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Abstract. This paper considers two flexible classes of omnibus goodness-of-fit tests
for the inverse Gaussian distribution. The test statistics are weighted integrals over
the squared modulus of some measure of deviation of the empirical distribution of
given data from the family of inverse Gaussian laws, expressed by means of the em-
pirical Laplace transform. Both classes of statistics are connected to the first nonzero
component of Neyman’s smooth test for the inverse Gaussian distribution. The tests,
when implemented via the parametric bootstrap, maintain a nominal level of signifi-
cance very closely. A large-scale simulation study shows that the new tests compare
favorably with classical goodness-of-fit tests for the inverse Gaussian distribution,
based on the empirical distribution function.
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1. Introduction

The inverse Gaussian distribution is a very versatile positive-domain two-parametric
probabilistic model having numerous applications in diverse fields (see e.g. Chhikara and
Folks (1989), Seshadri (1993, 1999)). It originates as the distribution of the first pas-
sage time of Brownian motion with drift. Further applications include lifetime mod-
els in connection with repairs (Chhikara and Folks (1977)), accelerated life testing
(Bhattacharyya and Fries (1982)), reliability problems (Padgett and Tsoi (1986)) and
frailty models (Hougaard (1984)). The naming inverse Gaussian distribution is derived
from the fact that its cumulant generating function is the inverse of that of the Gaussian
distribution.

A random variable X has an inverse Gaussian distribution with parameters u > 0
and A > 0 (for short: X ~ IG(y, N)), if X has the density

[ A _ Mz — p)?
flz;p,A) = 2T 3/2exp(———(2?;i), z>0.

This density is unimodal with mean p and variance ©3/), and its shape depends only
on the value of ¢ = A/u. The distribution function pertaining to f(z;u, ) is

(11)  Flzp)) =& Né (E - 1)} + 2 ug [— % (1 + %)} N
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where ®(t) = (2m)~ 1/2f exp(— 52/2)(15
Since, for X ~ IG(u, A)and r =1,2,.

E(X") = Z e _11+_ss (2%) _s

(see Seshadri (1993), p. 46), skewness and kurtosis of X are /f1 = 34/u/A and B2 =
15u/ X + 3, respectively, showing that the distribution IG(u, A) is positively-skewed and
leptokurtic. Positive and negative moments of X are related by

E Xr+1
(1.2) E(XT)= % r=1,2,...
(see Seshadri (1993), p. 52).

The class of inverse Gaussian distributions is closed with respect to scale transforma-
tions since, if X ~ IG(u,\) and ¢ > 0, the transformed variable cX has the distribution
IG(cp,c)). In particular, we have X/p ~ IG(1, ¢).

In view of its versatile nature, it is important to know whether the use of the inverse
Gaussian model is justified in a given situation. This aspect of testing the goodness-of-fit
of data with the class of inverse Gaussian laws has been addressed by several authors,
although the existing literature is relatively sparse (see Edgeman et al. (1988), Pavur et
al. (1992), O'Reilly, F. J. and Rueda, R. (1992), Gunes et al. (1997), Mergel (1999)).
These papers adopt a classical approach to goodness-of-fit testing based on the empir-
ical distribution function. A specific problem when testing the hypothesis Hy that the
underlying distribution is inverse Gaussian with unspecified parameters is that the null
distribution of a test statistic usually depends on the unknown shape parameter ¢. In
order to have a test that maintains a nominal level of significance closely irrespective
of the value of ¢, the above papers advocate the use of special tables or formulas for
critical values, obtained by extensive simulations or by a numerical approximation of the
asymptotic null distribution. These formulas differ with the nominal level of significance
and the statistic used, and they depend either on the sample size and the estimated value
of ¢ from given data (see Table 2 of Gunes et al. (1997)), or in case that the asymp-
totic null distribution is used, only on the estimated value of ¢ (see O'Reilly, F. J. and
Rueda, R. (1992), p. 390). A different method which, however, seems to have been over-
looked in the context of testing the goodness-of-fit for the inverse Gaussian distribution,
is to use a parametric bootstrap. This idea of simulating the null distribution of a test
statistic is now well-established (see e.g. Stute et al. (1993)), and it does not only lead
to reliable critical values, but also to approximate p-values.

The purpose of the present paper is twofold. First, we introduce two new classes of
flexible omnibus tests of fit for the inverse Gaussian distribution. ‘Our approach uses the
empirical Laplace transform and is thus in the spirit of previous papers on the problem
of testing for exponentiality (see Baringhaus and Henze (1991), Henze (1993) and Henze
and Meintanis (2000)), or the testing of goodness-of-fit for discrete distributions based
on the empirical probability generating function (see e.g., Baringhaus and Henze (1992),
Epps (1995), Giirtler and Henze (2000), Nakamura and Perez-Abreu (1993), and Rueda
and O’Reilly (1999)). We strongly advocate the use of the parametric bootstrap in
order to obtain critical values or p-values. Since the advent of high-speed computers, the
parametric bootstrap should be a standard tool in the context of goodness-of-fit testing.
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Secondly, we present the results of a large-scale simulation study comprising 14 different
tests and various alternatives to the inverse Gaussian model. The new tests compare
favorably to the existing procedures of testing for the /G-model.

