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Abstract. This paper considers using asymmetric kernels in local linear smoothing
to estimate a regression curve with bounded support. The asymmetric kernels are
either beta kernels if the curve has a compact support or gamma kernels if the curve
is bounded from one end only. While possessing the standard benefits of local linear
smoothing, the local linear smoother using the beta or gamma kernels offers some
extra advantages in aspects of having finite variance and resistance to sparse design.
These are due to their flexible kernel shape and the support of the kernel matching
the support of the regression curve.
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1. Introduction

In recent years, local polynomial smoothing (Stone (1977), Cleveland (1979),
Cleveland and Delvin (1988)) has been shown by Fan (1993), Fan and Gijbels (1992),
Hastie and Loader (1993), Ruppert and Wand (1994) and others to be an effective
smoothing method in nonparametric regression. It has the advantages of achieving full
asymptotic minimax efficiency and automatically correcting for boundary bias. A re-
view of local polynomial smoothing is given in Fan and Gijbels (1996). The standard
application of the local polynomial smoothing has been focused on employing symmetric
kernels, among them the compact kernels are popular choices. However, local polynomial
smoothers using a compact kernel have a problem as the variance is unbounded in finite
sample as revealed in Seifert and Gasser (1996a). Seifert and Gasser (1996a, 1996b)
have proposed two methods to reduce the variability of the local linear estimator. One
is to increase the bandwidth in areas of sparse design in order to include more design
points. Another is to introduce a ridge parameter in the local linear estimator based on
an empirical selection of the ridge parameter. Hall and Turlach (1997) used interpolation
methods to add extra design points in sparse areas. In this paper we propose replacing
the compact kernel in the local polynomial smoother by kernels whose support matches
that of the curve in the local linear estimator in order to increase the effective sam-
ple size so as to reduce the variance of local polynomial smoothers. Seifert and Gasser
(19964) found that using the Gaussian kernel has attractive variance behaviour. This
is because the Gaussian kernel has unbounded support that leads to a key matrix in
local polynomial smoothing being non-singular, thus making the finite sample variance
bounded.

When the curve under consideration has a bounded support, kernels whose support
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matches the support of the curve should have the same attractive variance properties
as the Gaussian kernel. Recently, beta kernels, which are densities of some beta distri-
butions, have been proposed to smooth the Bernstein polynomials in Brown and Chen
(1999) and to construct Gasser-Miiller estimator in Chen (2000a). Related gamma
kernels are proposed for density estimation in Chen (2000b). These beta and gamma
smoothers have the same order of bias throughout the support of the curve, achieve
n~*%/5_order convergence for their mean integrated square errors and have attractive fi-
nite sample properties. It is also found, however, that their asymptotic mean square
errors are of a larger order near the boundary. Even though this happens only in a small
boundary area so small that it registers no effect on the mean integrated square error,
it does pose an “asymptotic” hiccup for this nice idea of smoothing.

In this paper we consider local linear smoothing using the beta and gamma kernels.
It turns out that local linear beta or gamma kernel smoothers remove the problem of
an increased mean square error near the boundary, while maintaining the usual good
properties of standard local linear smoothing with a fixed symmetric kernel. Using
the beta or gamma kernels offers some extra benefits. Firstly, it is a kind of adaptive
smoothing as both the beta and the gamma kernels have varying shapes and varying
amounts of smoothness. Secondly, it has finite sample variance as long as there are two
different design points not on the boundary of the support. The third is that the effective
sample size is increased and thus the finite sample variance of the curve estimates can
be reduced. These features are due to the fact that the support of the kernels matches
the support of the regression curve. And the latter can make the local linear smoother
having smaller variance when the curve has sparse areas. It has been shown that a local
linear smoother using a symmetric kernel implicitly uses asymmetric kernels as well.
However, the support of the kernels does not match that of the curve. This can produce
problem in the variance when the design is sparse.

The paper is structured as follows. Section 2 introduces the local linear smoother
using either beta or gamma kernels. The general properties using beta kernels are studied
in Section 3, whereas those using gamma kernels are given in Section 4. Section 5
considers finite sample variance properties. Section 6 presents some simulation results.
Some derivations are given in the Appendix.

