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Abstract. We consider a sequence X3,..., X, of r.v.’s generated by a stationary
Markov chain with state space A = {0,1,...,7}, r > 1. We study the overlap-
ping appearances of runs of k; consecutive i’s, for all i = 1,...,r, in the sequence
X1,...,Xn. We prove that the number of overlapping appearances of the above
multiple runs can be approximated by a Compound Poisson r.v. with compounding
distribution a mizture of geometric distributions. As an application of the previous
result, we introduce a specific Multiple-failure mode reliability system with Markov
dependent components, and provide lower and upper bounds for the reliability of the
system.

Key words and phrases: Multiple runs, Stein-Chen method, Kolmogoroy distance,
Compound Poisson approximation, consecutive-k1, . .., kr-out-of-n: MFM system.

1. Introduction

During the last decade, there has been an increasing interest in studying several
ways of counting the number of runs which appear in sequences of trials. This is due to
the wide applicability of runs in many areas of science, such as quality control, reliability,
non-parametric statistical analysis etc.

Most of the papers dealing with runs concern the appearances of success runs in
sequences of {0,1} trials. Also, there has been an interest to obtain results for the
appearances of more than one kind of runs. On that we refer the works of Aki (1992),
Chryssaphinou et al. (1994), Uschida and Aki (1995) and Han and Aki (1999), who
have studied waiting time problems for the appearances of several kinds of runs, using
probability generating functions arguments and imbedding Markov techniques. For more
literature, one may consult Godbole and Papastavridis (1994), Koutras (2000) and the
references therein.

On the other hand, many authors have looked into the matter of runs from a different
point of view; they approximate the distribution of the number of runs by well known
distributions such as Poisson and Compound Poisson. The Stein-Chen method has
proved to be a powerful tool in computing the error bound of the above approximations.
The work done on this field concerns appearances of success runs and words. On that
we refer Arratia et al. (1990), Barbour et al. (19925), Roos (1993), Roos and Stark
(1996), Erhardsson (1997), Eichelsbacher and Roos (1998), Reinert and Schbath (1998),
Barbour and Xia (2000), Barbour et al. (2000) and the references therein. For general
literature on the Stein-Chen method see Stein (1972), Chen (1975), Arratia et al. (1989),
(1990), Barbour et al. (1992a), (1992b), Roos (1993), (1994), Erhardsson (1997), (1999),
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Barbour and Utev (1998), (1999), Barbour and Xia (1999), (2000).

In this paper we are going to study the following model. We consider a stationary
irreducible and aperiodic Markov chain {X,},cz on a finite state space A = {0,1,...,7},
7 > 1, with transition probability matrix P = (D, )(z,w)cAx.4 and stationary distribution
T = (7y) e Fori€ A let I; o := I[(Xo—p,41 - Xa) = (i ---1)] be the indicator of the
event that a run of k; consecutive i’s ends at index a € 7.

We define the r.v. W :=3"_ 57 | I, ,, which enumerates the overlapping runs
of k; consecutive i’s, ¢ = 1,...,r, that end in the finite sequence Xy,...,X,,. In order
to avoid edge effects and to facilitate calculations, we assume that the doubly infinite
sequence {X,}qcz is observed.

We are interested in approximating the distribution £(W) of W. Since these runs
tend to occur in clumps, a Compound Poisson distribution seems to be the appropriate
approximating distribution for W. Furthermore, we will see that the compounding
distribution is a mixture of geometric distributions, as it is expected by intuition. The
interesting fact of this model is its potentiality of applications in a variety of fields such
as reliability, randomness tests, waiting time problems etc. Since the motivation of the
present work arises from a specific reliability system, we do not count runs of 0’s (see
Section 3). However, the case of taking into account runs of 0’s can be treated in exactly
the same way, using the r.v. > o, >°7_, I; , instead of W (Remark 2.2).

We will exploit the results obtained by Barbour and Xia (2000), in order to get
bounds for the distance with respect to the Kolmogorov metric between £(W) and an
appropriate Compound Poisson distribution. For that purpose, we describe in brief their
results.

