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Abstract. A fundamental issue that arises after fitting a regression model is that of
testing the goodness of the fit. Our work brings together the power divergence family
of goodness of fit tests and regression models for categorical time series. We show
that under some reasonable assumptions, the asymptotic distribution of the power
divergence family of goodness of fit tests converges to a normal random variable. This
fact introduces a novel method for carrying out goodness of fit tests about a regression
model for categorical time series. We couple the theory with some empirical results.
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1. Introduction

The aim of this contribution is to link the power divergence family of goodness of
fit tests with the regression theory of categorical time series. A categorical time se-
ries is a sequence of dependent observations taking qualitative values. The introduction
of generalized linear models (see McCullagh and Nelder (1989)) had a profound im-
pact on the modeling aspects of such data. Some examples.can be found in the work of
Bonney (1987), Fahrmeir and Kaufmann (1987), Kaufmann (1987), Korn and
Whittemore (1979), Liang and Zeger (1989), Muenz and Rubinstein (1985), Stern and
Coe (1984) and more recently Slud and Kedem (1994), Brillinger (1996), Fokianos and
Kedem (1998, 1999). However a central question that arises after fitting a regression
model is that of the adequacy of the fit. In the context of generalized linear models,
goodness of fit is examined either by a Pearson chi-square test or by the residual deviance
(see McCullagh and Nelder (1989), Fahrmeir and Tutz (1994)). However, in the special
case of regression models for categorical time series this approximation can be poor due
to the fact that data are sparse. Thus, some other techniques should be developed in
order to take advantage of the fitting output for answering questions regarding the fit of
the model.

The topic of testing the goodness of fit of a regression model for a categorical time
series has been addressed by some authors either by conducting a chi-square test or by
inspection of the residuals. For example, in Brillinger (1996), the author examines the
so called uniform residuals which are based on the probability integral transformation
under the fitted model. If the parameter values are known, then we have a uniform
distribution and the uniform residuals can be used to examine the adequacy of the fit
either by constructing probability plots or by using them in some other established way.
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Another approach to the goodness of fit question is that of Slud and Kedem (1994) and
Fokianos and Kedem (1998) that relies on an appealing idea of Schoenfeld (1980). These
authors classify the response variable according to some partition of the covariate space.
Then, the goodness of fit test is based on the new grouping of observations. Although
this is a sensible approach, it depends on the partition of the covariate space which
occasionally might be rather large.

Recent work in the area of independent and not identically distributed data shows
that the family of power divergence tests can serve as a general framework for answering
questions regarding the goodness of fit. The power divergence family of goodness of
fit tests has been introduced by Cressie and Read (1984) as a generalization of the well
known Pearson’s X2 and likelihood ratio G test statistics. Denote by ) the deviation—
or power divergence—between observed and expected counts, that is « is a distance
which is given by

A
o (observed, expected) = /\(%_{_1) observed [(%S%ggg) - 1} .

Notice that the above quantity compares the fraction of the observed counts divided by
the expected counts raised to the power A with 1. Then the power divergence family of
test statistics indexed by a parameter A € R, say I()), is just the sum over all cells of
these deviations. Namely,

I(\) = Z a)(observed, expected).

cells

It is straightforward to verify that the statistic 7()) reduces to Pearson’s X2 when A = 1
and to likelihood ratio G2 when A — 0. Some other interesting cases worth mention-
ing include A — —1, A = —1/2 and A = —2. For those particular values we obtain
the minimum discrimination information statistic, the Freeman-Tukey statistic and the
Neyman-modified X? statistic, respectively. An extended study of the properties of the
power divergence family of goodness of fit tests is given by Read and Cressie (1988). The
authors suggest the value of A = 2/3 for checking adequacy of a hypothesized model for
independent data. Notice that for A = 2/3 the resulting test statistic lies between the
Pearson’s and likelihood ratio test statistics. Furthermore, the authors offer an exten-
sive discussion of the large sample properties of the test statistic under both fixed and
increasing cells assumptions (Read and Cressie (1988), Chapter 4). Fixed cells assump-
tions imply that the number of the cells remains fixed while all group sizes tend suitably
to infinity. Increasing cells assumptions—or so called sparseness assumptions—signify
the fact that the number of the cells tends to infinity. Under fixed cells agssumption the
asymptotic distribution of the test statistic is approximated by a chi-square distribution
with some degrees of freedom given that the hypothesis of the correct model is true (Read
and Cressie (1988), Chapter 4). In contrast, increasing cells assumptions imply that the
asymptotic null distribution of the test statistic is approximated by a normal random
variable with mean and variance depending on the parameter A. Early work on necessary
asymptotic theory under relatively different increasing cells assumption has been done by
Morris (1975), Weiss (1976) and Holst (1972). References on the asymptotic distribution
of the X? and G? test statistics under sparseness assumptions include Koehler (1986)
who demonstrated asymptotic normality of the likelihood ratio statistic for log—linear
models admitting closed—form maximum likelihood estimates, McCullagh (1986) who
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pointed out the use of conditional distribution of the X2 and G? statistics given a suf-
ficient statistic in the context of linear exponential family models and Dale (1986) who
proved the asymptotic normality of the X? and G? statistics for increasing cells with
bounded expectations. More recently, Osius and Rojek (1992) generalized the aforemen-
tioned results by proving asymptotic normality of I(\) under sparseness assumptions
(see also Osius (1985) for binary data). Finally, we mention that Gleser and Moore
(1985) investigate the effect of serial dependence on the test statistic, under fixed cells
assumptions. These authors demonstrate that positive dependence—according to their
definition—is confounded with lack of fit. Therefore, the null asymptotic distribution of
I()) behaves differently according to whether or not the data are sparse. We refer the
reader to Read and Cressie (1988) for more details on both small and large properties
of the power divergence family {I()),\ € R}.

