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Abstract. New goodness-of-fit tests, based on bootstrap estimated expectations
of probability integral transformed order statistics, are derived for the location-scale
model. The resulting test statistics are location and scale invariant, and are sensi-
tive to discrepancies at the tails of the hypothesized distribution. The limiting null
distributions of the test statistics are derived in terms of functionals of a certain
Gaussian process, and the tests are shown to be consistent against a broad family of
alternatives. Critical points for all sample sizes are provided for tests of normality.
A simulation study shows that the proposed tests are more powerful than estab-
lished tests such as Shapiro-Wilk, Cramér-von Mises and Anderson-Darling, for a
wide range of alternative distributions.
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1. Introduction

Goodness-of-fit has for a long time been a popular research topic and has received
considerable attention in the statistical literature. Goodness-of-fit techniques can be
described as methods of examining how well a sample of data agrees with a given distri-
bution as its population.

In the formal framework of hypothesis testing, the problem to be considered is
the following. Let X;, Xa,...,X, be independent observations from a population with
unknown cumulative distribution function (c.d.f.) F(z) = P(X < z).

The problem is then to test the composite hypothesis

(L.1) Hy : F(z) = Fo((z — p)/o),

where Fp is a known continuous c.d.f. with 4 and ¢ unknown location and scale parame-
ters respectively, against the general alternative Hy : F(z) # Fo((x —p)/o). Usually, the
goodness-of-fit techniques applied to test Hy are based on measuring in some way the
conformity of the sample data to the hypothesized distribution, or equivalently, its dis-
crepancy from it. The techniques usually give formal statistical tests and the data-based
measures of conformity or discrepancy are referred to as test statistics.

In this paper a class of omnibus tests, based on bootstrap estimated expectations of
probability integral transformed order statistics, is derived. The resulting test statistics
are location and scale invariant, and are sensitive to discrepancies at the tails of the
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hypothesized distribution. The paper is organized as follows. In Section 2 the tests
are proposed, and in Section 3 the limiting null distributions of the test statistics are
derived in terms of functionals of a certain Gaussian process. Furthermore, the tests
are shown to be consistent against a broad family of alternatives. In Section 4 critical
points are provided for all sample sizes and three significance levels in the case of tests
for normality , that is if Fo(z) = ®(z) the c.d.f. of the standard normal distribution.
Also, the power performances of the tests are assessed as tests for normality by means of
a Monte Carlo study in Section 5. The simulation study shows that the proposed tests
are more powerful than established tests such as Shapiro-Wilk, Cramér-von Mises and
Anderson-Darling, for a wide range of alternative distributions. Concluding remarks are
presented in Section 6 and the proofs of the theorems are given in Section 7.

2. New test statistics

Let X, X>,...,X, be independent and identically distributed (i.i.d.) random vari-
ables (rv’s) with unknown continuous c.df. F. Testing of (1.1) will be based on a
characterisation of F', which is given by the following theorem.

THEOREM 2.1. Let X(1) < X(g) < -+ < X(n) be the order statistics of X1, Xa,..
Xy and G a continuous c.d.f. Then F = G zf and only if for every n > 1 and every k
1<k<n,
(2.1) E(G(Xq)) = k/(n+1).

ProoF. The proof can easily be derived from Lemma 2 of Pollak (1973) and will
therefore be omitted. O

The motivation behind the new test statistics is now to propose an estimator for the
left-hand side of (2.1) (with G(z) = Fo((z — p)/0)), and to define appropriate distance
measures between this estimator and Dy = k/(n + 1). Firstly, estimate E{Fp((X(x) —
w)/0)} with a bootstrap estimator (see Efron (1979)). Let X, X3, ..., X} be a bootstrap
sample of independent rv’s with c.d.f. Fp(z) =n~1 Y1 | I(X; < x), where I(-) denotes
the indicator function. Also, let X(*1) < X 6“2) < ... < X(*n) be the order statistics
of X}, i =1,2,...,n. It now follows from Efron (1979) that for i = 1,2,...,n, and
k=1,2,...,n

k-1

P*(XGy = X@) = Y (7) (G = 1/m) (= (G = 1)/m)"