The Compound Poisson distribution CP(), 1), where u is a probability measure
and A > 0, is defined by

N
CP(\p)=L (ZY> =L\ iZ],
i=1 i>1

where Y;, ¢ > 1, are independent r.v.’s with distribution p which are also independent
of N. The latter follows the Poisson distribution with parameter A\. Moreover, the Z;,
i > 1, are independent Poisson r.v.’s with parameter Ay;.

Let W be a non-negative integer valued r.v. and let yu; > 0, i € N , be such that
i1 #i =1and my =3 ip; < +oo. Suppose that, for some A > 0, for all bounded
g: N — R and for small &g and ¢, it holds true that

E Zz’)\uig(W +14) = Wg(W) »| < eoMo(g) f€1M1(g),
where Mo (g) := sup;»g |9(j)| and M;(g) := sup;5q 19(j + 1) — g(j)|. Then
dx (L(W),CP(\, p)) = Sup [Ef(W) — CP(\, p){f}]

(1.1) < eo sup Mo(gys) +e1 sup Mi(gy),
feFk FEFK

where Fx = {fe,k € N : fi(2) = 1k +o0){z)}. The function gy is the solution of the
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Compound Poisson Stein equation

Y ihng(G+1) - 3g(G) = £G) - CPOLw{f}, >0
i>1

Barbour and Xia (2000) proved that, under the condition
kpr > (+ Dprg1, k21,
it holds

[ 2 1 1
sup M, Smin{l, } and sup M, Smin{—,———~}.
feEFK O(Qf) 6)‘/-/'1 fE.’I-I")K 1(gf) 2 A'U'l +1

Using the above inequalities and relation (1.1), it follows that

' 2 1 1
. < i i — T .
(1.2) dx (L(W),CP(A, 1)) < g min {1, s } +é&; mm{Q, Sy 1}

For suitably chosen go and €1, (1.2) can lead to very satisfactory results by giving sharp
bounds on the error of approximation, even for large IEW. Finally, for more discussion
about €9 and e; and the above approximations, we refer Barbour and Chryssaphinou
(2001).

This paper is organized as follows. In Section 2, we present bounds for the Kol-
mogorov distance between the distribution of W and a suitable Compound Poisson
distribution for the Markov case (Theorem 2.1). The i.i.d. analogue is an immediate
consequence (Theorem 2.2). Under some restrictions on k; and py;, i = 1,...,7, the ob-
tained error bounds are of order at most O(y max;<i<, k;), where 1 :=Y7_| EI; ,, and
tend to zero as n — 400 giving us the limit result of Theorem 2.3. In Section 3, employ-
ing the previous results, we derive upper and lower bounds for the reliability of a specific
Multiple-failure mode system: the Consecutive-ki, ..., k--out-of-n: MFM system with
Markov dependent components. This system is a generalization of the consecutive-k,
-out-of-n: DFM system (dual-failure mode) with independent components, which was
introduced by Koutras (1997). Finally, numerical examples are presented to illustrate
the satisfactory behaviour of the above obtained bounds.

2. Main results

As we have mentioned in the previous section, our main aim is to bound the distance
dg(L(W),CP(\, ). Instead of W, it is easier to approximate the declumped r.v.

W= iz k0,

a=1k>1

where ¥, ;, denotes the indicator of the event that a k-clump of runs appears at a (the
first run ends at index a). In particular, if CF denotes a run of consecutive #’s with
length k; + k —1 (in other words k-overlapping appearances of runs of i’s, each one with
length k;) and 2Cly =z 4i...i y, with z, y € A and z, y # 4, then

kit+k—1

(21) Vo= i " Iogr(zChy).

=1 z,y#i
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Here, in general, I,(Y) denotes the indicator of the event that a pattern Y ends at
position a,i.e. if Y = yy,..., ¥y, Withy1, ..., 9, € A, then I,(Y) = I[(Xg—v41,-- -, Xa) =
(¥1,-.-,Yv)]. The r.v. ¥, x has mean

T
(2:2) EV, . =Y (1—pi)’p v,
=1
where we set ¢; :=EI , = wipi?i"*l, fori=1,...,r.

Now, applying the triangular inequality
(2.3) dg (L(W),CP(\ ) < dic(L(W), L(W)) + dic (L(W), CP(\, ),

we notice that the main problem concentrates on the bounding of the distances at the
right hand side of this inequality.

