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Abstract. The earlier concept of bivariate lack of memory property has been ex-
amined and an alternative concept of bivariate lack of memory property has been
presented along with a set of equivalent conditions. In this process, the link relations
known in the literature on univariate lack of memory property have been extended
to the bivariate set-up. A multivariate extension of the lack of memory property has
also been proposed.
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1. Introduction

It is fortunate and convenient that in the case of univariate normal distribution,
one of the most widely used stochastic model, almost all ways of generating a bivariate
version lead to the same distributional form. Such is not the case for the exponential
distribution, the other most commonly used stochastic model. There are quite a few
bivariate exponential distributions developed in the literature from different consider-
ations, viz., modelling, characterization, functional equation, regression equation and
geometric considerations. To mention a few, Freund (1961), Downton (1970), Hawks
(1972), Sarkar (1987), Cowan (1987) and Mukherjee and Roy (1996) have put forward
different bivariate exponential distribution based different approaches and each of these
works is having its own merits and limitations.

Amongst all these approaches the characterization approach has been highly ap-
preciated by the researchers (see Galambos and Kotz (1978)). And amongst all the
characterizing properties the most popular one is the lack of memory property. A corre-
sponding Bivariate Lack of Memory Property (BLMP) was put forward by Marshall and
Olkin (1967) in connection with the development of a multivariate exponential distribu-
tion. The purpose of the present work is to make a critical examination of the BLMP
proposed in Marshall and Olkin (1967), suggest an alternative definition for BLMP and
establish a few interlinked results.

2. Present definition of BLMP

In terms of the survival function S(z1,z2) of a non-negative continuous vector vari-
able X = (X, X3), the BLMP due to Marshall and Olkin (to be referred by BLMP;)

can be written as

(2.1) S{x1 +t, 2 +t) = S(z1,22)S(t,t) forall x>0, z2>0, t>0.
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BLMP; has been later used by many authors in different contexts and multivariate
version of the same is also available in the literature (see Galambos and Kotz (1978)).
Writing U = Min(X1, X3), V = X; — X2, Block (1977) presented a characterization
of BLMP; in terms of exponential law for U and independence of U and V. Earlier,
Block and Basu (1974) examined the distribution of V under BLMP;. Samanta (1975)
considered n random observations (Xi;, X2;), ¢ = 1,2,...,n and proved that, for Z =
Min{X1;, X2;,1 < ¢ < n}, independence of Z and U = (X13 — Z, X253 — Z,..., X1n —
Z, X9n— Z) is necessary and sufficient for BLMP;. Roy and Mukherjee (1989) considered
some equivalent versions of BLMP; which can be viewed as random versions of the
condition (2.1).

This definition due to Marshall and Olkin (1967) is based on joint survival function.
An alternative approach could have been to consider the conditional survival functions.
Before doing that, let us examine the present definition first. For this purpose, we
start with the observation that any bivariate extension of a univariate property becomes
meaningful only when it reduces to the univariate one under a reduction of the underlying
dimension. Here, the condition (2.1) does not satisfy this basic requirement because it
cannot be reduced to univariate lack of memory property for the marginal distributions.
In fact a close look at the BLMP; reveals that the same is an extension of LMP for
Min{X;, X5} from independent set-up to dependent set-up. As a result, attention of the
bivariate analysis got prodirected towards minimum-exponential property.

Further, from the celebrated discussion on univariate LMP in Galambos and Kotz
(1978) we may insist upon the following requirements for BLMP:

(BP1) BLMP &> constancy of bivariate failure rates, in some sense,

(BP2) BLMP <> constancy of bivariate mean residual lives, in some sense, and

(BP3) BLMP <& unity of the coefficient of variations of the residual lives,
where requirement (BP1) is comparable with (P1) of Galambos and Kotz ((1978), p. 12)
and requirement (BP2) is comparable with (P2) of the same reference. Requirement
(BP3) arises out of the works of Mukherjee and Roy (1986) on higher moments. By
global constancy we mean independence of the bivariate function with respect to both
the variables and by local constancy we mean the independence of the bivariate function
with respect to one variable only.

It may be noted that for BLMP;, even with additional conditions of marginal
exponentiality, the above conditions do not hold true. Following Johnson and Kotz
(1975) if we define the bivariate failure rates as r;(z1,%2), i = 1,2, where r;(z1,Z2) =
0/0x;]—1og S(x1, z2)], we may observe that Marshall and Olkin (1967)’s Bivariate Ex-
ponential Distribution (BED), uniquely satisfying BLMP; under exponential marginals,

has
A1 if z; <235

ri(a1,22) = {,\,- +As i T w3
i = 1,2, where the survival function is given by
S(x1,22) = exp|—A1T1 — Aeza — A3 max(z1, Z2)]-

Thus, r;(x1,22), ¢ = 1,2 are neither globally nor locally constants. Further, mean
residual lives M;(z1,%2), i = 1,2, work out as
Mi(zy,22) = E(X; —x; | X1 > 21, X2 > 22)

— 1/(’\z + )\3) for x; > 3
LI/ A+ /(A + ) — 1/ A exp[—Ai(ms—; — x)] for < z3—s,
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i = 1,2. Here, again mean residual lives are neither globally nor locally constants. Thus,
BLMP; has some limitations as a bivariate generalisation of the univariate LM property.
This does not mean that the bivariate exponential distribution of Marshall and Olkin is
not a suitable bivariate model. It has its own merits when viewed from the point of shock
process and would continue to remain one of the most useful bivariate exponential law
for real life applications. We are only concerned with the BLMP aspect in this paper.