=0
5> (7) Grmta—imm,
=0

where P* denotes the conditional probability distribution of (X7,...,X}) given X,
(X1,X9,...,Xn). In order to take into account the possﬂ)lhty of t1es in the X;’s, we
suggest modifying the above probability to

k—1

(2:2) P*(Xiy = X@) = X () Sica/m)' (1 = Sica /)

=0
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k-1
= () (ifmy 1 = i/myt
=0
= wn,i(k),

with §; = Z?=1 I(X; < X(i)), i =1,...,m(n), where m(n) is the number of different
X(:)'s with corresponding order statistics denoted by X'(l) < e < X(m(n)). Hence, a
bootstrap estimator of E{Fy((X(x) — p)/0)} is

(2.3) | Top(Xn) = Ex{Fo((X{(y — fin)/0n)}
m(n)

= Z Fo((X iy = fin)/6n)wn i (),

where fi, and &, are appropriate estimators of u and o respectively, and E, denotes
expectation with respect to P*.

The test statstics will now be based on appropriate distance measures between
Tn k(X)) and D, . We propose test statistics of the following types:

(a) Weighted Cramér-von Mises:

(2.4) Wa(9) =Y 6 (Dn i) {Tuk(Xn) — Dk},
k=1

(b) Weighted Kolmogorov-Smirnov:
(2:5) Kn(9) = max /n|g(Dn){Tns(Xn) = Do},

where g(-) is some weight function such that info<;<1 g(t) > 7 for some constant T > 0.

The incorporation of a weight function g(t), 0 < ¢ < 1, allows more flexibility
in the tests. The function g is to be chosen by the statistician so as to weigh the
deviations |T}, x(X,) — Dy x| according to the importance attached to various subsets of
{k:k=1,...,n} . Note that W,(g) and K,(g) are location and scale invariant if i, is
equivariant under location and scale and &, is invariant under location but equivariant
under scale. For a prescribed significance level o the null hypothesis (1.1) will be rejected
if Wi(g) 2 Cn1(a)(Kn(g) > Cr 2(e)), where

Py, (Wn(g) 2> Cn,l(a)) = PHO(Kn(g) > Cn,?(a)) = Q.

3. Limiting null distributions and consistency

Let Fy(z) := Fo((x — p)/o), where 6 = (61,05) = (u,02). In order to derive the
asymptotic null distributions of the new test statistics, and to prove consistency, we
require the following conditions:

(A) Fy has an absolutely continuous density fo that is uniformly bounded on
(—001 00)

(B) For any 6 in a neighborhood of 6, the following first-order Taylor-series ap-
proximation holds ’

sup |(Fy (z) — Fy(x)) — (6; — 61)G1(z) — (6 — 62)Ga(z))|

—00oLE <00

= O((6; - 0:) + (65 — 62)?),
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with Gq(z) = %Fg(w) and Ga(z) := %Fg(.’l)) being uniformly bounded in z €
(—00,00).

(C) G1(:) and Ga(:) are uniformly continuous on (—00,00).

(D) Any natural estimator 8, = (fin, 52) of 8 = (u, 02) satisfies

Vil — p) = % iiﬁl (éni) +op(1),

\/—(0- —U \/—Zd’Z(é'm)"i‘oP( )

for some real-valued functions 1; and 12, where £,1,...,&qn is some triangular array of
row-independent random varlables with Ep(¥1(&ni)) = Eo(¥2(€ns)) = 0, Eg(¥3(£n:)) <

00, E0(¢2(§m)) <oo,i=1,.
Before we can formulate our theorems we need some additional notatlon Thus,

define the inverse of a c.d.f. in general by H~!(¢) := inf{z : H(z) > t}, and set

6 m@= (1) RE O, )= (-5 ) B ORE O

Let A = ||A;;|| denote the Fisher information matrix, i.e.,

0 1 X3 —91> 0 1 (X1—91>> .
32) A\ =F lo —lo i,j=1,2,
02) X o= 8 (08 5o (%5 ) ;o0 7o (Vi g

where 0 = (61,02) = (1, 02). Further, denote the elements of the inverse of A by

(33) A-—l = “(fijny for 7’7.7 = 1:2)
and define

(34) $1(t) = (o011 — 0a/022) M (8),

(3.5) ¢2(t) == (012/+/022)h1 () + /Tazha(t).

