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Abstract. We study a parametric estimation problem. Our aim is to estimate or
to identify the conditional probability which is called the system. We suppose that
we can select appropriate inputs to the system when we gather the training data.
This kind of estimation is called active learning in the context of the artificial neural
networks. In this paper we suggest new active learning algorithms and evaluate the
risk of the algorithms by using statistical asymptotic theory. The algorithms are
regarded as a version of the experimental design with two-stage sampling. We verify
the efficiency of the active learning by simple computer simulations.
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1. Introduction

In this paper we consider a parametric estimation problem. Qur main interest is
to estimate the conditional probability p(y | ) by using the d dimensional parametric
model M = {p(y | z,0) : 0 = (6*,...,0%) € © C R%}. We call p(y | =) system. The
system describes the relation between the input z and output y. Here we consider the
specified case, that is, we suppose p(y | ) € M. When we estimate the system, we can
use the training data D7 = {(z1,v1),..., (z7,yr)}. To measure the goodness of the fit
of the estimated probability we adopt Kullback Leibler divergence:

ply| =)
KL(p,pe | q) = /q z)p(y | z)log ——=——<dydx
erol@)= [ alplyle)los o g)
as a loss function, where g(x) is a probability density of the input 2 which is fixed and
is unknown. To achieve good estimation we need to approximate the system well under
the frequently observed inputs with respect to ¢(z). Under this loss function the optimal
parameter §* is defined as

(1.1) KL(p,pe- | ¢) = min K L(p, po | ¢)-

Here p(y | z,6*) = p(y | =) holds because the model includes the system.

We suppose that we can choose input probability among the set of the probabilities
Q = {r(z | £) : £ C E € R*} to collect the training data. That is, we can control
the distribution of the inputs {z;,...,z7} to the system. Here £ is the k dimensional
parameter of the input probability which we can use.

The optimal experimental design treats the selection of the appropriate input dis-
tribution (Fedorov (1972)). In the field of the neural networks the term active learning
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is used. On the other hand we can consider the situation that all inputs of the training
data are randomly generated from g(z). We call this kind of estimation passive learning
in this paper. It is expected that we can estimate the system by the active learning more
precisely than by the passive learning because we can select the input probability which
may have advantage to estimate the system.

To construct the active learning method we adopt two-stage sampling as follows.
At first the inputs of training data are drawn from g(z). Based on these training data
we select the appropriate input probability to the system among () and observe the data
by using the selected input probability.

We need to compare the goodness of the estimation methods. In this paper the good-
ness of an estimation method is measured by risk which is defined as Ep,. {K L(p, Pé(Dr) |

q)}, where 6(Dr) is an estimator of the optimal parameter when the training data Dr
are given and Ep,. is the mean by the distribution of the training data. We are interested
in constructing the algorithm for active learning and comparing the accuracy between
the active learning and passive learning.

In the field of statistics several researchers are studying the optimal experimental
design (Fedorov (1972), Silvey (1980) and Pukelsheim (1993)). The optimal experimen-
tal design treats the methods for estimation in the case that we can select the input
points. In particular the optimal designs of the linear regression models are deeply in-
vestigated using the convex analysis. Several criteria to determine the optimal input
points are suggested. Equivalence theorems explain the relations between several crite-
ria that measure the goodness of inputs. In nonlinear regression problems several models
have been considered (Ford et al. (1989)). Bayes methods are often used to the general
nonlinear models (Chaloner and Verdinelli (1995)).

When the statistical model is complicated it is often difficult to calculate the op-
timal inputs exactly. MacKay suggested the effective methods of active learning that
the posterior of the parameter in the nonlinear regression models is approximated by
the normal distribution (MacKay (1992)). Fukumizu studied the active learning from
the viewpoint of the statistical asymptotic theory and proposed the active learning algo-
rithm including the model selection when the Fisher information matrix is degenerated
(Fukumizu (1996)). Belue et al. studied active learning for multiple output multilayer
perceptrons and applied the method to the real data (Belue et al. (1997)). Watkin stud-
ied the active learning method for simple perceptrons using statistical dynamics (Watkin
and Rau (1992)).

In this paper we consider the active learning algorithm from the standpoint of
the statistical asymptotic theory. The algorithm can be applied to nonlinear models
satisfying some regularity conditions when the calculation of optimization is not difficult.
In Section 2 we show the optimal distribution of inputs for the active learning. In
Section 3 we describe the active learning algorithm based on the result of Section 2
and evaluate the risk using the statistical asymptotic theory. Numerical examples of
nonlinear regression model and polynomial regression model are given in Section 4. We
show some numerical examples that the active leaning algorithms work better than the
passive learning.