In Section 1, we assumed that the doubly infinite sequence {X,},cz is observed
so that edge effects can be ignored. This introduces an error which results from the
difference between W and W. We observe that

W #Whc {To= DG =D} U{Uin = DGms1 =D}

In other words W differs from W when, in the infinite sequence {X,}secz, a Tun of k; +1
consecutive i’s, for some i = 1,...,r, ends at position 1 or at position nn + 1. Thus, due
to symmetry, we have

T
P(W#W)<2 Z]P(a run of i ’s with length k; + 1 ends at position 1)
i=1

< 2,
and since dx (L(W), L(W)) < IP(W # W), it follows
(24) dxc (LW, L(W)) < 29.

So it remains to bound the distance dx (L(W), CP(A, 1)). Here, CP(), ) denotes the
Compound Poisson distribution of Zkzl kZy, where Zj, are independent Poisson r.v.’s

with parameter Ay, which is the mean of the r.v. 3 »_; ¥, ;. Using (2.2), it is easy to
see that

T T
A=nd (Q—pa)s; pe=Y wi(l-pa)pk !, k=1,
i=1 i=1

where 0 < w; = (1 — pis)¥i/ 354 (1 — pjj)¥; < 1. Thus the compounding distribution
w is a mixture of r Geometric distributions Ge(1 —p;;), i1 =1,...,r.

Let B(a,k) C {1,...,n} x N denote the set which contains the indices (b,!) for
which ¥y is “strongly” dependent on ¥, ;. Set

Xop = > W15 Zapi= . IWy
(a,k)#(b,) €B(a,k) (BDEB(ak)
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Then W = kU, i+ Xo i + Za,x and observing that IE(\I’a,kg(W)) =E(U,rg(k+Xor+
Za,k)), it can be verified that

S kAug(W + k) — Wag(W) b| < Mo(g)b + Mi(g)(5; +b3),

k>1
where
Bt = ZZ Z KIEY, BV, ;
a=1k>1 (b,))eB(ak)
by = ZZ 3 FIE(¥ 0,1 Wp,1);
a=1k>1 (a,k)#(b,))€B(a,k)
b= 3 3 MEIB(Va Bl (¥, - (1) € B(a KY)}.

The set B(a, k) is given by:
(2.5) Bla,k) ={(b,);a—M-1l-s+1<b<a+M+k+s—1,1>1},

where M := max;<;<r k; and s > 1. This choice of B(a, k) arises from the fact that ¥,
is measurable with respect to o(Xq_us, ..., Xatk), so that ¥, and Uy ; are “weakly”
dependent whenever b — M > a+k+sora— M > b+ 1+ s for s sufficiently large.
We note that s results from the Markovian structure of the problem, which necessitates
a larger neighborhood than in the i.i.d. case. Obviously in the latter, one should take
s=1.

Considering the above notations, relation (1.2) takes the form

2.6)  dx(L(),CP(, ,u))<m1n{2 o 1+1}(b1‘+b§)+min{1,\/_;2;}b3

Inequality (2.6) is valid under the restriction kug > (k+1)ury1,k > 1, which is statisfied
when maxi<i<rpii < 1/2. Making use of the neighborhood (2.5) and bounding the
quantities by, b3 and b3 in a nice way, we will get at the desired bound for the distance
dx(L(W),CP(), u)) in the case of monotone p’s. But before presenting this result, we
need some additional notation.

Let pg? denote the t-order transition probablllty of the irreducible and aperiodic

ﬂ-!lpyz

Markov chain {X,},ez and p(t) = the t-order tranosition probability of the
(R)zy

reversed Markov chain {X2},cz , for ¢ 2 1 Following a coupling argument (Lindvall
(1992), p. 96), we deduce

(27) maxmax { 3 10 ~myl, Y 1P, — Tl f <2 V21,
yeA yeA

where p =1 — mm{zyeA minge A Py, ZyeA MiNge 4 P(R)zy}- In the case where o =1
(this happens when there is at least one zero in each of the columns of P), one may do
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the following. Since the state space A is finite, there exists an [ > 0 such that pg(cl; > 0,
for all z,y € A. So we take p =1 — min{zyeA minzeAp(wz, Zye.A minge 4 pgg)zy} and
then replace o° by olf! in relation (2.7).