2. Beta/gamma kernel based local linear smoothers

Let Yi,...,Y, be the responses of n design points Xi,...,X, from a regression
model
(2.1) Yi=m(X;)+e i=1,...,n,

where m(-) is an unknown regression function with support S and the residual ¢; are
uncorrelated random variables with zero mean and variance o%(X;). We consider in this
paper that S is either [0, 1], which is bounded from both ends, or [0,00), bounded from
one end only.
The kernel we use to smooth at z is either
tw/b(l _ t)(l—:z:)/b

Km,b(t)zB{x/b+1’(1_m)/b+1}l(t68) if S=10,1)

or
Kop(t) =T Ha/b+ 1)b~2/0"1=/be o[t € S)  if S=[0,00)
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where B and T are the beta and gamma functions respectively, and b is a smooth-
ing parameter. Clearly, the kernel is the density of Beta{z/b + 1,(1 — z)/b+ 1} or
Gamma{z/b + 1,b} distribution. Both beta and gamma kernels have varying kernel
shapes and become more asymmetric as £ moves towards the boundary.  Both beta and
gamma kernels have S as the support, matching that of the regression curve.

The local linear smoother for m using either the beta or the gamma kernel Kz b is
obtained by finding a and b that minimize

dAY—a- b(x — X)) Ko p(X;)-

i=1

Let Si(z) = n~" 327, (- X;) Ky p(X;) for I = 0,1, 2. The local linear smoother m(z) =
@, the solution of a to the above optimization, has a form

(2:2) m(z) = Z w;(z)Y;/ Z wj()

g=1
where the local linear weight
wj(z) = n"{Sa(z) — S1()(z — X;)} Ko p(X;)-

Let f be the density function of the design points. We assume throughout the paper
that, for some positive constants f. and o2,

(i) f(z) > f. >0and ¢%(z) < o2 forall z € S;

(i) m® € C(S), f(-) and o%(-) obey a first order Lipschitz condition in S;
(23)
(iii) b — 0 and nb? — 0o as n — o0;

Let &, be the beta or gamma random variable with K, as its density, p;(z) =
E(¢; —z) for [ =0,1,2,... and

B{2e/b+1,20 - 2)/b+1} 4 _ 1o 1,
B*{z/b+1,(1—z)/b+1} o

I'(2z/b+1) .
f S=10 .
b22:1:/b+1r2(m/b+ 1) i [ ,OO)

Ab (:IJ) =

We first present the following general theorem, whose proof is given in the Appendix.

THEOREM 1. Assume the conditions given in (2.3). Then for anyz €S

(2.4) Bias{r(z)} = %mm (z)pa(z) + o{pa(z)} + O{n "1 Ap(z)} and
(2.5) Var{i(z)} = n "t Ap(z)o?(z) f ~1(z) + o{n "  Ap()}.

Remark. The power of the local linear (polynomial) smoothing is to make the
leading bias term free of the first derivatives of m and f. This power is maintained in
beta or gamma kernels. It is this missing first derivatives in the bias that removes the
increased mean square error near the boundary which was associated with the earlier
beta/gamma kernel smoothers.
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3. Asymptotic properties using beta kernels

We study the asymptotic properties of the local linear beta smoother 7h(z) assuming
S = [0,1] in this section. To simplify notations, we define z € S to be a

“interior z” if “¢/b and (1 — z)/b — 00” and
“boundary z” if “z/bor (1—1z)/b— K’

where k is a nonnegative constant. Clearly any fixed z € (0,1) which is free of n is an
interior point.

From the basic properties of beta random variables, E(¢;) = (z + b)/(1 + 2b) and
Var(¢;) = b(z + b)(1 — = + b)/{(1 + 2b)?(1 + 3b)}. Thus,

_bp(l-3)+ 02— 4z(1—z)} +63{4 — 122(1 — 2)}
3.1) Pa(a) = (T + 25)2(1 + 3)

_ Jbz(1 —z)+ O(b?) for interior z;
T 12+ k)2 +O(®) for boundary z.

