (07,05 ,...,00.] with 8] = [05,605] = [In v;,In 6;],i =
1,...,m. To test hypotheses as in (2.1) with suitably chosen C and ®,, we let n;0 =
In ki1, and m;; = In (K j41/5!), 5 = 1, and 0} = (70,71, M2,3). This produces the
relationship n; = w*0;,i = 1,...,m where

w — 1111
1234
The overall linear relationship = w*8@ is obtained as before. If h is the sample coun-
terpart of 17 and $ is a consistent estimate of the covariance matrix 3 of h, then the

test procedures described in the previous section can be followed, and the asymptotic
distributions can be obtained.

4. Using combination of p-values

Bhattacharya (2001) considered the problem of testing equality of scale parameters
against nonincreasing order of m gamma distributions with equal but unknown shape
parameters using Fisher’s method of combination of p-values. For smaller sample sizes,
this test is approximate in nature as it depends on the MLE’s of the common shape
parameter in each step. Bhattacharya (2001) studied the actual size of the test in various
situations including when v — 0o and v — 0. In this section we derive an expression for
the power function of this test for m = 3. .

Let independent random samples of sizes n; are ava,ﬂable from m gamma, distribu-

tions G(-;0;,) with corresponding sample means as X;,i=1,...,m. The problem of
testing Hg : 6 = --- = 0,, against H, — Ho where H, : 6, > --- > Gm may be considered
as the conjunction of m — 1 nested problems of testing Ho; : 6; = --- = 6; = 6;,1 versus
Hy:0,=---=0;>0; fori=1,...,m—1. For each %, the test of Ho; versus H,; is
based on the two-sample case of Shiue and Bain (1983) as follows. Let
F = E;=1_"jXJ'
NiXip

where N; = E ;. We reject Ho; if F; > Fan,4;2n.,,4: (@) where %; is the MLE of v
obtained in the i-th step by combining all related i + 1 samples. It can be shown that
the statistics Fy,...,Fy,_; are mutually independent under Hy.

Let P(%;) = Pr(Fsz,gm 114 = F;) denote the (approximate) p-value associated
with the test statistic F;, i = 1,...,m—1. The Fisher’s method of combining independent
p-values is based on the test statistic

—
Yr(1,- -y m—1) = =2 Z In P;(%:)

which has a x2,,_, distribution (approximately) under Hy. Thus we reject Hp if
B0, s Fmm1) = Xgm—a(@) for given a.

The actual size of this test is P(7,a) = Prlr(51,-- -, ¥m-1) = X3m—z(a)]. Under
Hy, this probability does not depend on @ since the joint density of F; and 4; is free of
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6. For m = 3, Bhattacharya (2001) have estimated values of P(v, a) for various values
of v, a, n; using Monte Carlo simulation. The case of the limiting values P(0,a) =
limo P(7, ), and, P(00,a) = lim,_.o P(7, ) are also derived. It is seen that in each
case considered the true level P(v, @) is slightly above the prescribed level .. Also, these
values are nearly constant for fixed values of @ and n;’s and are close to the limiting
value P(0o,a). Thus one may like to modify the test for small sample sizes so that
the actual level is closer to the prescribed nominal level. Since P(7,8) =~ P(c0,f)
for small n;’s, an approximate o level test of Hy versus H, — Hp is to reject Hp if
Vr(F1s - Yme1) = X3m—2(08) where P(0o, ) = a. Bhattacharya (2001) gave a table of
B values for some commonly used a values for various small sample sizes for m = 3.
Since the statistics Fy, F, are independent of 4,, 42, the power function for m = 3

of the test is given by '

(4.1) Py, 9,(7,0) = Pro, 0, [Wr(51,92) > X3(2)]
00 [e o]
= / /0 Pry, 0,[¥r(31,%2) 2 x4() [ 51 = a1,%2 = a2]
0
.f'lh A2 (ala a2)da1 da2
[0 o0
- / / Pro, 0,[¥r(01,02) 2 X4(@) | 1 = 02, % = aa]
o Jo
“Fan e (a1, a2)day day