Furthermore, we define the following quantities:

(1)

(2.8) m = min k,, A:=sup max Prw.
1<i<r t>1 2,we{l,...,r} My

Now we are ready to state the first main result of this work.
THEOREM 2.1. If maxj<i<rPii < 1/2, then

dx (L(W),CP(\, 1))

1 1 2
< = i _ >
By (s) == mm{2 Y —}—1}Dl(s)+mm{1’”e/\p,1}D0(8)+2¢’ s>1

2 T
Dy (s) := {2]EW(M+3+1)1/;+(M m+s+1)— (Zl—p ) +2 1¢:’P§”}
it =1 . (3

where

Dy(s) := 2EWg°{2 4 20° + oM*+511}

and CP(), i) denotes the Compound Poisson distribution with A =n>_._, (1—pi)¢; and
compounding distribution pu, = 3 5_, wi(1—ps)pe L, wi = (1—pi)s/ > =1 (L= pi)s,
fork>1landi=1,...,r

Proor. We will use the triangular inequality (2.3). A bound for the distance
di (L(W), L(W)) has been already found in (2.4). Thus it remains to bound the distance
di (L(W),CP()\, 1)) through the quantities b}, b3 and b}. First we treat the term b}.
Making use of the neighborhood (2.5), we have

at+M+k+s—1

(2.9) ZZZ > KHEY,EY,,

a=1k>11>1 b=a—~M-—-Il—s+1
a+M+k+s—1

< ZZ N Z KIEY, s EV,

a=1k>11>1
n at+M+k+s—-1

<2) DN EET. >, Y IED,

a=1k2>1 b=a >1

i > (M 4k + s)kET, x

a=1k>1

i=1

|I

where it can be easily verified that Zl>l [IE¥,; = and Zl>1 PEV, =¢+23 ;%
psi/(1 — py;) in virtue of (2.2). Obviously, IEW = ni.
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For the quantity b3, we do the following

a+M+k+s-1

b2=2zzz > KIEYarTs,)

a=1k>11>1 b=a+1
a+M+k+s—1

22 > Z oYY HE{Law(@CFy) LuECH)},

a=1k,1>14,j=1 x,y#i Z,§#j b=a+k+k;—1

because for b =a + 1,...,a+k+k; — 2 it holds that IE{I,4(zCFy Mo i (ECL)} = 0. If
b=a+k+k;j— ya+ M+ k+s—1, then zCF and C’y do not overlap. Besides, it
holds 37, ; a+k($C y) < Itk—1(zCF) and P Ib+l(a:Cly) < Ip11(CLg), so that the
term 37, i 3z B{lak(2CFy) Ib11(2CL7)} is bounded by

3 B{Lar(CE) b41(5C)} < Blaypar (2OH)ELppa(CL)plF 542 I,
Y#i TA£F
< A]EIa+k_1($UCf)]EIb+l(C§g)a

where A is given by (2.8). Since El,4x_1(zCF) = prmpk i+h=2 it follows

at+M+k+s—1

(210) b5 < 2AZ 3 Z >0 D HELy 1 (sCHEL(CLY)

a=1k,1>14,j=1 z#i §7#j b=a+k+k;—1

2
<2M-m+s+1)A Z (Z(l — Pii )i Z kpu )

a=1 \ i=1 k>1

= 2EWA(M — m+s+1)(21¢1 )/d)

Next, we turn our attention to the term b3. It holds true that o(¥s; : (b,1) € B(a, k)°) C

o(X1,..., Xa-M—s, Xatk+s,- - -, Xn), and using the Markov property and relation (2.1),
we obta,m
n
b3 < ZZkEIE{wak —EVoi[o(X1, - Xa-Ms Xathtsr- - Xn)}
1k>1

Z k Z Z IE IE{Ia-l-k(mC;cy)”U(Xa—M—Sa Xathrs)} — ]EIa-!-k(szky)l

k>1 i=1 z,y;éz

(2.11) ZZk > Z > P(Lati(zCFy) =1, Xa—pr—s = 2, Xaphts = w)

a=1k>1 z,weA i=1 z,y#i

s ||M: I
i

_]EIa+k($Ciky)]P(Xa—M—-s =2, Xotk+s = w)].
‘We have

]P(Xa—M—s =2z, Xa+k+s = w) = szgﬂu/)f-f-k-iﬂs)

and
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P(Lo41(zCFy) = 1, Xa-pm—s = 2, Xatkts = w) = pLL~FIEL, 4 (zCFy)p(s),