The paper is organized as follows. Section 2 introduces the new test statistics, and
Section 3 gives theoretical results on their limit behavior under Hy and under local alter-
natives. Furthermore, the tests are proved to be consistent against general alternatives.
Section 4 presents the results of the Monte Carlo study. The paper concludes with some
examples. '

2. The test statistics

Let X3, X5,...,X,, ... be asequence of independent observations on a nonnegative
random variable X. On the basis of Xi,...,X,, the problem is to test the hypothesis

Ho: X ~IG(u,\) forsome p>0, A>0

against general alternatives. The first class of statistics for testing Hp is motivated by
the fact that the Laplace transform L(t) = Efexp(—tX)] of X ~ IG(u, A) is

(2.1) L(t) = exp l:g (1 —4/1+ ?_If;_?)} , t=0

(see Seshadri (1993), p. 41), and thus satisfies the characteristic differential equation
(2.2) pL(t) + (14 2%t/ )20 () =0, t>0,

subject to the initial condition L(0) = 1. Writing

1o~ _ix.
(2.3) Ln(t) =~ Ze tX;
Jj=1
for the empirical Laplace transform of X,...,X, and

-1

R I R 1< -
.u'n=Xn=ﬁZXj’ An = ﬁzl(]‘/XJ—l/Xn)
J:

for the maximum likelihood estimators of g and A, respectively, it suggests itself to
estimate the left-hand side of (2.2) by

En(t) = finLn(t) + (1+ 205t/00) 2 L1y (2)

and then use a suitable measure of squared deviation of the random function &,(-) from
the zero function. The test statistic we propose is the weighted L2-distance

n o0
(2.4) Thno=— &2 (t) exp(—ajint)dt,

Hn Jo
and rejection of Hy is for large values of Ty, o. The weight parameter a, the role of which
will be discussed in Section 3, is nonnegative and fixed.
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Putting $n = An/fin, ¥j = X;/itn, and using
n

En(t) = %Z X5 (0~ (14 2028/3) 2 X5,

a change of variables in (2.4) yields

The= n/ €2 (u) exp(—au)du,
. 0

where

(2.5) enfu) = % Ze““yj 1-Y;v/142u/¢n), u>0.
j=1

Notice that Ty, , is scale invariant, since the values of Y1,...,Yy and ¢, are not affected
under the transformation X; — ¢X; (j =1,...,n), where ¢ > 0. Putting

(2.6) Mn(w) = V1+20/@n,  Zjk = pu(¥; + Yi + a),
straightforward computation yields the alternative representation

Too= 23 [ e (= Y )1 Yo )
]k 1

_ ‘P"J;lzjk {1—(Y +Y4) (H\/—;; Tl (1_@( ij)))
+(1+§i—k> Yij}-

With regard to a numerically stable computer routine implementing the test based
on Ty, ¢, it is advisable to reexpress Th,o by means of the exponentlally scaled complemen-

tary error function erfce(z) = e® erfc(z), where erfc(z) =2 [ e ~t*dt/m. The function
erfce(z) is closely related to Mill’s ratio, defined by R(z) = (1 — ®(x))/¢(z), where ¢
denotes the standard normal density. The result is

ZT erfce Zik
2Zk 2

2
+{1+ =YY%
Zix

A second, more direct, way to test Hy via the empirical Laplace transform is to
estimate the function L(t) of (2.1) by the Laplace transform with estimated parameters,

ie., by
2"2
(1— 14 é\‘"t ] £>0,

n

3 |“G’

n
Z Sl (YY) |1+
7,k=1

f}nt = ex A"
(t) p[ﬂ
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and to base a test on a measure of deviation between f,n(t) and the nonparametric
estimator L, (t) of L(t), defined in (2.3). Our proposal is the statistic

Voa =it | (Ent) = Eu(t))* exp(—aint)at,
0
which, putting

(27) ult) = = Y —explpa(l — VIF 2u/En)}, w20,

Jj=1

takes the form o
Vaa =1 / 62 (u) exp(—au)du
0

As well as Ty 4, Vi, is scale invariant. For the case a > 0, V,, , has the alternative
representation

Sy [ “Zﬂkdu—Qz / 1% exp{pn(1 — 1 (1)) }du

jkl

+n /0 exp{20n(1 — 1(w)) — au}du
o / ‘;5 ¢n(Zj + 1)2
_—J’kzlzjk —QZZ { —Zexp(-———-i—zj—>
§ (cb ( A1/2(€/2+ 1)) 1)}
Z;
= - 2 A1/2
B (252) (£552) )

where Z; =Y, +a and Z;j, = Y; + Yi + a (recall 1, (u) from (2.6)). With regard to the
implementation of a numerical stable computer routine, V,, 5 can be rewritten as

n - /2
_ 1 -1 [T¥n TPn . (Z; +1)
Vna = Ej,%:lzjk -2 E Z { 27, erfce( @7 T

n 27 Pn, Pi/? (a+2)
—<1 - i —_ .
+a { a erfce ( (2a)1/2

For the case a =0, V,, o takes the form

" ,1/2
1 - _ TPn ¢n (23 +1)
Via = = Z ij - Z ; {1~ ———-QZJ_ erfce (—-—-———(2Zj)1/2

] k=1 j=1

1429,

+
4,
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3. Weight decay and smooth tests

"'This section addresses the problem of choosing the parameter o that controls the
rate of decay of the weight function figuring in the definition of T}, , and V, ,. Since
the tail behavior of a probability distribution concentrated on [0, 00) is reflected by the
behavior of its Laplace transform at zero and vice versa (see e.g. Feller (1971), Chapter
XIIL5), one may anticipate the following qualitative behavior of the power of a test that
rejects Hy for large values of T), , or V;, , when varying the decay parameter a: Choosing
a small value of a, and thus letting the weight function decay slowly, should give a good
safeguard against alternative distributions having a point mass or infinite density at zero.
On the other hand, choosing a large value of a means putting most of the mass of the
weight function near zero, which should give high power against alternatives with great
difference in tail behavior in comparison with the inverse Gaussian distribution.

The case a — oo is of particular interest. In fact, letting the rate of decay of the
weight function tend to infinity, both T, , and V,, 4, after a suitable rescaling, approach
a limit that depends only on two empirical moments of Y7,...,Y,.