Increasing cells asymptotics turn out to be very useful for regression models of cate-
gorical time series because those data are sparse. Our contribution is to extend the power
divergence family to accommodate categorical time series data and study the asymptotic
distribution of the test statistic under the null hypothesis of the correct model. We re-
view some theory for regression models for categorical time series in the sequel while
Section 3 covers the proposed test statistic and gives its asymptotic distribution. We
conclude our presentation by illustrating some empirical results. The proof of the main
theorem (Theorem 3.1) is given in the Appendix.

2. Regression models for categorical time series

Suppose we observe a nonstationary categorical time series, say {Ys,s =1,..., T}.
Let m denote the possible number of categories for each observation. We assume that
the s-th observation is given by the vector g, = (ys1,. .., ¥sq)’ of length g, with elements

~_ J 1, if the j-th category is observed at time s
Ysi =10, otherwise

for s=1,...,T and ¢ = m — 1. In addition, we denote by p, = (ps1,.--,Pss)’ the vector
of conditional probabilities given F;_;, that is ps; = P(ys; = 1| Fo—1), j = 1,...,4q,
s=1,...,T. Here Fs_1 stands for the whole information up to and including time s.
Clearly, ysm = 1 — Eg___l Ysj and Py, = 1 — Z‘;:l Dsj- Finally, we let Z;_; to denote a
D X q matrix that represents a covariate process. The latter may include past values of
the process or/and any other auxiliary processes. Let

(2.1) p;(8) = h(Z;_,P).

Here B denotes a p-dimensional vector of time invariant unknown parameters and the
function h(-) is the so called link function.

Important models that fall under the above framework include the multinomial
logits and the cumulative odds model. The multinomial logits model (see for example,
Agresti (1990)), which is used for the analysis of nominal time series is a special case of
(2.1). It is given by

_ exp(Bzs-1)
1+ 320 exp(Bizs1)’

(22) Dsj jzla"'aq
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where ,3]- is a d-dimensional regression parameter and 2;_; is a vector of stochastic time
dependent covariates of the same dimension. _

For the analysis of ordinal time series the cumulative odds model (see McCullagh
(1980)) is given by
(2.3) P(Ys <jJ ! .7:3__1) = F(oj +'y’zs_1)

where F' denotes a cumulative distribution function, 7 is a d-dimensional regression
parameter, z;._1 stands for a vector of stochastic time dependent covariates of the same
dimension while —00 = 0y < 81 < --+ < 8,, = 00. Common choices for F' include the
logistic—which gives rise to the so called proportional odds model—the normal and the
complementary log-log distribution functions. Further examples and modeling strategies
are discussed in Fahrmeir and Tutz ((1994), Chapter 6).

The central issue is to estimate the vector of parameters B. Since the data are
dependent, we attack the problem through the partial likelihood methodology which
was suggested by Cox (1975). Partial likelihood approaches successfully the problem of
estimation and testing by means of martingale theory. It has been proved a useful tool
for time series following generalized linear models (see for example, Wong (1986), Slud
and Kedem (1994), Fokianos and Kedem (1998) among others). According to Fokianos
and Kedem (1998), the partial likelihood (PL) function relative to 8, F,, and the data
{y,,s=1,...,T}, is given by

T m
PL(B) = [ ] [ =58

s=1j=1
Hence the partial log-likelihood is
T m
(2.4) plr(B) = > ys; log ps;(B)-
s=1j=1

The partial score is the p-dimensional vector

T m .
(2.5) Sr(B) =D ysjm % 5;,(,")

s=1 j=1

T
= ZWSI(ﬂ)(gs - i’s(ﬂ)))
s=1

where §, and P, denote the m-dimensional vectors (¥s1,-..,Ysm) and (Psi, ..., Psm) re-
spectively, while W () stands for the m X p matrix with rows
1 aps j (ﬁ)
2.6  wei(B) = I =1,...,m.
(26) 0= B 8

The maximum partial likelihood estimator ﬁ is a consistent root of the equation St (8) =
0. For categorical time series data we have that the conditional information matrix is

given by

T
2.7) Gr(B) = Y _ VarlW,(B)(@, — b, (B)) | Fa-1l

s=1
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~ZW</3)2 (BW.(8)

with X,(8) the conditional covariance matrix of , with generic element

i) (g) — { ~Psi(B)ps; (B) if i#j
8) {psi(ﬂ)(lfpsi<ﬂ>> if i=g

fori,j = 1,...,m. Asymptotic properties of the maximum partial likelihood estimator
B are examined via the score function and the conditional information matrix (Arjas and
Haara (1987), Andersen and Gill (1982), Wong (1986)). It turns out that the following
theorem holds (Fokianos and Kedem (1998)):

THEOREM 2.1. Consider model (2.1) and assume the following: Assumption (A)

A.1 The parameter 3, belongs to an open set B C RP.

A.2 The covariate matrices Z,_; almost surely lie in a nonrandom compact subset
T of RPX9 such that P|Y_, Z,_1Z,_; > 0] = 1. Furthermore we assume that Z,_,
lies almost surely in the domain of h for all Zs_1 €T and B € B.

A.3 The true probability measure is given by Fg.

A.4 The link function h is twice continuously differentiable, det[Oh(y)/8y] # 0

A5 There is a probability measure u on RP*9 such that [, ZZ' uw(dZ) is positive
definite, such that under (2.1) for all Borel sets A C RP*? we have

T
1
TZI[ZS_leA]z’“(A)a as T — o0

s=1

at the true parameter B.