2. Optimal distribution of the inputs

In this section we focus on the estimation of the optimal parameter §* satisfying
(1.1) by using the training data Dy = {(z1,%1),.-.,(zr,yr)} which are independently
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distributed. We use the maximum likelihood estimator (mle) 6 which is defined as

T
6= argrgleag;logp(yt | z:,6).

We consider following situation. The first w7 training data {(z1,v1),---, (TwT, Yuwr)}
are identically distributed from p(y | £)g(z) and the next (1—w)T training data {(TyT+1,
YuwT+1)s-- -, (TT,y7)} are identically distributed from p(y | z)r(z | £), where w is an real
value in [0, 1] and r(z | £€) is an probability in the set Q.

LemMA 2.1. We use the mle to estimate the optimal parameter at the situation
showed above. Then the risk is asymptotically evaluated as

1) Eo (KE(, 27 |9} = TG0, )/ wG(0",0)+ L -w)HE", )40 (75 ),

where G(0*,q) and H(0*,¢) are d x d matrizes, elements of which are defined as

* 82 *
(22) G(8",a)ss =~ [ (y] 2,6")a(0) g5 o ply | 2,0y,

82
(23) HE", )5 =~ [ 0 12,0)7(2 | 5555 logp(y | 2,6 )dyde

respectively. These are the Fisher information matrizes. We suppose that these matrizes
are non-singular.

We can prove this lemma by the standard technique of the statistical asymptotic
theory (White (1982)).

We define w* and &* as
(24)  (w*,&)=arg min _TrG(0*,q) {wG(6*,q) + (1 — w)H(6*,€)} ",

wel0,1],£€5

that is, the parameter w* and £* are the minimizer of the risk in the order of 1/T. From
Lemma 2.1 the sampling plan using the parameter w* and £* is asymptotically optimal
in the meaning of the risk. Generally w* and £* depend on 6* and ¢(z) both of which
we do not know. Then we need to estimate w* and £* in the active learning algorithm,
which we construct in the next section.

On the passive learning the input probability to the system is fixed to g(z). The
risk of passive learning is d/2T + O(1/T?), where d is the dimension of the parameter
space ©. If w and & satisfy

(2.5) d > TrG(6*, q) {wG(6*,q) + (1 — w)H(6*,6)} ",

the optimal parameter can be estimated more precisely by using active learning than by
using passive learning.

3. Active learning algorithm

In this section we construct active leaning algorithms (ALA) based on the result in
the previous section and we evaluate the risk of the active learning algorithm.
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We call the following algorithm ALA(t), where ¢ is a parameter of the algorithm
which is the number of initial training data. We suppose that the total number of the
training data is T'. In the following algorithm the input probability of first ¢ training
data is ¢(z). The probability of the inputs at the next stage are determined from the
first ¢ training data.

ALA(t)

Step 1. Gather t inputs from ¢(x) and gather ¢ training data {(zs,ys) | s =
1,...,t}, where ¢ satisfies t = o(T") and limy_, o t = 00.

Step 2. Calculate the maximum likelihood estimator o based on ¢ training data

¢
(3.1) 6o = argr&aelelogp(ys | zs,0),
s=

and then obtain (@, ) which satisfies

(3:2) (@,€) =arg_min __TrG(wG + (1 — w)H(,£)) ",
we(0,1],4e=

where G is defined as

1

t

A A 52 A

(3:3) Gij = —3 Z/P(?J | z5, 90)5978—07 log p(y | 5, 60)dy.
s=1

Step 3. If @ < % then Case 1 else Case 2.
Case 1. Gather T'—¢ training data {(zs,ys) | s =t+1,...,T}, where their inputs

are identically distributed from r(z | £).

Case 2. Gather &wT — t training data {(z,,ys) | s = t + 1,...,%T}, where their
inputs are identically distributed from ¢(z). Next gather (1—®)T training data {(z;,ys) |
s=®wT +1,...,T}, where their inputs are identically distributed from r(z | £).

Step 4. Calculate the maximum likelihood estimator § based on all obtained train-
ing data {(zs,ys) | s=1,...,T}:

T
(34) 0 = arg {gleaéc;logp(ys | z5,6).