THEOREM 3.1. LetY; = X;/X, (j=1,...,n), and put

1o e
v _ 2 = -1
YZ=-3 Y Yil=-3 v

g=1 j=1

For fized n, we have
a) lim &®T,, =2n(Y;2 - Yo 1)?,
a—o0

b) lim ¢®V,, = 6n(Y2 - Y, 12

a—0o0

PROOF. Observe that T, , = [, g(u) exp(—au)du, where g(u) = ne2(u) and €, (u)
is defined in (2.5). Since g(u) = nu?(Y2 — Y, 1)2 + O(u?®) as u — 0 and thus

. g(u) _ 55 —1\2
il_% '(3) i 2n(Y2 - Y )%,

assertion a) follows from an Abelian theorem on Laplace transforms (see Widder (1959),
p. 182, or Proposition 1.1 of Baringhaus et al. (2000)). b) is proved similarly, since

n&ﬁ(u)~—4—(er— 21?2 as u—0. O

Notice that, from (1.2), we have E[X?] — E[X~!] = 0 if the distribution of X
is inverse Gaussian with unit mean. Since the empirical moments Y2 and Y, ' are

computed on the scaled data Y; = X/ X ,,, which have unit mean, the difference Y_n?— v !
should thus be small under Hy.
It is illuminating to compare the ‘limit statistics’

Tnoo =20(Y2 - Yo )2, Vioo =6n(Y2 -V 1)?
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figuring in the statement of Theorem 3.1 with the first nonzero component of Neyman’s
smooth test for the inverse Gaussian distribution. These components have the form
Un,k n1/2 Z :_1 he(X;; 19n), where 9, = (fin, n) is the maximum likelihood estima-

tor of ¥ = (u, ) and {ho(;9) = 1, h1(-;9), ha(:;9),...} are orthonormal polynomials
with respect to IG(u, A), that is, we have
o0
| m om0 o =0 (120,
0

where 65; denotes Kronecker’s delta and f(t;9) = f(¢; 4, A). Orthogonal polynomials of
degree 1 and 2 are given by hy(z;9) = z — p and

2
) 2
Ra(z; ) = 2 - (3“+2>3+—’i+1.
w2 p

1 - o5 o1
SN S AR R
The normalized orthogonal polynomial of degree 2 is hy(x;9) = ho(x;9)/s2(9), where

1/2
52(9) = (BIR3(X; )2 = vk (sk + 1)
AVUA
Therefore, the first nonzero component is
(3.1) Uz = vn(Y2 - Y1) /s5(dn),

where

sa(dn) = V2B (s )1/2 VBT 1) (57T g,

T
Thus, apart from a factor that converges in probability, ﬁﬁ,z coincides with T, o, and
Vin,0- For further examples on the connection between weighted integral test statistics
and components of smooth tests of fit, see Baringhaus et al. (2000).

Typically, the second component of a smooth test of fit, which is based on a
polynomial of degree 2, reflects a relationship between the first and the second mo-
ment under the hypothetical model. In case of the inverse Gaussian distribution, how-
ever, the second component is essentially the empirical counterpart of the equation
EX~1 - EX%/(EX)3 = 0. This somewhat surprising fact is due to the use of the
maximum likelihood estimator A, of A, which does not coincide with the method of
moments estimator. If one uses the latter, the second component is also zero. This can
be verified by direct computation or using Lemma 2.2 of Klar (2000).
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4. Asymptotic distribution theory

Throughout this section, we assume that the parameter a in the weight function has
a fixed nonnegative value. To derive the asymptotic null distribution of T, o and Vy, o
as n — 00, we work in the separable Hilbert space Lo = Lo(Ry, By, P,) of measurable
functions on R} = {z € R : z > 0}, equipped with the Borel o-algebra B, that are
square integrable with respect to P,, the exponential distribution with parameter a.
Py stands for Lebesgue measure on R,. Notice that ¢, and é,, which were defined in
(2.5) and (2.7), respectively, are Lo-valued random elements, and that T, , and V,, , are
continuous functionals of ¢,, and &,, respectively. The inner product and the norm in Lo
are denoted by (-,-) and || - ||, respectively.

If a > 0, a complete orthonormal set in Lo(R4, By, P,) is (7n(a-t))n>0, where @y, (+)
denotes the n-th (normalized) Laguerre polynomial. If a = 0, a complete orthonormal
set in Lo(Ry, By, Po) is (exp(—t/2)mn(t))n>0 (see Courant and Hilbert (1953), p. 93).
This orthonormal set will be used in the proof of Theorem 4.1.

The maximum likelihood estimator ¥, = (fin, An) of ¥ = (u, ) has the representa-
tion

@y Vi =) = 309+ o
where I(z,9) = (I1(z,9), lo(z,9)) = [[(§)]~! - Vg log f(x,9), I(¥) is the Fisher informa-

tion matrix, and 7, = op(1). Since

Olog f _ Az — p) dlogf 1 1 (z—p)?

op ud X 2 2z p?

_ Ap3 0
I(ﬂ)_( 0 (2,\2)-1>’

we have I3 (z,9) = 2 — p and Ip(z,9) = A— X3(z — p)?/(zu?). Note that Es[l(X,9)] =0
and Ey[||{(X,9)]|?] < co. Combining (4.1) and the equality

\/ﬁ(j‘n — /\) _ \/ﬁ(ﬂn - N)}‘
I p?

and

n

5 )= P
V(Pn — @) ﬂ<

yields

e LA A - Xi—p

In the following, we assume pu = 1 without loss of generality. Hénce,
1 n
(42) \/_7’;(327" - 90) = % ZZ(XJ’ (,0) + Tn,
j=1

where I(z, ) = o(1 — p(z — 1)?/z — (z — 1)) and r, = op(1).