Then:
1. There exists a locally unique mazimum partzal likelihood estimator, ﬁ, with prob-

ability tending to 1, as N — oo.
2. The estimator is consistent and asymptotically normal,

BB
and

VT(B-B) B N(0,G71(8)),

as T — oo.
3. The following is true:

V(B - p) - VLTG(B)"IST(ﬂ) 0.

Notice that G denotes the limit in probability of the conditional information matrix,
that is Gr ()
—o B | W(BBEW(B)u(dzZ) = G(B),

RPxq
where W () denotes that m x p matrix with rows
L _on(Zp)
hi(Z'g)y o8

=1,...,m,

(2.8) w;(8) =
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and ¥ has generic element

o9(g) = —hi(Z'B)h;(Z'B) if i#j
h(Z'B)(1—hi(Z'B)) if i=3j

for 4,7 = 1,...,m. The proof of Theorem 2.1 and some further discussion on the reg-
ularity conditions can be found in Fokianos and Kedem (1998). It is essential to point
out that we do not assume stationarity of the observed time series. In addition, we do
not postulate any Markov property on the process. Notice that we use shghtly different
notation from Fokianos and Kedem (1998).

In conclusion, we gave a brief account of asymptotic theory for the general regression
model for categorical time series. We established some notation that will be found useful
in the rest of the article and stated some asymptotic results regarding the maximum
partial likelihood estimator. An essential question that is posed 1mmed1ately is the
quality of the fit ‘which is answered in the next section.

3. A family of goodness of fit tests

Suppose that we observe a categorical time series, say {Ys,s = 1,...,T}, as in
Section 2. We generalize the family of power divergence tests to accommodate dependent
data by introducing the following quantity

ysi \
(3.1) us(B) = ,\+ MO+1) & Zys’ [(ps,-(fa)) - 1} '

Notice that we drop notation that depends on A for ease of presentation. Equation
(3.1) simply states that at each time instance s, we calculate the deviation between the
observed data and the corresponding transition probabilities. Now, since each {ys;,j =
1,...,m} can take values 0 or 1, for s = 1,...,T we obtain that equation (3.1) is
deﬁned for values of A greater than —=1. Summmg up all the deviations across time we
conclude that the quantity E _; us(B) is the analog of the power divergence statistic
for dependent categorical data. Thus, if we calculate the conditional expectation of
{us(*),s =1,...,T} under the correct model, the residual process should evolve around
0. Let us be more specific. If

2 Y
(2 elB) = Bus(B) | Fourl = 5y 2 Pui(B) [(psj(ﬂ)> - 1] ’

denotes the conditional expectation of us(8) given the past process, then the difference
Z s=1 Us(B)— Z <=1 €s(P) is clearly a zero mean martingale, by construction. If the model
is correct then the centered process should fluctuate around 0. Therefore any large value
of |z 1 Us(B) — Zle es(B)| will lead evidence against the null hypothesis. However,
we replace 3 by ﬁ, the maximum partial likelihood estimator. It turns out that the
quantity

T
(3.3) Ir() = ) lus(-) — es()]
s=1

evaluated at the maximum partial likelihood estimator ﬁ, is approximated by a zero
mean square integrable martingale that satisfies all the conditions for an application of
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a central limit theorem. In addition, the asymptotic variance of this martingale can be
calculated explicitly by

4

(34) ér(B) = MO

¢

{Z v (B)Zs(B)vs(B) ~ cr(B)GT' (B)er(B) } :
s=1

The quantities cr(-), vs(-) are defined in the Appendix through equations (A.4) and
(A.9), while X,(B) is the conditional covariance matrix of §, and Gr(8) is the conditional
information matrix (see (2.7)). Our basic result affirms that the process (3.3) normalized
by the expression (3.4) converges to the standard normal distribution. The proof of this
theorem is given in the Appendix.

THEOREM 3.1. Assume Assumption (A) as in Theorem 2.1. Then, under the
hypothesis that model (2.1) holds and for A > —1, the following is true:

I)‘ = —'——IT(ﬂ{ ——>N

ér(B)

in distribution, as T — oo, where N is a standard normal random variable. Recall that B
stands for the mazrimum partial likelihood estimator while the quantities {I7(B),&r(B)}
are defined by the equations (3.3), (3.4) respectively. Large values of |I)| lead to the
rejection of the null hypothesis.

Theorem 3.1 states that the asymptotic distribution of the process I+ depends on
A. Thus, the choice of A is of considerable importance in applications. Based on our
simulations, we recommend values that fall between —1 and 1. The approximation is
quite sensitive to values of X greater than 1 as some of the simulated examples show.
This fact is explained by observing that the definition of the test statistic requires all
the transition probabilities to stay bounded away from 0. In addition, the derivatives
of the link function with respect to the parameter 8 have to be bounded, for all ¢.
Both of these conditions are met because of Assurption (A). Indeed, the compactness
Assumption (A.2) jointly with the differentiability Assumption (A.4) provide necessary
bounding conditions. However the approximation deviates from the asserted normality
when the transition probabilities are small because of the fact that the function z—*, for
T between 0 and 1 and A > 1, grows to infinity when z takes values near 0. Therefore,
the test statistic is sensitive to values of A > 1. The next section—which investigates
the empirical performance of the test statistic—lists some examples where this situation
occurs. In addition we provide some empirical assessment of the power of the test. There
are several questions that need to be addressed in the context of the test statistic’s power.
We leave untouched this area mentioning that even for the case of independent data,
optimality of the test has been proved in certain cases (equiprobable model) while studies
about the power of the tests introduced by the power divergence family are sparse in the
literature (see Read and Cressie (1988), Chapter 8).