3. A new definition

In view of the above discussions we make an attempt to introduce a new concept
for BLMP which will be abbreviated as BLMP,. This we do by imposing the condition
that each of the conditional distributions of {X; | X3 > z2} and {X» | X3 = z;} should
follow univariate LMP. Rewriting those conditions in terms of survival function we get
the following definition:

DEFINITION 3.1. A survival function S(z1,z3) is said to possess BLMP; if and
only if for all choices of non-negative 1, 2, y1, ¥2

(3.1) S(z1+y1,22)5(0, z2) = S(x1,22)9(y1, T2)
and
(3.2) S(z1,z2 + y2)S(z1,0) = S(z1,22)5(z1, Y2)-

That this definition reduces to nivariate LMP can be easily verified with a choice
of z2 = 0 in (3.1) or z; = 0 in (3.2). The following theorem will ensure that BLMP,
satisfies the properties (BP1), (BP2) and (BP3).

THEOREM 3.1. The folowing statements are equivalent:
(i) X follows BLMPs,
(ii) failure rates, r1(z1,z2) and ro(z1,x2), of X are locally constants,
(iii) mean residual lives, My (z1,z2) and Ma(z1,z2), of X are locally constants,
(iv) coefficients of variation of the residual lives are unity, and
(v) X follows Bivariate Exponential Distribution due to Gumbel (BED-G) (1960)
with survival function

(3.3) S(z1,z2) = exp(—A1z1 — Aoz — A3Z1Z2)
where A1 = 0, Ay > 0, 0 < A3 =< A .

ProoF. We shall prove that under the existence of failure rates (i)<=>(ii). Fur-
ther, (i)=>(iii)=>(iv)=>(i). In view of the second implication existence of failure rates
will follow automatically.

To prove that (i)=>(ii) we take logarithm of (3.1) and differentiate w.r.t. 4; so
as to obtain the relation ri(z1 + y1,22) = r1(y1,z2) for all choices of non-negative
z1, y1 and zo. Hence, r1(z1,22) = r1(0,z2) ie. locally constant w.r.t. z;. A similar
treatement of (3.2) will ensure local constancy of ro(x1,z2). To prove the converse let
T1(21,22) = ki(z3-;), i = 1,2. Then noting that r;(z1,z2) is the failure rate of {X; |
X3_; > 23}, 1 = 1,2 we conclude that the corresponding survival functions must satisfy
univariate LMP for each choice of z3_;. But the survival function of {X; | Xz = 22} is
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{S(z1,72)/5(0,22)} and of {X5 | X1 = z1} is {S(z1,22)/S(z1,0)}. Hence follows (3.1)
and (3.2). Thus, (ii)<=>(i).
To prove that (i)=> (iii) we note that

M(or,73) = /0 " AS(m1 + 1, 22)/S (21, 22) ot
= /OOO{S(t, z2)/9(0,z2)}dt, under (3.1),

which is locally constant in z;. Similarly, Ms(x1,z3) is locally constant in z5.
To prove that (iii)=-(iv) let M;(z1,z2) = ki(z3—;), ¢ = 1,2. Then integration of the
following w.r.t.

(1/M (o1, 35)} = {S’(xl,:cg) / /ac °° st xz)dt}

results in

z1/k1(22) = —log {/oo S(t, scg)dt} +c

1

where ¢ is the constant of integration. Differentiating the above with respect to 1 we
get after usual simplification

(3.4) S(z1,x2) = [exp{—z1/k1(x2)}]/k1(z2).

Now,

(3.5)V&I‘(X1—"L'1 l X1 t .’EI,Xg t 33'2) = 2/ t{S(.’L‘l-I—t, 1:2)/5(.’1,‘1,.’EQ)}dt—MIZ(.’El,.'Ez).
0

Under (3.4) it simplifies to

Var(Xi — 21 | X1 = 71, Xa &= 29) = 2 / t expl—t/ks (z2)]dt — K2 ()
0

Thus C)(z1,2), the coefficient of variation of {X1 —z1 | X1 = z1,Xa = 2o} is
unity. Similarly Ca(z1,x2), the coeflicient of variation of {X; — z2 | X1 = 21, X2 = 22}
also reduces to unity.