It is important to verify that the risk of ALA(t) is asymptotically equal to

(3.5) %T&G(O*,q){w*G(G*,q) + (1 - w)H@G, )},

where w* and £* are defined by (2.4). The following theorem shows that the above
assertion is correct and that moreover we can decide the optimal parameter t,, of ALA(t)
by calculating the higher order term of the risk of ALA(t).



STATISTICAL ASYMPTOTIC THEORY OF ACTIVE LEARNING 463

THEOREM 3.1. We suppose that there erist a value ¢ € (0,1) which satisfies
limp_, oo T¢/t = 0. When w* is equal to 0, the risk of ALA(t) is

1 * *  pxy—1 1 3 i i_
(3.6) ﬁ']f‘rG(G SQOH(O, )" + TtA+T2B+O(Tt’T2>’

where A and B are positive numbers defined as

1 ;02
I i * * pxy—1
A 1 igj o BéiaijrG(o ,QH(6%, )7,

aij = tE%t . E(m(t),y(t)){(é - 5*)1(5 - f*)j}:
B = IMG(0, g HO" ) HE",¢) - G", ) H(E", €,

where E(wu‘)',y(t;) is the mean by the distribution of {(zs,ys) | s = 1,...,t}. We can
calculate a* explicitly (see the Appendiz).
When w* is a value in the open interval (0,1), the risk of ALA(t) is

(3.7 S TEG(E", Q) (W G(6",0) + (1 —w') H(0",£))
1 Vi o/t 1
+ﬁ0+0 (*T‘—i, —T2ﬁ7 m) y

where C is a positive number defined as

1 B2
= — E¥] * * H* . * * * —~1
O = 528 g OO DGO 0+ (1w HE €

Here 39 and 6 are defined as
ﬂm = tl_g&t . E(I(t),y(t)){(g - 5*)1(8 - 6*)‘7}
5=(’lf],é), 6" =(w*7£*)7

respectively.
When w* is equal to 1, the risk is

d 1
o8 io(L)
where d is the dimension of the parameter space ©.

The proof is deferred to the Appendix.

COROLLARY 3.1. Let us define t,p, as the minimizer of the risk of ALA(t). We
can asymptotically calculate the optimal parameter to, of ALA(t) from (3.6) and (3.7).
When w* is equal to 0 and B which is defined in Theorem 3.1 is not equal to 0,

(3.9) top = VT %,
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and the risk is evaluated as

(3.10) TrG(G*,q)H(O* )1+ o (T \/.)

When w* is a value in (0,1),
(3.11) top = O(T3/?),

and the risk is

(3.12) %’I‘rG(B*,q){w*G(@*,Q)"I‘(l —w)H(0", £} + 0 (T8/5>

The proposition of this corollary can be verified from (3.6) and (3.7).

Knowing the result of Corollary 3.1 we can improve ALA(t). If we use the algorithm
ALA(t), the optimal order of ¢,, depends on the value of w*. It is incompatible since
we cannot estimate whether w* is equal to 0 or not before observing the training data.
The improved algorithm is ALA2(t;,t2) as follows, where t; is O(v/T) and t, is O(T3/%)
respectively.

ALA2(t;,t5)

Step 1. Gather ¢, training data {(zs,ys) | s = 1,...,%1}, where their inputs are
distributed from ¢(z).

Step 2. Calculate the values (’Lf)o,éo) from t; training data in the same way as
ALA(Y).

Step 3. If o < % then Case 1 else Case 2.

Case 1. Gather T — ¢; training data {(zs,ys) | s = t1 + 1,...,T} , where their
inputs are distributed from r(z | &).

Case 2. Gather t — t; training data {(zs,ys) | s = t1 + 1,...,t2}, where their
inputs are distributed from g(z) and calculate (i1, £;) from t, training data {(zs,ys) |
s=1,...,t2} in the same way as ALA(t). If @, < %%i then Case a else Case b.

Case a. Gather T — t, training data {(zs,ys) | s = t2 +1,...,T}, where their
inputs are distributed from r(x | £;).

Case b. Gather w;T — ty training data {(zs,ys) | s =t2a + 1,...,9, T}, where
their inputs are distributed from g(z). Next gather (1 — ;)T training data,
{(%s,ys) | s = W1 T+1,...,T}, where their inputs are distributed from r(z | £ ).