In the following theorem the limiting distributions of W, (g) and K,(g) under Hy
are derived and the proofs are deferred to Section 7.

THEOREM 3.1. If assumptions (A)—(D) hold, and if the weight function g is con-
tinuous on [0, 1], then under Hy

() Walg)—* 2 *(®)B*(t)dt as n— oo,

(b) Kn(g)—%supgc,<y l9(t)B(t)] as n — oo,
where {B(t),0 < t < 1} is a Gaussian process with B(0) = B(1) =0, E{B(t)} = 0 and
covariance function given by

Cov{B(s), B(t)} = min(s,t) — st — a(s, ),

where (see equations (3.1)—(3.5))

(3.6) a(s,t) = ¢1(s)¢1(t) + pa(s)a(?)-
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The next theorem shows that the goodness-of-fit tests based on W,(g) and K,(g)
are consistent against a broad family of alternatives.

THEOREM 3.2. Suppose F is continuous and monotone increasing for all © €
(—00,00), and that the conditions of Theorem 3.1 hold. Then for any significance level
a € (0,1), the tests based on W,(g) and K,(g) are consistent.

Remarks. (i) If 6, is efficient (see, e.g., Durbin (1973), p. 287) , then typically
condition (D) is satisfied with (1, 12) being the usual product of score vector times the
inverse of Fisher’s information matrix.

(ii) Suppose we choose Fy(z) = ®(x), the standard normal c.d.f., in Theorem 3.1.
Then, in this special case, 071 = 02, ga2 = 20%, 012 = 21 = 0, so that by (3.1)-(3.6),

a(s,t) = (2m) 7L+ J(s)J (¢)/2} exp{—(I*(s) + J*(t))/2},
with J(y) = ®Y(y).
4. Critical points for testing normality

In this section we consider the case where Fy(z) = ®(z) in (1.1), and in (2.3) we
choose fi, = X, = n7 1Y 0 Xi, and 62 = 52 = (n—1)71 Y (Xi — X»)2. An
extensive Monte Carlo study was performed to calculate critical points empirically for
the test statistics Wy, (g) and K, (g) for sample sizes 5 < n < 1000 and significance levels
o = 0.01, 0.05 and 0.10. The calculations were based on 100000 independent trials, and
we chose the weight function in (2.4) and (2.5) as g(t) = ((t+¢)(1 —t+¢))"*/2, where ¢
is an arbitrary small positive constant, e.g., ¢ = 107%. The introduction of such a ¢ is to
ensure that g is continuous on [0,1] and hence bounded on [0,1], so that the assumption
placed on g in Theorems 3.1 and 3.2 is satisfied. This choice of g(t) makes the tests
based on W, (g) and K,(g) sensitive to discrepancies at the tails of the hypothesized
distribution. A A

Table 1(a) displays Monte Carlo estimates Cy 1(a) and Cp2(a) of Cp1(a) and
Chn,2(a) respectively, for 5 < n < 20. For each «, smooth curves of the form 5; /(1 +
Ban~1/24 B3n=1) were fitted to both C,, 1 () and C,, o(a) for n > 21. This range of values
of n was chosen in order to obtain very accurate fits. In fact, in all cases the residuals
in absolute value were found to be at most 0.001. Hence, to test Hy when n > 21, we
suggest rejecting Hy if the appropriate test statistic exceeds f; /(1 + fan=1/2 + Bzn=1) .
The values of (1, B2, and B3 corresponding to Wp(g) and K, (g) are listed in Table 1(b).