Since the test for the inverse Gaussian distribution will be carried out by means
of a parametric bootstrap procedure (see Section 5), we have to show the weak con-
vergence (denoted by = in what follows) of the test statistics under a triangular array



TESTS OF FIT FOR INVERSE GAUSSIAN DISTRIBUTION 433

Xn1,Xn2, -, Xun,n > 1, of rowwise independent random variables having a common
inverse Gaussian distribution IG(1,¢,), where 0 < ¢ = lim, o r exists. In the
bootstrap procedure, 9, is ﬁn(w) for a fixed w of the underlying probability space that
generates the realizations X;(w), X2(w),... . Therefore, also the convergence in distri-
bution of v/né, to a limiting Gaussian process must be established for triangular arrays.
To this end, we use the following Hilbert space Central Limit Theorem of Kundu et al.
((2000), Theorem 1.1). Therein, H denotes a real separable infinite dimensional Hilbert
space. :

LEMMA 4.1. Let {e : k > 0} be an orthonormal basis of H. For each n > 1,
let W1, Wiy ..., Wann be a finite sequence of independent H-valued random elements
with zero means and finite second moments, and put W, = Z;’zl Whj. Let Cy be the
covariance operator of Wy,. Assume that the following conditions hold:

a) lim, o0 (Crek,e1) = ap (say) exists for allk > 0 and [ > 0.

b) limp oo 3 peo(Cneh, €k) = D peo Gkk < 00

¢) lim, o0 Ln(e,ex) = O for every € > 0 and every k > 0, where, for b € H,
La(e,8) = 7oy E((Wij, 0)21{{ (Wi, b)] > )).

Then W,, = N (0, C) in H, where the covariance operator C is characterized by (Ch,er) =
E;’;O(h,ej)aﬂ, for every 1 > 0.

THEOREM 4.1. Let {Xn1,Xn2,-..,Xnn}, 7 > 1, be a triangular array of rowwise
independent and identically distributed random variables, such that X,1 has the inverse
Gaussian distribution IG(1,¢,), where 0 < ¢ = limy,_,o ¢n exists. Then

(4.3) Vnb, =W

in Lo, where W is a centered Gaussian process with covariance function
c(u,v) = Cov(W(u), W(v)) = E[g(u, X)g{v, X)], 0<s, t<oo.

Here, X ~ IG(1,¢) and

(44) g(u,z) =™ — L(u,p) + (& — LJu | —= v L(u, ) — Uz SO)M
M y ? (p+ 2u ? ? a(p ?
where L(u, p) = exp[p(l — /1 + 2u/y)]. Furthermore,
(4.5) Vasa = nll6a]|? = W],
PrOOF. A Taylor expansion yields
1< S .
Vnbu(u) = v/n EZeXP(—anj/Xn) — L(u, @)
j=1
_ 1 &
= L'n, n - nj - Xn'
n (w) + (Xn—1) n;uX j exp(—uXn;)
R OL{u,
_L(U, ‘Pn) - ((Pn - (pn) _%-ﬂ + Rn,l ’
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where

7 2 n _2vy2 *
X, —1 ' Xz: —2uruXy; .
Ry _ nn ) D nJ?(u*): ~* exp(—uXn;/uy,)
n B

=1

_ (‘/A’n — Son)z azL(u; ©)
2 Op?

K
p=p3,

with p, between X,, and 1 and ¢}, between ¢,, and ¢,,. Using (4.2), we have

Va () = Vi (Ln(u) ~ Ll pn) + VA (K~ 1) & 3w exp(—uXn)

OL(u, ) 1« 8L(u, )
- BQD oo ﬁ ‘; l(Xn]7 (pn) —Tn 890 o + Rn,l-
Hence,
(4.6) Vb (u) = Wy (u) + Rn(w),
where
Wn(u’) = \/T_Z(Ln(u) - L(U, (Pn)) + uE(an eXP(—Uan))% Z(an - 1)
dL(u, ) 1 &
T T o, ﬁ;l(an,wn)
apd
(4.7 Ru(u) = vn(X, — 1) (% Z (uXnjexp(—uXnj)) — uE (Xn1 exp(—anl)))
OL(u, ¢)
—Tn ——5‘(;—— oo + Rn,l-

Using E(Xn1 exp(~uXn1)) = (¢n/(¢n +2u))"/2L(u, ¢n), and putting

gn(u,z) = e " + L(u, pp) [—1 + %%—;—% — Uz, pn) (1 — k(u, on) + mﬂ )

where, generically,

(4.8) w(u, £) = (1 + %)1/2,

we obtain the representation Wy (-) = 3.7, Wy ;(-), where Wy, ;(-) = n™2g,(-, X,;)
are Lo-valued random elements, which have zero mean (recall that El(X,;,¢,) = 0)
and finite second moments.

We now verify conditions a)—c¢) of Lemma 4.1 for Wpy,...,Wy,. To this end,
let Cy, be the covariance operator of W,, which, by independence and symmetry, is
the covariance operator of g,(-,Xn1), and put ¢,(u,v) = Elgn(u, Xn1) - gn(v, Xn1)]-
Note that lim,_.c gn(u,z) = g(u,z), where g(u,z) is defined in (4.4). Put c(u,v) =
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E[g(u,X) - g(v, X)], where X is a random variable having the distribution IG(1, ),
and write C for the covariance operator of g(-, X).