Step 4. Calculate the maximum likelihood estimator 6 from all obtained training
data {(zs,¥s) |s=1,...,T}

We can calculate the risk of ALA2(t1,t2) in the same manner of the Theorem 3.1.
When we use the algorithm ALA2(t;,ts), the risk is equal to (3.10), (3.12) or (3.8)
according to the value of w*. That is, the algorithm ALA2(t,,t5) is adaptive with
respect to w* in this sense.
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4. Numerical experiment

In this section we show the simple computer simulations of active learning.

Example 1. (Two-layer perceptron models) The two-layer perceptron models is
often used in the field of neural networks (Bishop (1995), Chapter 4). The two-layer
perceptron models M,,, is defined as

(4.1) M,, = {Zazu(:cwz + bi)fai,wi,bi (S R} ,

=1

where u(z) = 1/(1 + exp(—z)). When the parameters a;,w;,b;,7 = 1,...,m is fixed,
a function from the input z € R to the output y € R is specified. We consider the
regression problem, that is, the estimation of the mean values of output y corresponding
to input z by using the two-layer perceptron model.

We suppose that the range of the inputs is restricted on the interval [~1,1]. The
probability g(z) is the linear transformed beta distribution, that is, the input z is ex-
pressed as T = 2o — 1, where zg is distributed from the beta distribution whose density
function is proportional to :cg(l ~ 7p)3. When the input z is given, output y is written
as
(4.2) y = 2.0 u(5.0z) + 5.0 u(—z — 2.0) — 1.5 u(3.0z — 1.0) +¢,

where € is according to N(0,0.12) which means the normal distribution with the mean
0.0 and the standard deviation 0.1. The regression curve of (4.2) is shown in Fig. 1. We
use M3 as the parametric model. Thus the system is included in the model. We define
the set of probabilities as histogram on the interval [~1,1]. More precisely let us define

as . .
1 E 1—11
w —
6i(z) = 5 5)
0 otherwise
14 0.055 v
} passive leaming  —X%—
s oos} + ALA (=05) -+
- . ALA (=06) -3
0.045
125 R %, %
. ooaf ;. X * *
5 1% P "
115 i 0 . . *
acal i ¥ bk ¥
s + ; .
ws 0025 * ¥ ¥ ak+ *+
W X R
085 0g2 + ;F' *4- J!H-
% s ° 08 1 i 50 P 250 00
x T
Fig. 1. The regression curve of the two-layer Fig. 2. Therisk of ALA(AT") and that of pas-
perceptron (4.2). sive learning are plotted as functions of the to-

tal number of training data T when the model
is two-layer perceptron. The parameter r takes
0.5 and 0.6 respectively.
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then the set of the probabilities Q is defined as

{ (z €)= Zéz z<x+1> ZE@——5§1>Oforallz}

The passive learning method and the active learning algorithm ALA(t) are used to
estimate the parameter of the two-layer perceptron model. The risk is approximated by
the mean of Kullback Leibler divergence between the true parameter and the estimated
one.

The total number T of training data takes various values from 100 to 300. In each
value of 7', 100 trainings are performed by using each learning algorithm and estimate
the corresponding values of the risk with the standard errors. The results are shown
in Fig. 2. The simulation is done when the parameters of ALA(t) are t = 47%° and
t = 4T%6. When the parametric model is non-linear with respect to the parameter
such as two-layer perceptron model, it is difficult to calculate which is better between
t = O(T%%) and t = O(T%). But in both cases the active learning is superior to the
passive learning. In this simple simulation we do not need to give much care to choosing
the parameter t.

Ezample 2. (Linear regression models) We suppose that a system p(y | z) is
(4.3) y =3z(2z — 1)(5z — 4) + ¢,

where ¢ is a random variable which has the normal distribution N(0,0.3%2). We suppose
that we know the distribution of €. The input region is restricted to the interval [0, 1].
The parametric model is

(4.4) M= {90 + 61+ 62.'1:2 + 93:133 +€ | 0:,02,03 € R}

The parametric model M includes the system (4.3). The system (4.3) is realized when
8o, 01, 62 and 03 are equal to 0,12, -39 and 30 respectively.