It is worth noting the close correspondence between the estimated asymptotic critical
points 3y of W,(g) in Table 1(b) and that of the Anderson- Darling test given in Table 4.7
of D’Agostino and Stephens ((1986), p. 123), namely 0.631, 0.752 and 1.035 for a =
0.10,0.05 and 0.01 respectively, which comes as no surprise since the Anderson-Darling
test statistic also has (for the choice of g above) the limiting null distribution (see, e.g.,
Stephens (1976)) given in Theorem 3.1 (a). Although the Anderson-Darling test statistic
and W,,(g) have the same asymptotic null distribution, their small and moderate sample
behaviour differ as can be seen from the critical points given in Tables 1(a)-1(b) and
Table 4.7 of D’Agostino and Stephens (1986). This aspect will be discussed further in
Section 5. The calculation of the asymptotic critical points for K, (g) from its limiting
null distribution given in Theorem 3.1 is analytically very difficult, and therefore these
points were approximated by Monte Carlo simulations for a sample size n = 10000 based
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Table 1(a). Estimated critical points based on 100000 trials.

Significance level o
a=10% a=5% a=1%
Wn(g) Knl(g) Wn(g) Kn(g) Wn(g) Kn(g)
0.110 0.447 0.156 0.530 0.251 . 0.676
0.133 0.534 0.187 0.633 0.323 0.826
0.157 0.615 0.217 0.730 0.377 0.959
0.174 0.683 0.242 0.808 0.421 1.070
0.189 0.741 0.263 0.876 0.450 1.161
0.206 0.801 0.282 0.944 0.478 1.247
11 0.219 0.851 0.298 1.004 0.508 1.330
12 0.232 0.898 0.313 1.056 0.524 1.398
13 0.242 0.937 0.325 1.105 0.542 1.461
14 0.251 0.977 0.336 1.148 0.557 1.525
15 0.262 1.011 0.350 1.191 0.568 1.576
16 0.269 1.044 0.357 =~ 1.227 0.588 1.629
17 0.278 1.077 0.370 1.266 0.590 1.683
18 0.285 1.101 0.375 1.303 0.603 1.725
19 0.292 1.129 0.381 1.331 0.620 1.771
20 0.301 1.158 0.394 1.363 0.632 1.820

—_
© ©m 1o ;S

Table 1(b). Fitted coefficients 3;, i = 1,2, 3.

Wn(g) Kn(g)

@ B B2 Bs B Ba Bs
0.10 0.6164 1.8521 12.5808 2.9501 4.4581 10.9645
0.05 0.7360 1.5024 10.6601 3.6375 4.6091 12.5754
001 1.0300 14042 6.6071 5.1877 4.6412 16.5924

on 500000 independent trials. These estimated asymptotic critical points were found to
differ from the values of 5, given in Table 1(b) by at most 0.015 for each a.

5. Power comparisons

In this section we present the results of a Monte Carlo study that compares the
power performance of the proposed tests for normality with some well known com-
petitors. The following alternative density functions, which represent a variety of dif-
ferent distributional shapes, were considered: contaminated normal (CN(e, o)), i.e.
(1 — e)¢p(z) + (¢/o)p(x/0) with ¢(-) the standard normal density function, Student’s
t with v degrees of freedom (¢(»)), Tukey with scale 1 and shape A(T'())), standard dou-
ble exponential (DE) , standard logistic (L), Weibull with scale 1 and shape S(W(8)),
chi-square with k degrees of freedom (x?(k)), gamma with scale 1 and shape v(G(Y)),
lognormal (LN (u,0)) , standard extreme value (EV), F with m and n degrees of free-
dom (F(m,n)), binomial (B(n, p)), Poisson (P())) . The power comparisons were made
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Table 2. Estimated power functions based on 3000 trials.

n =20 n = 50
Distribution SW  Wn(g) Knlg) SW Wi(g) Kn(g)
CN(0.50,0.20) 0.45 0.55 0.33 0.75 0.93 0.59
CN(0.50,0.30) 0.28 0.34 0.19 0.45 0.69 0.25
CN{(0.50,0.40) 0.17 0.20 0.12 0.23 0.39 0.11
CN(0.50,3.00) 027 032 018 037 058 020
CN(0.50,4.00) 0.38 0.46 0.27 0.60 0.83 0.41
CN(0.50,5.00) 0.48 0.57 0.35 0.76 0.93 0.59