However, optimality results regarding the test statistic can be derived when the
latter is viewed as a score test. To make this point clear consider first equations (3.2)
and (3.3) to get that

T m 1 A
(85)  Ir(B) = 3. (vss — 1s3(B)) [(b_g(ﬂ—)> B 1]

s=1 j=1
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_ ég (usy = s B) [(p;(ﬂ))A - (1 = zgilpsi<ﬂ>>A]

by recalling that Z i Ysi = 1, ZJ 1 Psi(B) =1, ¢ = m — 1 and ignoring the factor
2/A(A+1). If we define the followmg g X 1 vector

[ I e 3 o .

for x = (1, . .. ,a:q)' with 0 <z; <lfori=1,...,gand ), z; < 1, then equation (3.5)
is rewritten as

T
(3.6) Ir(8) =Y _ d\(®,(8) ¥, - p.(B)).
s=1
We define the g x ¢ matrices
hi(1 - hy) —hihs .. —hihg
—h1h ha(L—h —hah
(3.7) H= whe Pa{l=ha) 2
hihg —hahg .. hg(1—hy)
and ,
V,h1
V hy
(3.8) Vh = :
V'hg

Equations (3.6)—(3.8) are useful on specifying the following ¢-dimensional function

(3.9) fi(@) = d\(h(@))(Vh(z)) " H(2).
In particular, if we let
. exp(z1) exp(zq) ’
o) = (s e T o)

and

togit(p (8) = o5 (L4 O .. o (T z)»si(ﬂ))]l ’

then we obtain ) )
[ (h(logit(p,(B)))) = d,(ps(B))
from (3.9).
Consider the enlarged model

(3.10) s(8) = h(Z,_ B+ ¥f1(Z,_18)).
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We argue that the score test for testing the hypothesis ¢ = 0 is equivalent to (3.6).
Recall (2.4) to obtain

w — & Ysj o ’ Z,
[ dy ]¢=0 - ;?::1 hj(Z;_lﬂ)v hJ((Zs—-lﬂ)f}\( s_u@))

N
-3 [ysl<1 2 (), ~222(B),-.. -, ~psalB)
+Ys2 (—psl(ﬂ)y 1-— ps2(ﬂ), ceey _psq(ﬂ))
ot (1 - Zysz) (=ps1(B), —Ps2(B), . - -, —Ps¢(B)) | dr(05(B))

T
=3 d\®.08) W, — p,(B))

s==1

after some calculations. Thus the family of power divergence test statistics can be derived
as a score test by considering the enlarged model (3.10). Obviously, the family of test
statistics (3.6) can be used to detect whether or not additional covariates are needed in a
regression model. However, we recommend some other established ways (see for example,
Kaufmann (1987) and Li (1991)) for performing tests regarding additional covariates to
the model since our earlier discussion shows that the choice of parameter A for (3.6) is
crucial.

Remark 3.1. Another work that addresses the question of goodness of fit for a
regression model in the context of categorical time series is that of Fokianos and Kedem
(1998). The authors generalize the results by Slud and Kedem (1994) who dealt only
with the case of binary time series. Their method relies on earlier work by Schoenfeld
(1980) who classify the responses according to a partition of the covariate space . We only
mention that Fokianos and Kedem (1998) prove that if the covariate space is partitioned
into k sets, then a certain goodness of fit test is asymptotically chi-square distributed
with degrees of freedom equal to kg (see Fokianos and Kedem (1998), Proposition 4.1).
We compare this test with the family of power divergence test statistics in the next
section.

Let us summarize the main results. We proposed and examined a goodness of fit
test for regression models for categorical time series. We showed that testing the null
model can be based on the result of Theorem 3.1. The test is a simple extension of
the power divergence family of goodness of fit tests for independent data. Furthermore,
our method can be viewed as a score test for a certain enlarged model. We study its
performance in the next section.

4. Empirical results

We present a limited simulation study to demonstrate empirically some aspects of
the theoretical results. All the simulations were run 500 times.

Initially, we simulate a categorical time series with m = 3 categories according to
the multinomial logits model (2.2). Here we choose 8, and f, to be the three dimensional
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Table 1. Achieved and nominal significance levels for testing the fit of the multinomial logits
model with different values of A and for different sample sizes. The data have been gen-
erated according to model (2.2) with 8 = (8,,8,) = (—0.25,0.50,1,0.50,—0.25, —1)’ and
2zt = (1, ¢, cos(wt/12)). Here z; stands for an autoregressive process of order 1 and coefficient
equal to 0.2. The number of simulations is 500.