Where pr))zz = wzngz /75 is the transition probability of order ¢ of the reversed Markov

chain. Furthermore, if we set

e :=[p) —m,| and €0, :=1p®,, —ml,

then
{}P(Ia'l-k(xofy) = ]-’Xa——M——s = Z,Xa+k+s = ’LU)
_]EIa—f—k(szky)]P(Xa M-—s =2 Xa+k+s = w)l

< Elo1(zCly) {EE%I: ) (s) + weggx—ki) + 7!'26:2?“)) + m eMHE+25)y

and substituting this to relation (2.11), we get

55 <3S kYT ST ELis(aCly)

a=1k>1 i=1z,y#i

2 {e{ius™ el - mue@ LI 4 el 4 el H429)
z,wEA

= i‘ZkZ > ElL x(zCly)

a=1k>1 i=1 z,y#i

M+s—k:) M+s—k;
Z EER)J;: 5(5) + Z egR)w: ) 4 Z 61(;1)) 4 Z (M +k+29)
z,wEA ZE.A ’UJEA rweA

Relation (2.7) implies
Z 63(52 <20® and Z 5%2)% <20, z€A,
yEA y€eA
and taking into account that M +s—k; > sand M +k +2s > M + 1 + 2s, we obtain
n T
5<20°) ) k) Y Elik(aCly){2+20° + oM}
a=1k2>1 i=1z,y#i

Hence, in virtue of ), ; KIEV, x = 1, it follows
(2.12) by < 2EWo°{2 + 20° + oM +oF1}.

We remind that inequality (2.6) is valid under the assumption ku, > (k+1)pg+1, k > 1,
which is statisfied when max; <<, pi; < 1/2. Finally, combining (2.12) with ( 2.9), (2.10),
(2.6) and (2.4), we derive the required result. O

Remarks 2.1. In Theorem 2.1 the quantity s is chosen so as to minimize the error
estimate Bj(s). Given the values of r, g, A, ¢¥; and k;, i = 1,...,r, it only requires simple
calculus to find the optimum value of s which minimizes the bound. In practice, this is
an easy task, especially when using a computer program (for example Mathematica).
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Remarks 2.2. Theorem 2.1 can be slightly modified to hold for the case of counting

all kinds of runs (i.e. runs of k; consecutive i's for all i = 0,...,r). Then we take m :=
()
ming<i<r ki, A 1= SUPg>1 MaXz wed Pzv and we consider all summations over i = 0, . .. , T

Erhardsson (1997) studied the overlappmg appearances of words following a different
and more complicated approach than ours. Applying Theorem 2.2. of Erhardsson’s
thesis, one could derive a bound concerning our model. However, as it has been noticed by
the author (Erhardsson (1997), p. 90), the evaluation of the bound is rather complicated,
involving the computation of eigenvalues. For the specific case of runs, our approach is
simpler and leads to an easily evaluated bound useful for relative applications.

A bound for the i.i.d. case results from Theorem 2.1 immediately, if we take s = 1,
A =1 and ¢ = 0. Here, the probabilities v; and ¢ are equal to pf" and Y0, pf"
respectively, where p; denotes the probability IP(X; = 3), for ¢ = 0,1,...,r. Thus we
obtain the following;:

THEOREM 2.2. If maxi<i<,p; < 1/2, then

[ gl
. . < — s * Vi
dg(L(W),CP(\,p*)) < By mm{z’ N+ 1}Dl +2;pz ’

where

1 T p,,ci ? r p’.ci'l'l
D} :=2EW{ (M +2 +(M-—-—m+2 L + 2 =L
i (M -+ 2)pf + A (r T T2
and CP(X*, u*) is the Compound Poisson distribution with \* =ny ;_ (1 — p:)p¥ and
compounding distribution g = > 7 _ w}(l— p)PE Y wr = (1— pi)pfi /31— pi)pf",
k>1,i=1,...,r

A natural consequence of the above approximations is the following limit result.