Using the relations E(X) =1, E(X?) =1+ 1/p = E(1/X), E(1/X?) = E(X?) =
1+3/p +3/¢% E(exp(—uX)) = L(u,), E(X exp(—uX)) = L(u,)/r(u,p) (recall
k(u, ) from (4.8)), E(exp(—uX)/X) = L(u,p)(x(u,¢) + 1/¢), some algebra gives

c(u,v) = L{u+v,p) + L(u,p)L(v, )

. ((pﬁ,(u, ©)E(v, ) + ¢° [k, 0) + K(v, )] + P + 1) [n(ul, ©) * R(Ul, 90)}

4 1 ?
(242wt e+ Do) e (ot o)
. Kwe) ol )

[u(2 + @) + o(p + 1)] PO [v(2+ ) + (e +1)] n(v,cp)>'

The same expression is valid for ¢, (u,v) with ¢ replaced throughout by ¢,,. It follows
that im0 ¢ (4, v) = ¢(u,v) pointwise on Ry x IR,y and, uniformly in n,

(4.9) len(u, v)| < &(u,v)

for some function ¢ satisfying

(4.10) / / [(u, )] Pa(du) Pa(dv) < 00 for r=1,2.
o Jo

Since, by (4.10) and the Cauchy-Schwarz inequality,

/Ooo /0"" |&(u, v)e . (w)ey(v)| Py (du) Py(dv) < oo,

(4.9) and dominated convergence yield

lim (Crex,e;) = lim /0 - /0 " e, 0)en(w)er(v) Pa(du) Pa(dv)

_ /0 - /O ™, v)en(w)er(v) Pa(du) Py (dv)
= (Ceg,e1)

which, setting ag; = (Ceg, €;), proves condition a) of Lemma 4.1.
To verify condition b) of Lemma 4.1, use monotone convergence, Parseval’s equality
and dominated convergence to show

fe o] o0
. 3 . 9
Jim > (Crex,ex) = lim ) E({ek, gn(, Xn1))?)
k=0 k=0
Y . 2
= lim_ Ellga(, Xou)|
o0
= / lim ¢p(u,u)P,(du)
0 n—0o0

= / - c(u, u) Py(du)
0
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i

Ellg(-, X)|1?
00

= Zakk < 0.
k=0

To prove condition c) of Lemma 4.1, notice that, by symmetry and the definition of W,;,
L(e,ex) = E(VE1{|Vai| > ey/n}) where

OO0
Vnk - <gn('7 an), €k> = / gn(U, an)ek(u)Pa(du)-
0
From continuity and the fact that EX%, < oo for each k = £1,+2,..., it follows that
sup,,>1 E|Vnk|? < 0o. Since E(VZ1{|Vax| > ev/n}) < E|Vx|?/(ey/1), we are done.

By Lemma 4.1, W,, = N0, C~’) in H, where the covariance operator C is character-
ized by (Ch,er) = 37224(h, e;)a;i, for every I > 0. Since

(Ch,er) = /0 ” /O " ) | S (s es)e; () | ew)Pa(du) Pu(dv)
=0

[o ]

(h, ej)a;1,
j=0

we have C = C and thus W,, = W, where W is given in Theorem 4.1. On the other
hand, since straightforward algebra shows that ||R,|| = op(1) (recall the definition of
R, from (4.7)), (4.3) follows from (4.6) and Theorem 4.1 of Billingsley (1968), and (4.5)
is a consequence of the continuous mapping theorem. O

Next, we consider the asymptotic behavior of V;, , under contiguous alternatives to
the inverse Gaussian distribution. To this end, let X,1,. .., Xnn, 7 > 1, be a triangular
array of rowwise independent random variables having the Lebesgue density

f8) = o) (1422},

where f; is the density of the inverse Gaussian distribution IG(1, p), and h is a bounded
measurable function such that fooo h(z) fo(z)dz = 0. To guarantee that f, is nonnegative,
we tacitly assume n to be large enough.

THEOREM 4.2. Under the triangular array Xp1, - - . , Xnn and the standing assump-

tions, we have
Vné, = W+ A

in Lo, where W is the centered Gaussian process figuring in Theorem 4.1, and the shift
function A 1is given by

aw= [ ” g, 2)h(z) fole)dz,

where g(u,x) is defined in (4.4). Furthermore,
Vo =nl6al? = W + A%
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PROOF. Since the reasoning, mutatis mutandis, follows the proof of Theorem 3.1
of Henze and Wagner (1997), it will be omitted. O

Remark 4.1. To show the weak convergence of T}, o = nll€,||* under Ho and under
contiguous alternatives, one can proceed along the same lines, using the fact that

Vinen (1) = Wy (u) + Ry (u),

where
Wa(w) = = D o(exp(—us)(1 = pult) X)) + = 3 (g = 1)
X((’LL + Pn(U))E(an exp(_UXni)) - upn(u)E(X'?zl exp(—anl)))

1 &
—l—up;l (U)QD;2E(XTL1 eXp(_anl)) \/— Z l(an, (P'n),
n =

pn(w) = (1 +2u/p,)/2, and ||R,| = op(1). The details are omitted.

As a consequence of Theorem 4.1 and Remark 4.1, a test that rejects Hg for large
values of T, , or V,, 4, carried out via the parametric bootstrap procedure described in
Section 5, attains a given nominal level in the limit as both the sample size and the
bootstrap sample size tend to infinity. The proof runs along the lines of Henze (1996).

From Theorem 4.2 and Remark 4.1, we conclude that the asymptotic level of the
proposed tests is above the nominal level for sequences of alternatives that converge to
the inverse Gaussian distribution at the rate n~1/2. Of course, more work needs to be
done to understand the dependence of power on the parameter a, particularly if one has
in mind some kind of adaptive test for the inverse Gaussian distribution.