CN(0.25,0.10) 0.20 0.26 0.12 0.28 0.55 0.16
CN(0.25,0.15) 0.17 0.22 0.11 0.21 0.46 0.12
CN(0.25,0.20) 0.14 0.18 0.09 0.17 0.38 0.08
CN(0.25,2.50) 0.27 0.28 0.21 0.37 0.49 0.21
CN(0.25,3.00) 0.38 0.40 0.29 0.60 0.71 0.39
CN(0.25,3.50) 0.48 0.52 0.38 0.75 0.84 0.56

t(1) 0.86  0.89 083 099 100 0.98
t(2) 0.53  0.56 0.45 080 0.86 0.68
t(3) 035 036 0.28 052 061 0.38
t(4) 0.23 025 0.19 037 045 0.23
T(6.0) 0.20 026 0.12 038 061 0.16
T(6.5) 0.28  0.37 0.20 055 079 0.31
T(7.0) 0.37 048 0.27 070 0.0 0.48
T(7.5) 0.47  0.58 035 082 096 0.64
DE 0.26  0.30 0.19 040 057 0.21

L 0.12 0.3 0.09 0.14 018 0.08

W (1.00) 0.82 081 091 100 1.00 1.00
W(1.25) 0.61 060 0.70 098 0.8 1.00
W (1.50) 0.39 038 046 0.87 086 0.95
W (1.75) 0.24 023 0.28 064  0.63 0.79
x2(4) 0.52  0.51 0.59 0.94 093 0.98
x2(5) 0.45  0.44 050 089 088 0.94
x2(6) 0.37 036 0.42 080 0.79 0.88
x2(7) 0.33 032 036 075 0.74 0.82
G(1) 0.82 081 091 100 1.00 1.00
G(2) 0.53 052 0.60 095 0.94 0.99
G(3) 0.38 037 042 082 081 0.88
G4) 030 029 032 0.68  0.67 0.75

for sample sizes n = 20 and n = 50 at level & = 5%. The number of Monte Carlo
repetitions was 3000.

The competing tests which we considered in the power comparisons were the Cramér-
von Mises, Anderson-Darling and Shapiro-Wilk (see, e.g., D’Agostino and Stephens
(1986)). Overall, the Shapiro-Wilk test appeared slightly better than the Cramér-von
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Table 2. (continued)

n=20 n = 50
Distribution SW  Wy(g) Kn(g) SW Wi(g) Knlg)
LN(0,0.30) 0.24 0.23 0.24 0.53 0.53 0.56
LN(0,0.50) 0.51 0.52 0.55 0.91 0.91 0.94

EV 0.32 0.32 0.34 0.67 0.67 0.67

F(10, 30) 0.44 0.42 0.46 0.84 0.83 0.88
F(30,10) 0.68 0.67 0.72 0.98 0.99 0.99

B(20,0.10)  0.57 0.95 0.94 1.00 1.00 1.00
B(20,0.50) 0.12 0.78 0.63 0.26 1.00 1.00

P(4) 0.25 0.86 0.78 0.64 1.00 1.00
P(10) 0.10 0.64 0.43 0.20 1.00 1.00

Mises and Anderson-Darling tests. This is in agreement with previous power studies done
in the literature, see for example Stephens (1974), and D’Agostino and Stephens ((1986),
p. 406) who concluded that the Shapiro-Wilk test is probably overall the most power-
ful existing omnibus test for normality. Consequently, only power comparisons between
W,(g), Kn(g), and SW (Shapiro-Wilk) are presented in Table 2. The standard errors of
the estimated probabilities in this table are no greater than /0.25/3000 = 0.01. The
SW test was implemented as follows: (a) Calculate Y = Y77, anq1-i(X(nt1-i) — X(g),
wherer = (n—1)/2if nisodd, and r = n/2if nis even. (b) Define SW =Y?/((n—1)s2)

(c) If SW < Cp(c), reject Hg at level o . The values of {an+1-i} and Cp(c) can be
obtained from Tables 5.4 and 5.5 in D’Agostino and Stephens ((1986), pp. 209-213).