THEOREM 2.3. Let n, ki — 400 so that n(1 — p;); — A < +oo, Vi = 1,.
If &% 0, then

W 5 CP(\, ),
where A="7_, A and pg, = Zz_l 531 - pii)pfi_l, k>1.

PROOF. In order to show that W converges in distribution to CP(\, u), it suf-
fices to prove that dx(L(W), CP(A\, u)) — 0, as n — +o00. The assumptions that
max;<i<r Pii < 1/2and n Y. (1 —py;)y; — X imply that EW = ny is bounded. Using
the latter, it is easy to verify that, for s = M, the bound B;(M) of Theorem 2.1 is of
order O(Mv) = O(2) and the proof is complete. O

The distribution of W can lead to results which are associated with waiting time
problems. In particular, if £ denotes a run of k; consecutive i’s, with i € A, and T}
the waiting time (number of trials) until the k-th appearance of a run among &, ..., &,
then

P(Ty >n) =P(W < k).
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(note that all k appearances could be of the same kind of runs). Hence, for large n, the
distribution function Fi(n) := P(Tx < n) of the waiting time T} can be approximated

by )
Fi(n) ~e™ Z > H %, k2>1,

w>k i1 +2i2+3ig+--=wi>1

and the corresponding error is bounded by

F(m)—e™ 3. > H% < inf B(s),

w>kir+2iz+3is+=w 121
where Bj(s) is the bound of Theorem 2.1. For k = 1, we get
Fi(n)~1—e
3. An application to reliability theory: Consecutive ky, ..., k--out-of-n: MFM system

Starting from the late 50’s, there has been an increasing interest in studying relia-
bility models subject to more than one failures (see Satoh et al. (1993), Koutras (1997)
and the references therein). Specifically, Koutras (1997) introduced a new model with
components subject to two different kinds of failures; the consecutive-k, r-out-of-n: DFM
system, which is an extension of the much studied consecutive-k-out-of-n: F system. He
provides recursive formula for the evaluation of the reliability of such a system to the
case where the components are independent. Recently, Boutsikas and Koutras (2002)
study a class of Multiple-Failure mode (MFM) systems with independent components,
using techniques involving the corresponding structure functions.

Here, we introduce a new system called “consecutive-k;, ..., k--out-of-n: MFM sys-
tem”, which generalizes the consecutive-k, r-out-of-n: DFM system, from the following
points of view: first, we consider more than two kinds of failure and second, the com-
ponents are related with Markovian dependence. Analytically, the system is described
as follows. We consider n linearly arranged components associated with a sequence
X1,...,X, of r.v.’s, which are produced by a stationary Markov chainon 4 = {0,...,7}.
The state {0} denotes a correctly functioning component, whereas the state {i} corre-
sponds to a defect component of type i, for ¢ = 1,...,r. We assume that the system
fails if at least k; consecutive components have the defect of type ¢, forany i =1,...,r.

_Let R denote the reliability of the above defined system. Then it holds that R =
P(W = 0), where W is the number of k; consecutive components with the /gefect of type

i, for all i = 1,...,r, in the sequence of n components. In other words, W enumerates
the runs of k; consecutive i’s that begin and end in the sequence Xj,...,X,, ie. W =

DI Py %; La,i- Therefore, upper and lower bounds for R can be derived immediately
from Theorems 2.1 and 2.2. As these theorems provide bounds referring to the r.v.
W =3 >  In; we need an additional error which results from the difference

—

between W and W. This error is given by

P(W # W) < Z(m ~ 1)

i=1

The related results are the following.
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COROLLARY 3.1. If maxi<i<rpii < 1/2, then

r

-A _; — . ) =A s L .
e - inf Bi(s)— > (ki—1)y <R<e + inf Bl(s) + ) (ki — L),

i=1 =1

where A =mn}_;_, (1 — piu); and By(s) is the bound of Theorem 2.1.
The result that follows concerns the i.i.d. case.

COROLLARY 3.2. Ifmaxi<i<rp; < 1/2, then

r T
e — By =3 (i~ NP SR<e™ + By + Y (ki — 1pl¥,

i=1 3=1

where \* =n3_._ (1 —pz-)pf" and By is the bound of Theorem 2.2.