We now consider the behavior of T,, , and V;, 5, a > 0, under fixed alternatives to
Hy, with the aim of showing the consistency of the corresponding tests. To this end,
suppose that the distribution of X has finite positive expectation p and finite negative
moment A = E[1/X]. We then have fi, — p almost surely and An — X almost surely,
whence L, (t) — L(t) almost surely, where L(t) is given in (2.1). By Fatou’s Lemma, it
follows that ’

(4.11) lim inf % > 1 /0 % (Blexp(—tX)] — L(£))? exp(—at)dt

almost surely. Since the right-hand side of (4.11) is positive if the distribution of X is
not inverse Gaussian, a test that rejects Hy for large values of V,, ,, carried out via the
parametric bootstrap, is consistent against any such alternative. In the same way, start
with (2.4) and use Fatou’s Lemma to get

n—oo N

(412) Timinf 2 > % / (uE[e=] + (1 + 202t /N)/2E[XeX))? exp(—at)dt
0

almost surely. In view of (2.2), the right-hand side of (4.12) is positive if the distribution
of X is not inverse Gaussian. Consequently, also the parametric bootstrap test that
rejects Hy for large values of T7, , is consistent against any alternative with the properties
stated above. It is not difficult to see that the property of consistency of both tests
continues to hold under the condition E[1/X] = oo.
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5. Simulations

To assess the power of the new goodness-of-fit tests for the inverse Gaussian distribu-
tion in comparison with classical procedures that are based on the empirical distribution
function (so-called edf tests), a large-scale simulation study has been conducted. Among
the edf tests, we considered the Kolmogorov-Smirnov test, the Cramér-von Mises test,
the Anderson-Darling test, and the Watson test, which were also studied by Gunes et
al. (1997). Putting F(z) = F(; fin, An), where F(z;u, ) is given in (1.1), and writing
X1y £ X2) £ -+ £ X(n) for the order statistics of X1, ..., X, the Kolmogorov-Smirnov
statistic is

KS = max(D*,D"),

where Dt = max;—1,.._n(i/n — F’(X(,-))), D~ = max;-1 _‘,n(ﬁ'(X(i)) — (i —1)/n). The

’” 9.

Cramér-von Mises statistic is
1 Ly 25 — 112
CM=— F(Xn) —
12n+;( X») = =5 ) ,

whereas the Watson statistic is given by

2
" F(X
WA=CM —n Z%—%

=1

Finally, the Anderson-Darling statistic takes the form

AD = —n— 232 ~ 1)log F(X(y) + (2(n ) + 1) log(1 ~ F(X(3))).
j=1

Among the new procedures based on the empirical Laplace transform, we chose four tests
from each of the two different classes, namely T, o, T7,0.25, Tn,1, Tn,10 and V0, V5 0.25,
Va1, Vn,10. Although not leading to consistent tests, we also considered the square of
the second component of Neyman’s smooth test, i.e. 03’2, where UA'nyg is defined in (3.1),

and the statistic L
Snoo =n(Y2 - Y, 1)?

which, apart from a factor, is the limit of a3Tn,a and asVn,a as a — 00.

Writing W,, = W,(X1,...,X,) for any of the statistics described above, the corre-
sponding level-a test rejects Hg if W, (z1,...,%,) exceeds some critical value ¢ on given
data xy,...,T,. Since W, is not distribution—free under Hy, ¢ will be estimated from the
data by a parametric bootstrap, which avoids doubtful reliance upon asymptotic critical
values. The parametric bootstrap runs as follows:

Let Hy, »(t) := Py(Wy < t) be the distribution function of the null distribution of W,,
under ¥ = (u,A). The parametric bootstrap estimates the natural critical value, which
is the unknown (1 — a)-quantile of H, b by the following Monte Carlo procedure: Con-

ditionally on the observed value of 9, = &, (X1y---, Xn) = (fin, j\n), generate B pseudo—
random samples of size n with the distribution IG(fin, An), i-e. generate X F1re e Xjn
j=1,...,B, iid. according to IG(ﬂn,j\n). Then calculate W}, := Wn(XJ’-‘l, s X))
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for j =1,...,B. Writing H} 5(t) := B~} ZJ 1 1{ n <t} for the empirical distribu-
tion function of Wy ,,..., W5, and Wl. g< - < WB: p for their order statistics, the
empirical (1 — a)-quantile Cpp O Hy g is

. {WB(I @):B if B(1 — «) is an integer
n,B = (B(1-a)+1:B7 otherwise,

where [y| is the largest integer not greater than y. We used the modified critical value

eng:=Wq g+ 1 —"m)W;S 1.8~ W5, .B)

with o := B — [a(B + 1)], v, := a(B + 1) — [a(B + 1)], suggested by Baringhaus and
Henze (1992), which leads to an accurate empirical level of the test even for a fairly
moderate bootstrap sample size B.

Each of the tests under discussion was implemented via the parametric bootstrap
as described above with a bootstrap sample size of B := 200. The nominal level is
a = 0.1, the sample size is 20 and 50, and each power estimate is based on 10000 Monte
Carlo replications. Calculations were done on an IBM RS/6000 SP parallel computer
at the Rechenzentrum of the University of Karlsruhe, using high precision arithmetic in
FORTRAN 90 and routines from the NAG and the IMSL libraries, whenever available.

To check the actual level of the test, the statistics were simulated under the null
hypothesis IG(1, ) for a wide range of values of the shape parameter ¢, namely ¢ €
{0.25,0.5,1,3,5,10,20,100}. In a second step, we considered the following alternatives
to the inverse Gaussian law, bearing in mind that each of the test statistics is scale-
invariant:

o the Weibull distribution W(p) with density ¢z®~!exp(—z¥), z > 0, for ¢ €
{0.5,0.8,1,1.2,1.6,2,3},

e the Lognormal distribution LN(ip) with density exp(— log®(x) /()02) /(pz(2m)1/?),
z >0, for p € {0.6,1,1.4,2,3,5},

e the Gamma dlStI‘lbuthH G(yp) with density z¥ ! exp(—z)/T(g), z > 0, for ¢ €
{0.6,1,2},

o the Half-normal distribution with HN density (2/7)'/2 exp(—22/2), z > 0,

o the Half-Cauchy distribution HC with density 2/(x(1 + z?)), z > 0,

o the uniform distribution ¢/(0,1).