{a,b)=(2,3), w*=0, T=200 (a,b)=(5,4), w*=0.32, T=200
0.041 r 0012 A T

o105 Risk o3¢ X Risk vy

Risk

o

H
L]
Ris]

X X x

0.008 Xy X X
Xx. X _x" X x
X x xxxX X 0007 Fot XX
0.0075 % EXKXpXuxx XXX

XX X

[ XX KR o Kog Xy KX g KXKX

o 50 w0, 150 200 ) 50 100 150 200
t

0007

Fig. 3. The simulation of ALA(t) in the case Fig. 4. The simulation of ALA(t) in the case

of (a,b) = (2,3), that is, w* is equal to 0. of (a,b) = (5,4), that is, w* is not equal to 0.
The total number of training data is 200. The The total number of training data is 200. The
values of the risk are plotted as a function of t values of the risk are plotted as a function of t

with the standard-error bands. with the standard-error bands.
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The probability g(z) is the beta distribution on the interval [0, 1], that is, ¢(z)
2@~ (1 — z)(>=1 on the interval. We have the simulations in the cases of (a,b) = (2,3)
and (a,b) = (5,4). Moreover the set of the probabilities Q is defined as

5
D & =5, >0 forall z} ,

5
Q= {r(m 16) =) &ébi(a)
=1 =1
where 6;(z) is defined in the Example 1.

When (a,b) is equal to (2,3) the optimal ratio w* is 0. When (a,b) is equal to
(5,4) the optimal ratio w* is 0.32. Figures 3 and 4 show the results of the estimation of
ALA(t). The total number of training data is T = 200. Figures 3 and 4 correspond to the
case of (a,b) = (2,3) and the case of (a,b) = (5, 4) respectively. The risk of the algorithm
ALA(t) is numerically calculated as a function of ¢. The risk is approximated by the
mean of Kullback Leibler divergence between the true parameter and the estimated one.
In each value of t, 10000 trainings are performed by using ALA(t). The calculated values
of the risk are shown with the standard-error bands. In both cases of (a,b) = (2,3) and
(a,b) = (5,4) there exist optimal size ¢ which minimize the risk of ALA(t). The second
dominant term of the risk among the order of o(1/T) is different between the case of
w* = 0 and that of w* # 0. This difference appears the shape of the graph of the risk
as a function of . When (a, b) is equal to (5,4) the graph of the risk as a function of ¢
is nearly flat until ¢ = 150 and is rising urgently at the range of ¢ > 150. On the other
hand when (a, b) is equal to (2,3) the graph of the risk is not flat.

In Figs. 5 and 6 we compare the active learning algorithms to the passive learning
and D-optimal design. We use ALA(¢) and ALA2(t;,t2) as the active learning algorithms.
These figures show the risk as functions of the total number of training data. In each
value of training data, 10000 training are performed by using each learning algorithm.
The parameter of ALA(t) is t = 27" and the parameters of ALA2(ty,t;) are t; = 2705
and t = 2706, D-optimal design does not depend on the probability ¢(z). In this case

{ab) =23 {ab) =(54)
0028 v T
ALAZ — ALAZ——
. ALA (r=0.5) - - - LEL AW ALA (£=0.6) - - -
o= \\ ALA (r=0.3) - - - S ALA (:=0.3) - -~
T S ALA (r=0.8) ——— ~. ALA (1=0.8) ~—~
.. passive leaming —.— oote \.\ D-optimal design ——
aoe \-\\ D-optimal design ---..- l -

Fig. 5. The risk of ALA(2T7), that of
ALA2(2T095,270-6) that of passive learning
and that of D-optimal design are plotted as
functions of the total number of training data
T in the case of (a,b) = (2,3). The parameter
r takes 0.3,0.5 and 0.8 respectively.

100 120 140 160 150 200

Fig. 6. The risk of ALA(2T"), that of
ALA2(270-3 279-8) and that of D-optimal de-
sign are plotted as functions of the total num-
ber of training data T in the case of {(a,b) =
(5,4). The parameter r takes 0.3,0.6 and 0.8
respectively.
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the D-optimal design is as follows (Fedorov (1972)):

Prob{z = 0} = Prob{z = 1} = Prob {azz 5~\/5} =Prob{x= 5+\/5} -_—.1_

10 10 4’

that is, the D-optimal design is realized by four points which are distributed uniformly.