3 T =50 T = 300
a=010 a=005 a«=001 a=010 a=005 a=0.01
—0.8 0.108 0.062 0.012 0.104 0.054 0.018
—0.6 0.088 0.046 0.014 0.128 0.058 0.010
—0.4 0.088 0.048 0.012 0.094 0.056 0.010
-0.2 0.080 0.040 0.012 0.072 0.024 0.012
0 0.090 0.046 0.018 0.090 0.052 0.008
0.2 0.072 0.038 0.014 0.114 0.058 0.018
0.4 0.058 0.038 0.014 0.106 0.046 0.008
0.6 0.060 0.042 0.016 0.082 0.038 0.008
0.8 0.066 0.042 0.016 0.082 0.046 0.018
1 0.048 0.030 0.018 0.070 0.034 0.014
(@
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Fig. 1. DBoxplots of the values of the power divergence statistic for testing the fit of the
multinomial logits model. Each boxplot corresponds to a different value of the parameter A
which varies from —0.8 to 1 with step equal to 0.2. The data have been generated according
to model (2.2) with 8 = (-0.25,0.50, 1,0.50, —0.25, —1)’ and 2z¢ = (1, x, cos(nt/12)). Here x;
stands for an autoregressive process of order 1 and coefficient equal to 0.2 and the number of
simulations equals to 500. (a) T = 50. (b) T = 300.

vectors (—0.25,0.50,1)" and (0.50, —0.25, —1)’, respectively. Thus 8 is the six dimensional
vector which consists of all the elements of 8, and B,. The covariate process is given
by z;—1 = (1, ¢, cos(nt/12)) with {z¢,t = 1,...,T} an autoregressive process of order 1
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Fig. 2. QQ plots of the values of the power divergence statistic for testing the fit of the
multinomial logits model. Each plot corresponds to a different value of the parameter A which
varies from —0.8 to 1 with step equal to 0.2. The data have been generated according to model
(2.2) with 8 = (—0.25,0.50, 1,0.50, ~0.25, —1)' and 2; = (1, ¢, cos(wt/12})). Here z: stands for
an autoregressive process of order 1 and coefficient equal to 0.2. The length of each time series
is 300 while the number of simulations is 500.

and coefficient equal to 0.2. We investigate both the small and large sample performance
of the test statistic by generating T' = 50 and T" = 300 observations, respectively. The
achieved significance levels of the test statistic I with different values of the parameter
X and for different sample sizes are tabulated in Table 1. Notice that A assumes values
from —0.8 to 1 with step equal to 0.2. In particular, recall that for A = 0 we obtain
the deviance while for A = 1 we obtain the Pearson’s chi-square statistic. We observe
that the achieved significance levels are in close agreement with the nominal levels when
T = 300 and deviate when 7" = 50, especially for positive values of the parameter A. In
particular notice that the nominal level of significance o = 0.01 is attained in most of
the cases for both large and small sample sizes.

Figures 1(a) and 1(b) display box and whisker plots of the values of the test statistic
I, for different values of the parameter A when T" = 50 and T' = 300 respectively. Thus
the first boxplot—starting from the left side of the figure—illustrates boxplot of the
values of I for A = —0.8. The second boxplot demonstrates the same information but
now for A = —0.6, and so on. Notice that positive values of A do indicate a skewed
distribution for T' = 50 (see Fig. 1(a)) while as T" grows larger the plots show that the
limiting distribution is symmetric centered at zero with most of the data lying from —3 to
3. This fact is in accordance with Fig. 2 which displays QQ-plots of the simulated values
of the power divergence statistic for A = —0.8,-0.6,...,0.8,1. We do not detect any
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Table 2. Achieved and nominal significance levels for testing the fit of the proportional odds
model with different values of A and for different sample sizes. The data have been generated
according to model (2.3) with 8 = (1, 1.50, -2, 1)’ and z; = (1,z¢,cos(wt/12)). Here z; stands
for an autoregressive process of order 1 with coefficient 0.2. The number of simulations is 500.

A T =50 T =300
a=010 a=005 a=001 a=010 a=005 a=0.01
—0.8 0.178 0.122 0.054 0.118 0.062 0.022
—-0.6 0.210 0.164 0.002 0.120 0.064 0.018
—~0.4 0.212 0.152 0.068 0.104 0.048 0.016
-0.2 0.120 0.086 0.040 0.130 0.075 0.026
0 0.084 0.042 0.008 0.102 0.042 0.006
0.2 0.090 0.078 0.048 0.137 0.091 0.036
0.4 0.130 0.096 0.048 0.084 0.044 0.014
0.6 0.102 0.084 0.056 0.042 0.026 0.012
0.8 0.118 0.098 0.068 0.040 0.020 0.012
1 0.080 0.068 0.046 0.022 0.014 0.006
(a)
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Fig. 3. Boxplots of the values of the power divergence statistic for testing the fit of the
proportional odds model. Each boxplot corresponds to a different value of the parameter A
which varies from —0.8 to 1 with step equal to 0.2. The data have been generated according
to model (2.3) with 8 = (1,1.50,—2,1) and 2t = (1,2t,cos(wt/12)). Here z; stands for an
autoregressive process of order 1 with coefficient 0.2 and the number of simulations is 500. (a)
T = 50. (b) T = 300.

gross departures from the asserted asymptotic normality in most of the cases. Notice that
for A = 0.6, 0.8, and 1, the plots indicate moderate departure from the normality pointing
out some large values of the test statistic. This is in agreement with the discussion
immediately proceeding Theorem 3.1.
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Fig. 4. QQ plots of the values of the power divergence statistic for testing the fit of the
proportional odds model. Each plot corresponds to a different value of the parameter A which
varies from —0.8 to 1 with step equal to 0.2. The data have been generated according to model
(2.3) with 8 = (1,1.50, —2, 1) and 2t = (1, z¢,cos(wt/12)). Here z stands for an autoregressive
process of order 1 with coefficient 0.2. The length of each time series is 300 while the number
of simulations is 500.