Inverse Gaussian random variates were generated using the ‘transformations with
multiple roots method’ of Michael et al. (1976); see, e.g. Seshadri (1993), p. 203. Stan-
dard routines of the IMSL library were used to generate random numbers from the
remaining distributions.

Power estimates of the tests under discussion are given in Tables 1 and 2. All en-
tries are the percentages of 10000 Monte Carlo samples that resulted in rejection of
Hy, rounded to the nearest integer. An asterisk denotes power 100%. Further simula-
tion results for other alternatives and sample sizes are available from the authors upon
request.

The main conclusions that can be drawn from the simulation results are the follow-
ing:

1. The tests based on [3',%’2 and 5’,2100 have low power compared with the other pro-
cedures and should not be recommended as omnibus procedures for the testing problem
under discussion. Furthermore, the actual level is far below the nominal level for small
values of the shape parameter .
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Table 1. Percentage of 10000 Monte Carlo samples declared significant by various tests for the
Inverse Gaussian distribution (o = 0.1,n = 20).

alternative To Tozs Ti Tio Vo Voos Vi Vie CM W AD KS U2, 8%
IGo.25) 9 9 10 8 10 12 12 10 11 10 11 10 6 2
IGe5) 9 9 10 8 10 11 11 10 10 10 10 10 9 4
IGA) 9 10 10 9 10 11 11 10 11 10 10 10 10 6
IG@B) 10 10 10 9 10 10 10 9 10 10 10 10 11 8
IG() 10 10 10 9 10 10 10 10 10 10 10 10 12 9
IG0) 10 10 10 10 10 10 10 10 10 10 10 10 12 9
IG(20) 10 10 10 10 10 10 10 10 10 10 10 10 12 9
IG(100) 10 10 10 10 10 10 10 10 10 10 10 10 12 10
wW(@5) 94 95 95 91 96 97 96 94 96 93 96 95 1 21
w8 8 8 8 77 8 8 8 80 8 T4 8 719 30 4
W(.0) 73 T4 74 68 75 T6 77 71 72 63 72 67 53 12
W(.2) 66 67 67 62 68 69 69 64 64 55 64 59 59 23
W(l.6) 58 58 58 53 59 60 60 55 53 45 54 48 56 38
W(2.0) 53 53 53 49 54 54 55 50 47 40 48 42 53 41
W(3.0) 48 47 47 44 48 48 48 45 40 35 42 36 49 41
LN(G6) 12 12 13 11 13 13 13 12 12 11 12 12 13 9

LN(10) 19 19 19 15 22 22 21 17 19 15 19 17 15
LN(14) 32 33 33 25 39 39 37 30 35 27 36 32 13

LN(2) 61 64 62 47 70 72 67 58 69 57 70 65

LN(3) 93 94 93 8 96 94 89 88 95 91 96 94 0 40
G(0.6) 90 91 92 8 91 93 93 90 91 86 91 89 19 6
G(1.0) 73 74 74 68 75 76 77 T1 72 63 72 67 53 12
G(2.0) 44 44 44 38 46 46 46 40 39 32 40 36 40 24

x? 94 95 95 93 95 96 96 95 95 91 95 93 8 13
X% 73 T4 74 68 75 76 77T 71 72 63 72 67 B3 12
X%O 21 21 21 18 22 22 22 19 18 16 19 16 21 15

HN(@©,1) 79 8 8 77 8 81 81 79 76 69 77 T2 73 37
HC(0,1) 48 46 42 31 55 51 45 35 52 46 652 49 10 3
u(0,1) 91 92 92 92 90 91 92 92 90 86 92 86 90 70

2. The tests from the new classes as well as the edf tests, when implemented via
the parametric bootstrap, maintain the nominal level very closely, even for the sample
size n = 20. The same behavior was observed for the nominal level o = 0.05.

3. Among the group of edf tests, CM and AD outperform- the tests of Watson and
Kolmogorov-Smirnov, with AD having a slight edge over CM in some cases.

4. The new tests based on T, , and V, , behave fairly similar, with T}, o and V.o
performing best. V, o has a slight edge over T}, o.

5. Over the whole range of alternatives considered, the test based on V,, o is at least
as powerful as the Anderson-Darling test, which is the best test from the group of edf
tests, and it clearly dominates AD in many cases. We thus conclude that V,, o yields a
strong omnibus test for the Inverse Gaussian distribution.



Table 2. Percentage of 10000 Monte Carlo samples declared significant by various tests for the
Inverse Gaussian distribution (@ =0.1,n = 50).

TESTS OF FIT FOR INVERSE GAUSSIAN DISTRIBUTION

alternative To Toos T1 Tio Vo Voas Vi Vio CM W AD KS U2, 82 |
IG0.25) 9 10 10 9 10 11 11 10 11 10 10 10 9 4
1G(0.5) 9 10 10 9 10 10 11 10 10 10 10 10 10 6
I1G(1) 9 10 10 9 9 10 10 9 10 10 10 10 10 8
IG(3) 9 9 100 10 9 10 10 10 10 10 10 10 10 9
IG(5) 9 9 9 9 10 10 10 9 10 160 10 10 10 9
IG(10) 9 9 9 9 9 9 9 9 16 10 10 10 10 9
IG(20) 9 9 9 9 9 9 9 9 10 10 10 10 10 9
IG(100) 9 9 9 9 9 9 9 9 10 10 10 10 10 9
Ww(0.5) * * * * * * * * * * * * 3 21
Ww(0.8) 99 99 99 98 99 99 99 98 99 97 99 98 76 31
W(1.0) 97 97 97 95 97 98 97 96 96 92 96 94 90 70
W(1.2) 95 95 95 93 95 95 95 93 93 87 93 90 91 83
W(1.6) 91 91 91 89 91 91 91 89 8 78 87 80 88 84
W(2.0) 88 88 88 8 87 88 88 86 80 72 81 74 86 83
W (3.0) 83 83 83 82 83 83 83 83 72 64 75 65 83 81
LN(0.6) 15 15 15 13 16 16 16 14 13 12 13 12 14 12
LN(10) 31 30 28 21 35 34 30 23 28 22 29 26 20 14
LN(1.4) 60 59 54 38 66 63 56 41 61 49 61 56 29 9
LN(2) 92 92 8 71 95 94 89 74 95 89 95 93 11 0
LN@3) + % % 97 % 99 97 93 % % x = 0 35
G(0.6) * * * ok % * O * * %k * 47 16
G(1.0) 97 97 97 95 97 98 97 96 96 92 96 94 90 70
G(2.0) 78 78 77 71 79 79 79 73 70 60 72 65 69 63
x% * * * * * * * * * * * * 21 15
X% 97 97 97 95 97 98 97 96 96 92 96 94 90 70
X%O 41 41 40 35 42 42 41 36 30 25 32 27 35 32
HN(@©,1) 99 99 99 99 99 99 99 99 98 96 98 97 96 91
HC(0,1) 81 74 61 39 82 71 59 41 8 78 81 77 19 6
Uu(o,1) * * * * * * * * * * * * 99 95