Next, we present three numerical examples, to illustrate the behaviour of the bounds
established in Theorems 2.1 and 2.2. All examples concern the evaluation of upper and
lower bounds for the reliability of the consecutive-ki, k2, kz-out-of-n: MFM system,
for specific values of ki, k2, k3 and n. For simplicity, the upper and lower bounds of
Corollary 3.1 will be denoted by U; and L respectively, and those of Corollary 3.2 by
Uz and Ly respectively.

In Tables 1 and 2 we considered the consecutive-ky, ko, ks-out-of-n: MFM system
with components related to trials generated by a Markov chain with transition probability
matrix:

3 1 1 1
4 12 12 12
3 1 1 1
4 20 10 10
Pi=1s 7 1 1
4 10 20 10
3 1 1 1)
\1 10 10 2

The quantities o and A are 0.1 and 1.2 respectively. For the evaluation of the lower and
upper bounds L; and Uy, we applied Corollary 3.1. In both tables we used the same
values for n. On the other hand, in Table 1 we considered slightly smaller values of k;’s
than in Table 2. One can observe that, for larger k;’s, the difference U; — L; becomes
tighter, in that way providing more accurate interval estimation for the reliability.

In Tables 3 and 4 the computations were conducted again according to Corollary 3.1,
using the same values for n as in the previous example. However, we considered a different
transition probability matrix with larger probabilities p1y, pao and pss:
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Table 1. Numerical values for L3, U; Table 2. Numerical values for L1, Uz

with k1 =4, ke =5, k3 = 4. with k1 =4, ks =6, k3 = 5.
n L1 U 1 n L1 U. 1
20 0.9995 0.9997 20 0.9997 0.9998
50 0.9989 0.9991 50 0.9994 0.9995
100 0.9979 0.9981 100 0.9989  0.9990
1000 0.9798  0.9800 1000 0.9896 0.9897
5000 0.9034 0.9037 5000 0.9492 0.9493
10000 0.8161 (0.8166 10000 0.9010 0.9012
20000 0.6661 0.6669 20000 0.8118 0.8121
50000 0.3618 0.3635 50000 0.5939 0.5943

Table 3. Numerical values for L1, Uz Table 4. Numerical values for Ly, Uy

with k; =7, ko =6, kg =T. with k1 =8, ko =6, k3 =7
n Ly Uy n L1 Ui
20 0.9992  0.9997 20 0.9994 0.9998
50 0.9984 0.9989 50 0.9987 0.9991
100 0.9971 0.9976 100 0.9976  0.9980
1000 0.9733 .0.9739 1000 0.9781 0.9786
5000 0.8743 0.8752 5000 0.8960 0.8967
10000 0.7645 0.7659 10000 0.8030 0.8040
20000 0.5844  0.5867 20000 0.6447 0.6465
50000 0.2599 0.2648 50000 0.3331 0.3367

—~—
i

Py =

WIN N = WU N | ==
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Here, p and A are equal to 0.2667 and 1.6776 respectively. In this case, we observe that,
in order to obtain tight approximating intervals, it is essential to use larger k;’s than in
the previous example.

Finally, upper and lower bounds for the reliability of the consecutive-k;, k2, k3-out-
of-n: MFM system with independent and identical components are presented in Table 5.
These bounds were computed according to Corollary 3.2. For the calculations, we used
n = 2000, k; = 4, ks = 3, k3 = 4 and several values for the probabilities p;, ps and ps.

The bounds were computed in Mathematica 2.2 (Wolfram (1998)).
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Table 5. Numerical values for Ly, Us with n = 2000, k1 =4, ko = 3, k3 = 4.

Po P1 D2 D3 Lo Ua
0.76 0.10 0.08 0.06 0.3077 0.3278
0.79 0.09 0.07 0.05 0.4583  0.4684
0.82 0.08 0.06 0.04 0.6125 0.6172
0.85 0.07 0.05 0.03 0.7519 0.7540
0.88 0.06 0.04 0.02 0.8624 0.8632
0.91 0.05 0.03 0.01 0.9376  0.9379

0.931 0.04 0.02 0.009 09796 0.9796
0:952 0.03 0.01 0.008 0.9964 0.9965
0.964 0.02 0.009 0.007 0.9982 0.9932
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