We illustrate similar results for the proportional odds model. Here, we simulate a
time series with three categories according to (2.3) and use the same covariates as before
but now 8 = (1,1.5,—2,1)". Table 2 reports our findings for different sample sizes. The
approximation is satisfactory for T' = 300, but we notice that the nominal significance
levels & = 0.10 and 0.05 are underestimated when A takes on values greater than 0.6. In
contrast, for T' = 50, the achieved significance levels deviate from the asserted nominal
levels in most of the cases. For instance when A = —0.6, we obtain achieved significance
levels 0.210, 0.164 and 0.092 respectively which shows that the approximation of the test
statistic may not be reliable for small samples. Furthermore, Fig. 3(a) displays boxplots
of the values of the power divergence statistic for different A\. Observe that for negative
values of ), the resulting distribution is symmetric with heavy tails while as A shifts to
the positive axis, the resulting distribution takes a skewed shape as opposed to Fig. 3(b)
which exhibits a symmetric limiting distribution centered around 0, at least for A < 0.2.
However, notice that values of A > 0.4, result to large positive numbers (see also Fig. 4,
for A = 0.6, 0.8 and 1).

The power of the test statistic was investigated by performing two experiments. We
initially generate data according to the following model

'___ (Bj2s—1)”
P T (Bze1)? + (Bozo-1)?’

(4.1)
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Table 3. Empirical power of the power divergence statistic for testing the fit of the multi-
nomial logits model with different values of A and for different sample sizes. The data
have been generated according to model (4.1) with g = (—0.25,0.50, 1,0.50, —0.25, —1)’ and
z¢ = (1, z¢,cos(nt/12)). Here z¢ stands for an autoregressive process of order 1 and coefficient
equal to 0.2. The number of simulations is 500.

Y T =50 T =300
a=010 a=005 a=001 a=010 a=005 «o=001

—0.8 0.250 0.202 0.112 0.458 0.346 0.210
-0.6 0.192 0.162 0.096 0.418 0.290 0.166
-04 0.312 0.230 0.138 0.486 0.356 0.202
—0.2 0.258 0.234 0.140 0.486 0.396 0.222

0 0.090 0.040 0.020 0.080 0.040 0.010
0.2 0.212 0.120 0.084 0.548 0.452 0.270
0.4 0.242 0.200 0.120 0.554 0.424 0.278
0.6 0.238 0.194 0.112 0.558 0.446 0.262
0.8 0.180 0.162 0.090 0.494 0.410 0.248

1 0.194 0.154 0.094 0.574 0.488 0.324

Table 4. Empirical power of the chi-square goodness of fit test based on Fokianos and
Kedem ((1998), Proposition 4.1) for testing the fit of the multinomial logits model with different
partitions and different sample sizes. The data have been generated according to model (4.1)
with 8 = (—0.25,0.50, 1,0.50, —0.25, —1)' and z: = (1, =, cos(nt/12)). Here z: stands for an
autoregressive process of order 1 and coefficient equal to 0.2.The number of simulations is 500.

Partiti T =50 T = 300
artition
a=010 a=005 a=001l a=010 a=005 a=001
C 0.092 0.064 0.032 0.584 0.488 0.296
D 0.120 0.084 0.044 0.844 0.776 0.532

for j = 1,2. In other words, we generate a time series with three categories. The
parameters f3;, 3, and the covariate process are specified as before. That is, we let 8; =
(—0.25,0.50,1)", B, = (0.50,—0.25, 1) and z; = (1,z:,cos(nt/12))’, for t = 1,...,T.
We fit the multinomial logits model to these data with the same covariates entering
the regression equation, that is we apply model (2.2). Table 3 summarizes our findings
regarding the power of the test statistics for different sample sizes. Notice that for
T = 50, the power of the test statistic is low and it increases as T' equals to 300. Observe
that for T = 300, the power of the test increases as A grows in the positive direction
for this particular model. An essential observation is that when A = 0 we obtain the
significance levels which confirms the fact that the deviance does not offer an adequate
way to measure departures from the hypothesized model.

To compare the power of the proposed test statistic with the power of the goodness
of fit procedure proposed by Fokianos and Kedem ((1998) Proposition 4.1), we consider
the following two partitions of the covariate space which in this case is 3-dimensional.
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Table 5. Empirical power of the power divergence statistic for testing the fit of the proportional
odds model with different values of A and for different sample sizes. The data have been
generated according to model (2.3) with 8 = (1,1.50,—-2,1), z¢ = (1, x¢,cos(wt/12)) and F the
Cauchy distribution. Here z; stands for an autoregressive process of order 1 with coefficient
equal to 0.2. The number of simulations is 500.

A T =50 T = 300
a=010 a=005 a=001 «a=010 «a«a=005 «o=0.01

—-0.8 0.258 0.242 0.210 0.498 0.378 0.218
—0.6 0.244 0.124 0.022 0.424 0.338 0.188
—-0.4 0.208 0.174 0.112 0.360 0.264 0.122
—0.2 0.192 0.134 0.064 0.292 0.190 0.078
0 0.154 0.060 0.018 0.082 0.040 0.010
0.2 0.122 0.112 0.050 0.744 0.674 0.526
0.4 0.228 0.198 0.138 0.566 0.514 0.374
0.6 0.256 0.222 0.180 0.464 0.402 0.296
0.8 0.206 0.168 0.110 0.350 0.282 0.200
1 0.232 0.232 0.196 0.308 0.248 0.180

First, we let C = (C1,C2,C3,C4) to be given by

Ci={z:21=1,20 < -15,-1 < 23 < —-05}
Co={z:21=1,-15<2,<05,-0.5 < 23 <0}
C3={z:21=1,05< 25 <2,0< 23 <05}
Ca={z:21=1,2<2,05<23<1}

and then we let D = (Dy, Dy, D3, D) to be given by

Di={z:21=1,20<-1,-1< 23 < -0.2}
Dy={z:21=1,-1<2<1,-02< 23 <04}
Dy={z:21=1,1<2,<25,04 < 23 <0.8}
Dy={z:21=1,25<29,08<23<1}.