6. Examples

441

We applied the tests under discussion to several data sets. The first set, which
was also considered by Gunes et al. (1997), refers to n = 46 active repair times for an

airborne transceiver (in hours). The data are given in Table 3.

The second example was also considered by Pavur et al. (1992). The results recorded
in Table 4 are the millions of revolutions to failure of n = 23 ball bearings in a life test

study.

The third data set is given in Table 5. It consists of n = 16 intervals in operating
hours between successive failures of airconditioning equipment in a Boeing 720 aircraft

(see Edgeman et al. (1988)).

Our final examples are taken from O’Reilly and Rueda (1992). Table 6 shows the



442 NORBERT HENZE AND BERNHARD KLAR

Table 3. Repair times (in hours) for airborne transceivers.

02 03 05 05 05 05 06 06 0.7 07 07 0.8
08 10 10 1.0 10 11 13 15 1.5 1.5 1.5 20
20 22 256 27 37 30 33 33 4.0 40 45 47
50 54 54 70 75 88 90 103 220 245

Table 4. Number of revolutions (in millions) to failure of ball bearings.

17.88 2892  33.00 41.52 42.12 45.60 48.48 51.84
51.96 54.12 55.56 67.80 68.64 68.64 69.88  84.12
93.12 98.64 105.12 105.84 127.92 128.04 173.40

Table 5. Intervals between failures of airconditioning equipment.

102 209 14 57 54 32 67 59 134 152 27 14 230 66 61 34

days of shelf life of a food product (sample size n = 26), and Table 7 exhibits precipitation
data (n = 25), measured in inches, from Jug Bridge, Maryland.

Table 8 shows the estimated p-values for Ty, 4, Vpe(a = 0,0.25,1) and the edf
statistics on the five data sets. For each statistic T" and each data set 1, ..., z, (say), the
p-value was obtained by first calculating T,, = T'(z1,...,2,) and then calculating T;" =
T(zgy,---1%p,) for b=1,2,...,999. Here, conditionally on z1,...,%,, the bootstrap

samples 7} ;,...,%},, 1 < b < 999, are independent with the distribution / G(ﬂn,j\n),

where i, and j\n are given in (2.4). The p-value of T, is then one plus the number of
those Ty (1 < b < 999) that exceed T}, divided by 1000.

For the transceiver data, the ball bearing data and the airconditioning equipment
data, none of the tests rejects the Inverse Gaussian model at the 10% level. The results
for the first two data sets agree with the findings of Gunes et al. (1997) and Pavur et
al. (1992). However, the p-value of 40% for the Kolmogorov-Smirnov statistic and the
airconditioning equipment data contradicts the result of Edgeman et al. (1988); they
obtained a p-value between 0.05 and 0.10. This discrepancy is due to an error in the
computation of the Kolmogorov-Smirnov statistic: Edgeman et al. ((1988), p. 1210),
reported a value of 0.2641, whereas the correct value is 0.162. Using this value and
proceeding along the lines of Edgeman et al. (1998), one arrives at the conclusion that
the hypothesis of an IG model is not rejected at the 20% level.

For the shelf life data set, there is a remarkable difference between the edf tests and
the tests based on the empirical Laplace transform. Whereas the p-values for the latter
group are roughly 20%, each of the edf tests rejects the Inverse Gaussian model at the
5% level.

For the precipitation data, the p-values are between 8% and 11% for the statistics
based on the Laplace transform. Except for the Kolmogorov-Smirnov statistic, which
yielded a p-value of 16%, the p-values for the edf statistics are below 6%. The p-values
of 1.3% and 3.6% for the Anderson-Darling statistic and the last two examples are in
agreement with the findings of O’Reilly and Rueda (1992).
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Table 6. Days of shelf life of a food product.

24 24 26 26 32 32 33 33 33 35 41 42 43
47 48 48 48 50 52 54 55 57 57 57 57 61

Table 7. Precipitation (in inches) from Jug Bridge, Maryland.

101 111 113 115 116 117 117 1.20 1.52 1.54 1.54 1.57 1.64
1.73 179 2.09 209 257 275 293 319 354 357 511 5.62

Table 8. p-values (in percent) of the test statistics under discussion on the given examples,
based on 999 bootstrap replications.

n Tho Tno2s Tni Voo Vaoos Va1 CM W AD KS

transceiver 46 94 94 94 95 95 93 86 81 87 91
ball bearing 23 47 46 42 43 43 41 87 88 88 93
air condition 16 54 52 46 53 51 45 56 54 53 40

shelf life 26 18 18 17 21 20 18 2.1 1.9 1.3 3.0
precipitation 25 9.6 9.7 11 8.0 8.7 10 50 57 3.6 16
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