The values of r are 0.3,0.5 and 0.8 when (a, b) is equal to (2, 3). Figure 5 shows that
the risk in the case of r = 0.5 is better than the others. Moreover it can be verified that
the risk of ALA(2T%%) and that of ALA2(2T%-5,279-6) are almost equal. Similarly when
(a,b) is equal to (5,4) the risk in the case of r = 0.6 is better than the others. Moreover
the risk of ALA(27°-6) and that of ALA2(270%,2T°%) are almost equal. These results of
simulations can be explained by the result of Corollary 3.1. In the case of (a,b) = (5,4)
the risk of passive learning is too large to draw in the same figure. Then the graph of
the passive learning is not drawn. In both cases of (a,b) = (2,3) and (a,b) = (5,4)
D-optimal design does not perform well than the active learning. The reason is that the
probability ¢(z) is not taken into account in D-optimal design.

5. Conclusion

We propose active learning algorithms ALA(t) and ALA2(¢;,%2) and evaluate the
risk of these algorithms. We theoretically conclude that the active learning can be more
efficient than passive learning if we choose the probabilities of the inputs appropriately.
When we gather T training data, the optimal order of the parameter in ALA(¢) is
top = O(T°®) or t,p = O(T9). It depends on the true parameter * and the probability
g(z). Because of the lack of the knowledge about the true parameter and ¢(z) before
observing the training data, the optimal order of the parameter ¢ cannot be determined
in advance. To resolve this problem we construct ALA2(¢;,ts). If we choose t; as O(T%%)
and ¢ as O(T%) respectively, the higher order of risk of the algorithm ALA2(t,t5) is
asymptotically equal to the optimal case of ALA(t). This result can be a guide to decide
how many training data we should gather at the first stage of the active learning.

In this paper we suppose that the model M = {p(y | z,0) | 8 € O} includes the
system p(y | ). But actually the model may not include the true probability. Then we
need to extend the active learning algorithm to misspecification case.
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Appendix: Proof of Theorem 3.1

In this appendix let us define ||-|| as Euclidean norm and Vf as Vf = (8. f, ..., 8af)
and the matrix VV f as (VVf);; = 8;0;f(i,j = 1,...,d) respectively, where J; means
5%. We suppose that we get T' training data {(zs,ys) | s = 1,...,T} according to the
active learning algorithm ALA(t). Let Do and D; be Dy = {(zs,9s) | s = 1,...,t}
and Dy = {(zs,ys) | s = t+1,...,T} respectively. First the risk of active learning is
calculated on the condition that we get the training data Dy. Next we calculate the risk
with respect to the distribution of the training data Dy.
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Let us define w as ;
(A.1) = { T @=0
0.
Let us define L(6) and v(6) as

L(6) = —= Z log p(ys | s, 6),
s=t41

1 t
v(8) = =< > _logp(ys | 22,6)

s=1
respectively. The estimator 6 satisfies
At .
(A.2) VL(8)+ TV'U(H) =
Let us define 6 as

(A.3) VL(6) = 0.

Considering the Taylor expansion of (A.2) around 6, we obtain
’ PO t = ~ s =5 1 S A =
(Ad) 60-0= —T(VVL(O))_IV'U(G) +0, (||9 - 4|3, T”VVU(@)(O - 0)[|> .

Furthermore considering the Taylor expansion of (A.4) around the optimal parameter
6*, we obtain

(A.5) -6 = ——%(VVL)‘IVv - —;;(V‘VL)“IVVv - (6 —6%)

d
_E_ O g*\t ~19. -1
+Ti§=1:(9 0")(VVL) 9, VVL(VVL) 'V

t t2 5 t2
+0, (75 7 IVl 2 V)
where 0;VVL is a matrix, kl element of which is 8;0y0,L. The law of large numbers

gives

(A.6) VVL
_aT

(a0 () u-a 00 ()

By substituting (A.6) to (A.5) we obtain

(A7) 0-§= —i{wa(e*,q) + (L —B)H(6*, £}V
——{wG( *,q) + (1 - )H(e* 6} 'VVu- (6-6%)

t2 t 9
+op(T 90l 72190l 0050, =E 00w, L, 1wl
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Then we obtain § — §* = (§ — 6) + (6 — 6*) as follows:
(A8) G—¢* = [I - %{m(;(()*, Q)+ (1 - w)H(a*,é)}—lvw] @67

_%Z{@G(o*, q) + (1 —@)H(0*, € ‘)}-%vv

t
+0, (7L Vol Sl1Voll 50050, 0050, 13, 110l

where I is d dimensional identity matrix. It is noted that
— 1
Ep,|p, {0 — 0"} =0 T)

Ep, p,{(6—0%)(6 - 6*)'} = {(@T —t) G(6%,9) + (1L —®)T H(6*,€)} " + 0O (%2)

where Ep, |p, is the expectation by the distribution of training data D on the condition
of training data Dy and - is transposition. Let us define K (w,&) as

(A.9) K(w,§) =wG(0", q) + (1 — w)H(6",£).