Notice that the asymptotic reference distribution for both partitions C and D is the chi-
square with 8 degrees of freedom. The results reported in Table 4 show that the power
divergence family of goodness of fit tests performs better for small sample sizes for this
particular model. In contrast the chi-square test perform better when T = 300 except
in a few cases. For instance when T" = 300, o = 0.01, A = 1 and we choose partition
C we notice that the power divergence family attains higher power. However Table 4
illustrates that the power the chi-square test depends upon the partition of the covariate
space which occasionally may be large.

Our investigation continues by simulating data according to model (2.3) with F
being the cumulative distribution function of a Cauchy random variable. We employ the
same covariates, that is z; = (1, :,cos(nt/12)) and we let 8 = (1,1.50,—2,1)". We first
fit the proportional odds model and subsequently the multinomial logits model. Tables
5 and 7 report our results. Notice that when T is small, the power of the test statistic
for fitting the wrong cumulative odds model is higher in most of the cases than the
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Table 6. Empirical power of the chi-square goodness of fit test based on Fokianos and
Kedem ((1998), Proposition 4.1) for testing the fit of the proportional odds model with dif-
ferent partitions and for different sample sizes. The data have been generated according to
model (2.3) with 8 = (1,1.50,—2,1), z¢ = (1, ¢, cos(wt/12)) and F the Cauchy distribution.
Here z; stands for an autoregressive process of order 1 with coefficient equal to 0.2. The number
of simulations is 500.

Partition T =50 T =300
a=010 a=005 a=001 a=010 a=005 «a = 0.01
C 0.044 0.030 0.024 0.176 0.098 0.049
D 0.030 0.012 0.008 0.064 0.056 0.022

Table 7. Empirical power of the power divergence statistic for testing the fit of the multinomial
logits model with different values of A and different sample sizes. The data have been generated
according to model (2.3) with 8= (1,1.50,—2,1), z: = (1, x¢,cos(wt/12)) and F the Cauchy
distribution. Here x; stands for an autoregressive process of order 1 with coefficient equal to
0.2. The number of simulations is 500.

A T =150 T =300
a=010 a=005 a=001 «ao=010 a=005 a=001

—0.8 0.190 0.142 0.092 0.772 0.706 0.550
—0.6 0.232 0.180 0.110 0.782 0.716 0.556
—0.4 0.284 0.212 0.134 0.736 0.680 0.548
-0.2 0.208 0.156 0.080 0.688 0.636 0.484

0 0.112 0.040 0.014 0.096 0.054 0.008
0.2 0.100 0.094 0.066 0.632 0.542 0.418
0.4 0.112 0.102 0.044 0.568 0.500 0.384
0.6 0.092 0.072 0.038 0.534 0.474 0.390
0.8 0.088 0.060 0.034 0.450 0.394 0.324

1 0.094 0.098 0.076 0.414 0.368 0.294

Table 8. Empirical power of the chi-square goodness of fit test based on Fokianos and
Kedem ({1998), Proposition 4.1) for testing the fit of the multinomial logits model with differ-
ent partitions and for different sample sizes. The data have been generated according to model
(2.3) with 8 = (1,1.50,-2,1), zx = (1,z:,cos(nmt/12)) and F the Cauchy distribution. Here
x; stands for an autoregressive process of order 1 with coefficient equal to 0.2. The number of
simulations is 500.

Partiti T =50 T = 300
artition
a=010 a=000 a=001 a=010 a=005 ao=0.01
C 0.076 0.064 0.042 0.112 0.102 0.040
D 0.064 0.056 0.032 0.078 0.050 0.022

obtained power when we fit a multinomial logits model to those data. However, when T'
is large the multinomial logits model is rejected more frequently than the proportional
odds model. In other words, when there is more data available, the power divergence
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Fig. 5. Boxplots of the values of the power divergence statistic for testing the fit of multinomial
logits model, Each boxplot corresponds to a different value of the parameter A which varies
from —0.8 to 1 with step equal to 0.2. The data have been generated according to model (2.3)
with 8 = (1,1.50,-2,1), zx = (,xs,cos(wi/12)) and F the Cauchy distribution. Here z
stands for an autoregressive process of order 1 with coefficient equal to 0.2 and the number of
simulations is 500. (a) 7" = 50. (b) T = 300.

statistic discriminates among the different classes of models. The results from Tables 3,
5 and 7 indicate that there exists an appropriate value of the parameter A that should
optimize the power of the test. For instance, Table 7 shows that if T' = 300 and A = —.6
then we obtain the maximum power. The optimal value of the parameter A will depend
on the sample size and on the model at hand. Tables 6 and 8 report the power of the
chi-square goodness of fit for different partitions. For both of these examples the power
divergence family clearly performs better. Notice that different partitions would have
altered the results.

Finally, Fig. 5 displays boxplots of the values of the test statistic for different sample
sizes that correspond to Table 7. Apparently under the alternative hypothesis, positive
values of A indicate skewed distributions with most of the data lying in the positive
axis. However, we notice that negative values of the parameter point to a symmetric
distribution with mean shifted to the positive axis.

5. Concluding remarks

The family of power divergence test statistics can serve—as we already demon-
strated—as an additional tool for testing the goodness of fit of a categorical regression
model for time series. We saw by simulation that the particular choice of A is of practical
importance both in achieving the nominal significance level and in obtaining good power.
Consequently, choice of the parameter A is an issue that needs further investigation.
Our limited simulation examples indicate that a reasonable range is between —1 and
1. Further insight is also needed for the theoretical properties of the power of the test
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statistic. This work puts the power divergence family of test statistics in the framework
of categorical regression models and examines some specific examples.
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Appendix

Proor or THEOREM 3.1. The proof of theorem is based on the prdof of Osius and
Rojek (1992) for independent and not identically distributed data. However, we make
use of the martingale limit theory for the proof of asymptotics and certam modifications
apply.