Inspection of Table 2 reveals that W,,(g) has superior power performance for sym-
metric alternatives (especially for n = 50). On the other hand, K,(g) is the test with
the highest power in the case of skewed alternative distributions, whereas Wp(g) and
SW have almost identical power performance in these cases. When the alternative dis-
tribution is discrete, both W,(g) and K,(g) outperform SW in all cases. This can be
ascribed, among others, to the fact that W, (g) and K, (g) are designed to explicitly take
into account the possibility of ties, whereas SW appears to be sensitive to ties in the
observations.

Similar results regarding power comparisons were also obtained for other alternative
distributions, but are not reported here. In view of its overall power performance and
computational simplicity, it is our conviction that W,(g) can be recommended as a
powerful omnibus test for normality.

6. Concluding remarks

This paper proposed a class of test statistics based on estimated expectations of
probability integral transformed order statistics. Our approach is extremely flexible in
that other distance measures than those used in (2.4) and (2.5) can be applied, for
example Hellinger and Kullback-Leibler measures, to yield alternative test statistics.
Weight functions other than g(t) = ((t + ¢)(1 — t + ¢))~'/2 can be used, as well as
different estimators of 4 and o such as efficient robust estimators if outliers are present
in the data.
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Finally, the techniques developed in this paper can be extended and applied to
goodness-of-fit testing in regression and time series analyses. This will be the content of
another paper.

Computations were performed using FORTRAN programs and IMSL(Version 2.1)
routines on an IBM RS6000 43P PowerPC. Fortran code that carries out the new tests
is available from the authors (by e-mail from sttfcvg@puknet.puk.ac.za).

7. Proofs

A formal proof of Theorem 3.1 is tedious and therefore only a sketch of the proof is
provided.

PROOF OF THEOREM 3.1. Only the proof of (a) is given ; the proof of (b) follows
similarly. Thus, from the definition of T, x(X,) given in (2.2) and (2.3) (note that since

Fp is assumed to be continuous, with probability one, X(z) = X@y, Si =1, m(n) = n, for
i=1,...,n) it readily follows (by also applying condltlon (D)) that
(1) 28 [Tnk(Xn) = Fo(Xepy = ftn) /)| = 0p(n1/2).

Hence, with F),(-) denoting the empirical distribution function, we obtain from (7.1) that

asn-— oo
"L, (nF(Xg) Xay = bn\  nFa(Xy) 2
E _ -1/2
g ( n+1 ){0( &n ) ni1 Torn )}

o (50 (55) 2 e s

o[ s (-’"‘—FM) [Fa(0a(t)) — t + 0p(n~"/2)2dF0 (8 (2)),

n+1

(7.2) Wa(g)

fl

where 0,,(¢) is defined by
(7.3) 0 (t) == fin + 6, F5 L(t).

Note that the op(n~'/2) term does not depend on t . Hence, writing dF, (6, ®)
as dt + d(F,(0,(t)) — t), then using partial integration, the boundedness of g, and the
Glivenko-Cantelli theorem which states that, with probability one, F,,(z) — F(z) uni-
formly in = as n — 00, we obtain under Hj that

nF,(0,(t))

e ) {Fa(Ba(t)) — t + op(n~Y2)}2dt + 0p(1).

1
) W) =n [ #(
Let {B,(t),0 <t < 1} be a sequence of random elements defined by

Bn(t) := vn{Fn(0(t)) — t}.

It is well known (see, e.g., Kac et al. (1955), p. 192, Sukhatme (1972), Shorack and
Wellner (1986), pp. 228-234) that under conditions (A)~(D), and under Hy, as n — oo

(7.5) B, — B weakly on D|0,1],
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where D[0,1] is the space of real-valued functions defined on [0,1] that are right-
continuous and have left-hand limits.