- = / / Pr91,92 ["/)F(ali a2) 2 Xi(a)lf’h Y2 (a'lv a2)da'1 das
0 0

where f5, 5, is the joint density of (%1,%2)-

Since 0 Gy + 0, F
O _(&roh ) o
B=gf wd B (03(1+F{)) ?
where
, 7'L1X1/01 ’ (nlxl/el) + (n2X2/02)
=5, n 72y d) F, = v ~ F
Fl n2X2/92 F2 1Y,2n2Y an 2 N2X3/03 2Nz7v,2nay
SO we can express
0 1 02 + ‘91-7:2—1\} 2n, (Ul) —
FL=—F U), and, Fp= 17,°R2Y Frl U-
1 0, 2n1'¥,2n2'7( 1) I 2 (03(1 + .7;-2-—]\1,1%2”27(0'1)) 2N2’7,2n3’7( 2)

where F,, ,,(-) is the cumulative distribution function of the F' distribution with vy, v2
degrees of freedom and Uj, Uz are independent U (0, 1) random variables.
When 4; = a;, the component p-values can be expressed as

D 0.
Pi(a1) =1— Fanya1,2nee (aif21\}1’y,2n2'y(Ul)) ’

4.2 _
( ) b2 + 01‘7:21\}1'7,21127(171)

D ~—1
Pyay) =1 — Fanya — F. nayU2) | 5
2( 2) 2Nzaz;2naaz ((03(1 +.7:-2]\}1%2n2’y(U1))> 2N27,2 3'7( 2)>
and then we obtain

(43) Pro,gqlir(a1,a2) = x3(@)] = Pro, o,[-2 In Pi(ar) ~ 2 In Py(a) > x5 ()]
= Pro, 0,[P1(a1) Py(ag) < e Xi(®/2],
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In derivation of the last expression in (4.3), the convolution formulas may not be used
to find the distribution of —2 In Py(a;)—2 In P2(a2) as under the alternative P;(a;) and
P»(az) are not independent. However using the conditional argument as in Mudholkar
et al. (1993), the last expression in (4.3) can be written as

v 0o+ 60 F] \ __; e—Xi(@)/2
4) 1- n 2T 1-—
(4 4) -/0 szz’h? 3Y ((03(1 + F{) f2N2a2,2n3a2 Pl(al) du

where y = f2n1"/»2n27(%f{7310'1,2nza1(1 — e~Xa(®)/2))  Substituting (4.4) in (4.1) we
obtain the power function of the test as

v 02 +6:1F7 \ 1 g Xale/2
(4.5) Ex, 5 ,:1 _/0 Farsyansy ((03(1 + F{)) FoNzas2nsaz | 1~ Pyi(a1) dul -

For general m, the expressions for the power function may be derived by tedious
calculations and are not included here.

5. A Monte Carlo study

Tt is of interest to study the power of the two procedures described in the previous
sections in the case of Example 2 of Section 2. For m = 3 the asymptotic power of
the procedures are computed at various combinations of sample sizes and alternative
scale parameter points using a common value of the shape parameter. Different shape
parameter values (bell-shaped: v < 1, and reverse J shaped y > 1) are considered.

We have used the IMSL subroutines to generate gamma random variates. Each
simulated value for the two procedures (G for the first and F for the second) in Table 1
is based on 3,000 replications using o = .05. As both tests are asymptotic in nature,
we have chosen sample sizes 30, 50, and 100. The null hypothesis values of the scale
parameters are taken as 1. The alternative scale parameter values range from 2.5 to 1
in a decreasing order with various combinations. For the first procedure, a consistent
estimate 3 of X is obtained by using MLE’s of the parameters +;’s and ;’s as given in
Section 1. For the second procedure, although we have derived a closed form expression
for the power function in Section 4, to stay on the same footing, we have simulated its
power as well (it is seen that the simulated values are either very close or equal to the
actual values for m = 3). We randomly generate m samples of size n; from G(z;8,7)
populations, compute P;(%;), 1 < i < m — 1 and ¥r(H1,...,¥m—1), then determine
whether ¥r(¥1,...,9m—1) > X2m—2(a). The critical points used under the F Column
uses the values given in Table 2 of Bhattacharya (2001).

It is seen that for both procedures the powers increase as the sample sizes increase.
Also as v increases the powers increase in both cases. We also observe that for the
first procedure the power is low at or near Hy especially for smaller v which is not
the case with the second procedure. However as the § values move away from Hp, the
power increases fairly quickly in both cases even for moderate sample sizes. Similar
results were obtained at other combinations of v, «, n;’s which are not reported here
for brevity. Thus we recommend that the second procedure may be preferred over the
first when it is reasonable to assume that the shape parameters are equal especially for
smaller sample sizes. In all other cases the first procedure should be used.
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Table 1. Power comparison of the two methods for m = 3 (G=first, F=second).