Notice that the proof of Theorem 2.1 (see Fokianos and Kedem (1998)) leads to

(A1) BB =o,(T71/?).

Now, we turn to the numerator of the test statistic IT(ﬁ). Then, a first order Taylor
expansion yields

(A2) Ir(B) = Ir(B) + VIz(B)] (B~ B) + 0,(1).
However
A _ apsj (ﬂ)
(A3 Vi) = 35 Z_;; [(psg ) 1] o8
1 apsj (ﬂ)
/\+ 1) szljzl(ys,y ps:/(ﬂ)) )\.H(ﬂ) aﬁl .
Now put .
A
a9 =332 | () 1

Hence, if we show that

(A.5)

Z Z(ysa Dsj (ﬂ)) : Opss (,ﬂ) = Op(Tl/2)

(A +1) 5711 (B) 0P

s=1 j=1

then we conclude that an equivalent representation of equation (A.2) is given by
. 9 , .
(A.6) Ir(B) = IT(B) — m%(ﬂ)(ﬂ = B) + 0p(1).

We show that equation (A.5) holds. Consider the following quantity

*ll

L& 1 Bpsj(ﬂ)
;g Ysj — ps:](ﬂ pj)‘+1(ﬂ) aﬂz .
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Its mean is obviously zero while the variance-covariance matrix can be explicitly calcu-
lated and it is given by

1 o= | 5 (1= i (8)) 8ps;(8) Ops; (B)
TE{Z ;"B 08 9P

j=1

- Z P4 (B)psi(B)

1 8py;(B) Opak (ﬂ)}
J#k

Psj (ﬂ)p (B) 33, op

which converges in probability to some limit, as T — oo, in the presence of Assump-
tion (A). Thus, equation (A.5) follows. The result (A.6) coupled with Theorem 2.1 yields
to following useful representation of the numerator of the test statistic

2

(A7) Ir(B) = Ir(B) — NOT1

)cT(mGTl(ﬂ)ST(ﬂ) +0p(1).

We now show that the term on the right hand side of Equation (A.7) is a zero-mean
square integrable martingale that satisfies the necessary conditions for an application of
the central limit theorem for martingales. Rewrite the right hand side of (A.7) as

2

T
(A.8) Er(B) = o+ D { > _(W.(B) - G BW,(8) (@, —i’s(ﬂ))} )

with vs(8) an m x 1 vector with components

1
p);(8)

and W(B) the m x p matrix with rows given by (2.6). Put
as(B) = (vy(B) — & Gr' (BW(B)) (@ — +(8))

for the increments of (A.8). Notice that {Z5(8), s = 1,2,...,T} is a zero mean square
integrable martingale with respect to the increasing family of o-fields, F,. Indeed, Equa-
tion (A.8) yields that E [E,(8) | Fi—1] = E;—1(8) while E[Z,(8)] = 0. In the presence
of Assumption (A) we have almost surely that |Var[a:(8)] | Fi-1]| < M1, with M; a
constant. Put

(A.9) v”w) ~1, j=1,...,m

T
&r(B) = W/\é‘__ﬁzva‘r{as(ﬂ) | Fs-1]

4

= NOTie {sz(ﬂ Z5(B)us(B) — er(B)Gr (ﬂ)cT(ﬂ)}

that is the cumulative variance of the martingale {E5(8),s = 1,...,T}, (see 3.4). Then,
Assumption (A) guarantees the existence of an almost surely positive limit, say £(8),
such that

§T(ﬂ)

(A.10) — &(B)
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in probability, as T' — oo. Here,
66)= [ WOEBB)udz) - (B B)e(p)

where v(B) is an m-dimensional vector with components

1

1, j=1,...,m,
h; (Z B)* !

v;(B) =

while the p-dimensional vector ¢(f) is given by

3 ™. 0h;(Z B) 1\ 3
o= [, (5222 () | wern

Jj=1

and G(B) denotes the limiting information matrix. Furthermore if Cs(€) denotes the
indicator of the set {|N as(8)[2 > (V&s(B)N)Y/ ¢}, with X arbitrary p-dimensional vector,
we have

1 < 1 ¢
—— Y E[Nas(B)2Cs(€) | Foci] £ ——a > E[Na(B)]? | Fs-1
55) 2 PN BIPCO | Foctl < (egiss 2 EIN@F | Fovi]

< TM,
T (&(B))3re’

with M, some constant. The last expression tends to 0, as T" — oo which implies that
the Lindeberg’s condition is satisfied and thus a central limit theorem for martingales is
applicable (Hall and Heyde (1980), Corollary 3.1). In other words, we proved that

Er(B) D
VEr(B)

as T — oco. Here N stands for a standard normal random variable. Thus, in order to
complete the proof of the theorem we need to show that £:(8) is a consistent estimator
of £:(B). We have though the following

(A.11)

T T
: {ZU;(B)ES@US([J) - Zv;(ﬂ)zs(ﬂ)vs(ﬁ)} = 0,(1)
s=1 s=1

and

L, o\ im o _
7 B)Gr™ (B)er(B) — r(B)Gr ™ (B)er(B)) = Op(1)
due to Theorem 2.1 and Assumption (A). Therefore the theorem is proved.
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