We can calculate the asymptotic variance of 6 — 9* on the condition of training data Do
by substituting (A.8) as follows:

(A.10) Ep,p,{(6—6%)(8— 0"}
= ZK(@,6) ~ 2K (@, VYK (@,€)
K (0,87 GO, K (8,6 + K (0,6 VEVoVEVuK (@)
2 t

(TQ,Tznv u,T2 Elvel, T2 00y, 700

t3
2 2
—T%/T”W” ,—T3 HVUH ,————TSHVVUVU”,T3ﬁ|]VVvVUI|,

t2 t3 3
IVl 10l )
It is noted that
Vo~N (O, %G(O*,q)) ,  Ep,{VVv}=G(6*¢q), and
(A'll) EDo{a'haiz T aijv} = 0(1)7 (.7 2 3)'
Thus we obtain the asymptotic expansion of the risk:
1 . NP
(A.12) §TYG(0 yO)Ep {Ep, D, {(6 — 6%)(0 — 6%) }}

2TT”G(9*, 9)Ep,{K(@,£)"}
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-

TTG(9*,Q)EDO{K(UJ )7 VVuK (w,6)'}

+-'3TI‘G(9*, q)EDO {K('LTJ, é)_lG(O*a Q)K('Lba é)'l}

T
+ g TG(0°,0)Ep, (K (@, 6) " VIVoVIVY' K (w,) )
Vi /it
1o (T_ il ﬁ) .

Here we write K(6) as K(w, &) where § = (w,£) € RF*1. Let us define 6* and 8 as
(w* ,E*) and (w, §) respectlvely First we consider the case of 0 < w* < 1. Expanding
K (i, €) around (w*,&*) and neglecting the higher orders we obtain

1<, B2

(A.13) K(8) = K(6*)+Z g KEVE =8 +5 D K (57§~ 676 - 67)

7‘7—
+0, (116 — &6*|1%).
Knowing that

(A14) 35 TEG (0", K (6%~ =

a6t

for all 4 from definition of (w*,£*), we can write (A.12) as follows:
1 * ) *\(h '
(A15)  STYG(0",q)Ep, {Ep, 0,{(0 - )0 - 0")'}}
1 % * * % et
= 57 G(0%, ) {w G(9%,9) + (1 — w*)H(¢",£")}
6 1

d
1 s S .
E : VR ) J __ K*F T G * K *\—

NV, 1
o (ﬁ’T‘—zﬁ’m>’

where we assume that the third order moment of 6 — §* is O(;%) Let 8% be

(A.16) Y= limt- Ep, {(6° - 6*)(87 — 6*7)}.
We can rewrite (A.15) as follows

' 1 * £ L * % * -—
(A-17) Epr {KL(p, P4,y | )} = 57 TrG(6%, ) {w"G(6%,9) + (1 —w")H(9",€")} !

d
1 32
— i . o —1

%,j=1

+O(ﬁ ti >

T2’ T2/T

Next we suppose that w* is equal to 0 or 1. We can prove that the probability of & #
w* decreases exponentially from the assumption of Theorem 3.1. It is a consequence of
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large deviation theory. The exponentially decreasing term does not affect the asymptotic
expansion. Then we can put @ = w* when w* is equal to 0 or 1.

When w* is equal to 1, the probability density of all training data is p(y | z)g(x).
Then we can use the result of ordinary learning theory and we can obtain

d 1
(a19 Bor {KL(p pao | 0} = 75+ 0 (7).
When w* is equal to 0, we obtain the following expression from (A.12) -

(A19) Ep {KL(p,pscpy) | 9}

1 * * 1 d ij 82 * * k) —

= 7 GO, QHE",€) + .Z“ seiger OO, OH(E", €7

+5 TGO, QHE",€)7 {HO",67) - 6", )} HE", €)™
VitV

+e (ﬁ T%/T‘)’

where o'/ is defined in Theorem 3.1. A
Next we calculate a*’ when w* is equal to 0. From the definition £ satisfies

(A.20) ' %T‘rGH(OO,é)”I =

where G is defined in ALA(t). Expanding (A.20) around £* and neglecting the higher
order terms then we obtain

0 o2

(A.21) 36 ——TrGH(fo,£")~ 1+Z afsagu’I&GH(ﬁo,g) L(ds _g*) = 0.