Next, let € > 0 be an arbitrary small constant. Since g is uniformly continuous on
[e,1 — €], it readily follows from condition (D) and (7.3) that under Hp, as n — oo

(76) o |g? (2CO)) o] = on)

e<t<l—e n+1

Now, note that (7.4) implies

(7.7) Wn(g) 2 /E h g (W) {Bn(t) + 0p(1)}2dt + op(1)
=: Lp(e) + op(1).

For ease of notation, set

n+1

A, = { sup

estLl—¢

g (E&M) - g2(t)

>e}.

Using the fact that g is bounded (by say a constant ¢), we derive also an upper bound
for W,.(9), viz. ‘

l—e
(7.8) Wale) < [ (620 + ) {Balt) + 0p (1))t

1-g

+2I(AL) {Bn(t) +op(1)}dt

£

+2 /0 “(Ba(t) + op(1)}2dt
+c? /11 {B,(t) + op(1)}?dt + 0p(1)

=: Up(e) + op(1).

Hence, from (7.5)—(7.8), the boundedness of g, Slutsky’s theorem and the continuous
mapping theorem we deduce that

l—¢
(1.9) @)% [ POB 0"
and
l—-e € 1
(7.10)  Uple) / (g2(t) + &) B(t)dt + 2 / B2(t)dt + ¢ B(t)dt.
€ 0 l—e

Finally, from (7.7)—(7.10) and the dominated convergence theorem it easily follows (let-
ting £ — 0) that as n — oo, W, (g)—¢ fol g2 (t)B2(t)dt. O

PROOF OF THEOREM 3.2. We only prove the consistency of the test based on
Wy.(g); the proof of the consistency of K,(g) follows similarly. From Theorem 3.1(a) we
deduce that for each a, 0 < @ < 1, Cp 1(a) — Ci(a) < 0o the (1 — a)-th quantile of the
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distribution of fol g%(t)B?(t)dt. Hence, the consistency of W, (g) will follow if it can be

shown that

(7.11) Py, (Wp(9) 2 M)—1 as n— oo,

for any constant M > 0. ;
Under H; we have that F(z) # Fo((x — p)/o) for at least one x € (—o0,00).

This implies that {F(zo) — Fo((z¢ — p)/0)}? > 0 for some finite zo. Since F and Fp

are continuous functions for all z, there exists a fixed neighborhood of zg, say Iy =

[xo — ¢, o + d], for some positive constants ¢ and d, such that

(7.12) Jof {F(z) - Fo((z - w)/o)}* 2 6

for some constant § > 0.
Since Fp is uniformly continuous on Iy , it readily follows from condition (D), the
Glivenko-Cantelli theorem and Slutsky’s theorem that as n — oo

(7.13) Sup V() = {Fo((z — p) /o) = F(z)}*| — 0

zelo

in probability, where

n n+1
with op(n~1/2) (independent of z) being the o(-)-term appearing in (7.2). Hence, from
(7.12) and (7.13) it easily follows that as n — oo
(7.14) Py, (inf Va(z) > 6 — E) — 1,
x&ly

for any constant ¢, 0 < e < 6.
Now, denote

W2o) = n | PnFa(@)/(n+ D)Vale)dFa(a),

Iy

and recall that info<i<q g(t) > 6 > 0. Finally, by (7.2) and (7.14) we obtain

> Py, (Wo(g) > M)

> Py, (62(5 —€) ZI(Xi € lp) > M,miéllf0 Valz) > 86— a)

i=1

> PH1 (n62(6 —_ 6)7’&.‘1 zn:I(X, € Io) > M)

i=1
— i < §—
Py, (;gfo Valz) <6 6)
—1 as n— 00,
since by the strong law of large numbers, with probability one, as n — oo
n
n~' > " I(X; € I) — F(zo + d) — F(zo — ¢) > 0.

i=1

This completes the proof of (7.11) and therefore the proof of the theorem. [
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