¥=.5 v=1.0 ¥ =2.0

ni 2 n3 91 92 93 G F G F G F
30 30 30 1 1 1 .39 .051 046 041 061 .048
1.5 1 1 .209 .322 455 517 744 765

L5 15 1 .248 241 485  .394 781 .664

2 1 1 461 .657 850 .892 992 .994

2 15 1 465 517 814 .797 979 971

2 1 .559 514 889  .820 994 985

2.5 1 .682 .849 976 .986 1.0 10

25 15 1 .660 .750 951  .957 1.0 .999

25 2 1 .734 .727 973 957 1.0 .999

25 25 1 .802 .755 986 .971 1.0 1.0

50 50 50 1 1 1 .034 .046 042 043 054 .047
1.5 1 1 .314 .450  .641 699 917 933

1.5 15 1 .35 .335 668 .583 925 .886

1 1 .4 844 972 982 1.0 1.0

1.5 1 672 .726 946 941 998  .998

2 2 1 .78 .44 982 .969 1.0 .999

25 1 1 .918 .973 1.0 10 10 1.0

25 15 1 .868 .915 997  .999 1.0 10

25 2 1 914 .909 999  .998 1.0 1.0

25 25 1 953 .941 1.0 .999 1.0 1.0

100 100 100 1 1 1 .035 .046 047 044 051  .053
1.5 1 1 572 .692 903  .926 998  .999

15 15 1 .610 .587 915 871 997  .994

1 1 .956 .984 10 1.0 1.0 10

2 1.5 1 .924 .939 999  .998 1.0 10

2 1 .973 .965 1.0 1.0 1.0 1.0

25 1 1 998 1.0 1.0 1.0 1.0 1.0

25 15 1 .993 .996 1.0 1.0 1.0 1.0

25 2 1 .997 .997 1.0 1.0 1.0 1.0

1 .999 .999 1.0 1.0 10 10

25 25

6. Concluding remarks

Tests for gamma distribution for m > 3 have been treated in literature very rarely.
We have proposed two simple testing procedures of equality against inequality restric-
tions for parameters of m > 3 gamma distributions with any sample sizes. The first
procedure is quite general and may be used to test for equality of the means, scale or
shape parameters. It does not assume any condition on the nuisance parameter. The sec-
ond procedure which tests equality of the scale parameters against inequality restrictions
under assumption of equality of the shape parameters performs better in the vicinity of
Hpy and is also applicable with a variety of order restrictions. The critical value of the first
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Table 1. (continued)

N =5 v =10 N =20

n1 N N3 0y 62 63 G F G F G F
30 50 100 1 1 1 0156 .046 030 .043 042  .051
1.5 1 1 159 403 449 605 793  .860

1.5 1.5 1 355 472 729 730 963 .955

1 1 442 766 877 .949 996  .998

2 1.5 1 626 778 947 .963 1.0 1.0

2 1 805 .884 994 994 1.0 1.0

2.5 1 1 696  .924 985 996 1.0 1.0

25 15 1 798  .920 994 997 1.0 1.0

2.5 2 1 921  .958 999 999 1.0 1.0

25 25 1 966  .987 1.0 1.0 1.0 1.0
100 50 30 1 1 1 077 .055 077 046 068 .043
1.5 1 1 545  .548 838 .824 981 .978

1.5 1.5 1 .382 259 650 468 883 .760

2 1 1 909 915 998 998 1.0 1.0
2 1.5 1 765 707 965 .941 099 999
2 2 1 765  .595 968 907 1.0 .997

2.5 1 1 992 993 1.0 1.0 1.0 1.0

25 1.5 1 944 933 998 998 1.0 1.0

2.5 2 1 929 .864 .998  .993 1.0 1.0
25 25 1 938 841 999 992 1.0 .1.0_

160 30 50 1 1 1 064 .056 0567 042 058 .045

1.5 1 1 536 .556 .841  .828 980 979 -

1.5 1.5 1 442 371 756  .634 950 .904

2 1 1 909 .921 998 997 1.0 1.0

2 1.5 1 .845 815 990 .984 1.0 1.0

2 1 857 .781 993 979 1.0 1.0

2.5 1 1 992 994 1.0 1.0 1.0 1.0

2.5 1.5 1 o717 976 1.0 1.0 1.0 1.0

2.5 2 1 970  .958 1.0 1.0 1.0 1.0

25 25 1 975 957 1.0 1.0 1.0 1.0

procedure depends on a chi-bar square distribution whereas that of the second depends
on a chi-square distribution. Thus in practice both tests would be useful in appropriate
situations.
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