Because of the law of large numbers and the consistency of the estimator g

> TeGH (6o, %) — >
8§sa§u 0, agsagu

(A.22) TrG(0*,q)H(6*,£") ™", (t — o)

holds. Next we calculate the asymptotic variance of agu 2 TrGH (6, £*)~L. Let G(;z) be

(A.23) G(0;2) = - / p(y | 2,0)VVp(y | z,6)dy
then we obtain ,

N 1 ~
(A.24) G=- ; G(fo; z5).

Let us define the matrix FE as

(A.25) E= % ; G(0%;z,) — G(6%,q).
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Noting that the probability density of the input data zi,...,z; is ¢(z), we obtain the
asymptotic distribution of the matrix E as follows. When the matrix F is rearranged
as column vector, the distribution of the vector is asymptotically multinomial normal
distribution with mean 0. Let E,; be the element of the matrix E. The covariance
between Fgp and E.4 is calculated as follows:

1 1
(A.26) EDQ {EabEcd} = ZO'ab,cd +o0 (?) ,

where 044 cq is defined as
(A-27) Tab,cd = /Q(-T){G(O*',x)ab - G(G*, Q)ab}{G(e*; x)cd - G(a*y Q)cd}dx'

We expand G as follows

(A.28) G=0Q(0",q9)+E+ Z(eo o*l) G(9*, q) +op ( ‘}E)

=1

Moreover we expand H (6, ¢ *)~1 as follows:

2 H(G, )"

(429)

iH(g* 5*)_1+iiH(9* g*)—l(éi _0*i)+o (____1___)
pew ) Ly agiag 0t \Vi)

Then we obtain the asymptotic expansion of agu 2 TrGH (00, £*) as follows:
17,

(A.30) o TrGH(eo,g) -1
=Tr {G(G*’q) + FE + Z 6891,G(9*7q)(00 9*2)}
* - " i 1
{(%uH(G &%) +ZB€$8§UH(0 LE5)™ 1(91 03)} +o0, (_ﬁ)
(9 * * 8 X ek —
aguTYG(o q)H(6%,€)” 1+TTE5@H(0 L£4)1
+Z( - 9”)8013@1&(;(9*,(1);1(9*,5 )1 4o, (%) _
Note that 5
agur]}G(g*’q)H(e*ag) 1|E §* —0

for 1 < u < k from the definition of £*. From (A.30) we can calculate asymptotic
variance of 6%’I‘rGH (60,&*)1 as follows

(A31) Ep {( D Tér(@o,e7) -

6 %k *
iz 5 TG (6", € )

73
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15] J
(o0 )" = TGO DB ) 9}
1 OH gfed &\ ... i
= = 1. R =
t N b;._ Tabed™ 3¢y g 65'” ig.—;l G quFJv +o0 ( t) )

where let H% and G be the elements of H(6*,£*)~! and G(6*,q)™" respectively and

let T';,, be
0?2

66*8& U

From (A.21), (A.22) and (A.31) we obtain /.
, To derive (A.31) we use Ep,{(6) — §*)Eq} = o(1/t). Finally we prove it. From
the definition of E,;

(A.32) Ep,{(65 — 6*)Eup}

= % z EDO{(éé(xh ey TH) — H*i)(G(ﬁ*; Zs)ap — G(0%, @ab)}

Fiu TI'G(0 Q) (9’ '5)_1

O=0" £=£*

= EDO{(éé(wli e ,xt) - H*i)(G(e*; zl)ab - G(g*a Q)ab)}
= E(z, y1) L(G(0%;21)ab — G(0%,0)ab)EDo\(21,91) 106 (21, - - -, Te) — 07 }}

where E(z, 4,) and Epg\(s,,4,) are the expectation with respect to the density p(y; |

z1)q(z1) and the density [['_,p(ys | zs)a(zs) respectively. From brief calculation we
obtain

” 1
(A.33) Epo\(zy.9){00(1,-..,2¢) — 0%} = —+ = ZG” 505 log p(y1 | z1,0%) + o0 (;)

where b* is the bias term of the mle. By substituting (A.33) to (A.32) and using
E(ml,yl){(G(e*; xl)ab - G(G*, Q)ab)bi} =0,
Ny .
/P(yl | 21,67) 55 log p(y1 | 21,6%)dyr = 0

we find that the O(1/t) term vanishes.
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