To prove that (iv)=-(v) we note that the condition Cj(z1,z2) = 1 implies

2

/000 t{S(x1 +t,22)/S(z1, 22) }dt = [/000{5(1:1 +t,22)/S(z1, xg)}dt]

S(zi,2)  Jo Su,22)du
Loy S(u,zo)du B Joi (u—21)S(u, z2)du’

Integrating both sides of (3.6) w.r.t. z1, we get

(3.6)

log/ S(u, z2)du = log A1(z2) + log/ (u—z1)S(u, z2)du
Ti 1



408 DILIP ROY

(3.7 /OO S(u, ze)du = A;(z2) /oo(u — z1)8(u, z2)du

1

where A;(z2) is an integration constant. Differentiating (3.7) w.r.t. z; we get
o0
(3.8) S(z1,72) = Ay (22) / S(u, 72)du.
Z1

Thus,
S(x1,2)

T Stz )

which results in, for some Bj(z2),
(3.9) S(z1,z2) = B1(z2) exp[—z141(z2)].
A similar treatment of Cy(z1,z2) = 1 will give rise to
(3.10) S(x1,x2) = Ba(z1) exp[—z242(z1))-
Now comparing (3.9) with (3.10) we get as an identity
B;(0) exp[—z1 A1 (z2) — £2A2(0)] = B1(0) exp[—z1A41(0) — z2Az(z1)]. |

Taking logarithm of both sides of the above and observing that the LHS is linear in
we conclude that the RHS is necessarily linear in ;. Thus As(z;) = a + Bz; for some
a and B. Thus from (3.10) we observe, after simplification, S(z1,z2) = exp[—A1z1 —
A2T2 — A3T122). It is easy to note that Ay > 0, Ay > 0, 0 < Az =2 ArAa.

Lastly, we need to show that (v)=>(i). This is an easy consequence of (3.3). O

Remark 1. From Theorem 3.1 one may obtain as corollary three characterization
results presented in Johnson and Kotz (1975), Zahedi (1985) and Roy and Gupta (1996).
Further, in our process of unification we have not only done away with restrictive as-
sumptions used therein but also made a general networking similar to that of Galambos
and Kotz (1978)’s univariate result.

Remark 2. A multivariate extension of BLMP; (to be abbreviated as MLMP5) in
terms of multivariate survival function S(z1,z2,...,Zp) is given by the condition

S($17"'7$i-—17mi +yi7x‘i+17'")xp)S(xla-~'7$i—17071"i+17""xp)
= S(.Tl,...,.'I?i,...,:L'p)S(IEl,...,iIJi_l,yi,.’IIi+1,...,$p)

for all non-negative choices of the arguments and for all i = 1,2,...,p. A result similar
to Theorem 3.1 can also be easily ensured using mathematical induction principle. In
fact, it can be shown that the unique determination of the corresponding mulivariate
exponential distribution is given by the survival function

S(z1,...,%1,...,%p) = €xp [—ZAiwi_ZZAijxixj_"'"‘/\12"'pm1$2"'$p:|-
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Remark 3. A discretization of BLMP, can also be made in terms of conditions
{(3.1) and (3.2). Under discretization these are to be satisfied for all choices of non-
negative integer values of x3, 2, y; and yo. The bivariate distribution satisfying BLMP,
is that of Roy (1993)’s Bivariate Geometric distribution. The local constancy of - failure
rates and mean residual lives have been reported therein.

Remark 4. An alternative representation of the BLMP; is a combination of (3.1)
and (3.2) into a single equation as given below:

(311) S(iBl + Zyl,zg =+ (1 — Z)yz)S((l — Z).’Bl, Z.’L'Q)
= S(.’Bl,l‘g)S((l — Z)xl + Zyr, Zxa + (1 - Z)yz)

for all non-negative values of x;, 22, ¥y1,y2 and for Z = 0, 1.

This representation can be further modified in the lines of univariate modifications of
LMP as proposed in Krishnaji (1971). Writing W (z1,z2) = P[X1—-U = 21, Xo—U > x|
where U is a non-negative random variable independent of (X, X3) we get an equivalent
definition of BLMP5 as

(312) W(Z‘l 4+ Zyy, 20 + (1 — Z)yg)S((l — Z):El, Z.'l?z)
= 8(x1,22)W((1 — Z)z1 + Zy1, Zza + (1 — Z)yo)

forallzy = 0,91 = 0,22 > 0,y2 = 0and Z=0,1.
For a proof of the above we can simplify (3.12) into

(3.13) W(z1,z2)/W(0,z2) = S(z1,22)/5(0, z2)

from a choice of Z =0 and y5 = 0 and

(3.14) W{(z1,22)/W(0,29) = S(x1,22)/5(0, z2)

from a choice of Z = 1 and y; = 0. A simplification of (3.12) using (3.13) and (3.14)

gives rise to BLMP,. To prove the converse we start form the LHS of (3.12) and use the
result (3.11) to ensure the RHS of (3.12).

Remark 5. It is easy to verify that X follows BLMP; if and only if
T1(z1, Z2) M1 (1, T2) = r2(T1, T2) Mo (71, 22) = 1
for all non-negative choices of z; and z,.

The above result covers a bivariate extension of a similar work of Muth (1977) on
univariate LMP.
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