Chen (2000a) shows that for small b

b-1/2 ——————Z;\/%(l__—w) + o(b=1/2)  for interior z;

(3.2) A@ = T+

22N+1F2(n+ 1)
From the Theorem 1, (3.2) and (3.2), we have

+o(b71) for boundary x.

%x(l — 2)m®(2)b+ O(b?) for interior z;
(3.3) Bias{m(z)} =
5(2 + &)m?) (z)b? + O(b®) for boundary z

and (1)

n~1p~1/2 gz +o(n~1671/2) for interior x;
(3.4) Var{r(z)} = Vim/a(1 - 2)f(z)

-1yl (@)TRr +1) +o(n~1b71) for boundary z.

22 (5 + 1) f(2)

In the boundary areas, in terms of the order of magnitude of b the bias is of a smaller
order whereas the variance is of larger order than those in the interior. However, b does
not represent the total amount of smoothing used; rather, po(z) is the real amount of
smoothing used at z. The trade-off between the bias and the variarnice is directly due to
po(z) having different orders between the boundary and the interior as shown in (3.1).

By adjusting b so that pa(x) is of the same order within [0, 1], the mean square error
can be made of order n~*/% everywhere within [0, 1]. To appreciate this, notice that

2
n-1p-1/ o”(x) 11,2 — 2)2Im@ (£)1282 or
& 2\/5\/$(1—2x)f(3)+4 4 PmB )
n-—l -1 I‘(zK' + 1)0- (SC) l K m(2) zT
PR @) AG R

MSE{m(z)} =
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respectively in the interior with error terms of o(n~16='/2 4 b?) or in the boundary with
error terms of o(n=16! + b*). The optimal bandwidth is

Uz(m) 20 ~2/5 . .
(3.5) b*(z) = [\/‘Eﬂvsm(l —z)*2f(x) {m(2)(w)}2] n for interior z;
['(2 + 1)o’(z) 1/5 ) |
L““Ww+nﬂ@@+w%m®@»4 n/® for boundary z.

The optimal mean square error, with an error term of 0(n‘4/ 5), is

En-4/5 {U_("EM‘T_)} for interior ;
4 Vir f(z)
(3.6) MSE*{1n(z)} = 200 (@) ) P
§n“4/5(2+/c)1/5 F(Z’”; 130_ (z)m'* ()
4 2% (ke + 1) f(2)
for boundary z.

4

\

Hence, the optimal mean square error is of order n~%/% throughout [0,1]. This improves
the beta kernel estimator considered in Chen (2000a) whose mean square error is of
order n~%/3 in the boundary areas and is of order n~%/5 in the interior. The optimal
bandwidth given in (3.5) prescribes a larger b value in the boundary to offset a reduced
value of bz(l — z) as = approaches the boundaries. By doing so, the total amount of
smoothness pa(z) = O(n~%/%) throughout [0,1].

It is interesting to see that the optimal mean square error for interior z coincides
with that of the local linear smoother using the Gaussian kernel. However, they are not
asymptotically equivalent in the boundary areas and their finite sample handling of the
smoothing may be quite different.

It may be shown in a manner similar to that given in Chen (2000a) that the bias and
the variance in the boundary areas have negligible contribution to the mean integrated
square error, that is with an error term of o(n~1671/2 + p?)

1 2
MISE(m) = n~ 1571/ 7 (@)

o Vary/z(l - 2)f(z)

The optimal global bandwidth

) 2/5 1 —2/5
* = L ) T z(1 — £)m®(2)}2dz n=2/5
(37) b {ﬂFOVEfﬂmf} {[ - om®@y2aa} ,

and the optimal mean integrated square error is

1
dr+ / 22(1 — 2){m® (z)}2ds.
0

(3.8) MISE*(rn)
—4/5

41 o?(z) Ve 2(1 — 2Ym® ()12 4/
5 {\/27—1'— 0 \/w(l—x)f(x)dx} {/0 tell =) (@)} da:} '
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4. Asymptotic properties using gamma kernels

In this section, we investigate the asymptotic properties of the local linear gamma
smoother assuming I = [0,00). We define z € S to be a

(4.1) “interior z” if “z/b — co” or “boundary z” if “z/b — K.

As &, is the Gamma(z /b + 1,b) random variable, E(¢,;) = z + b and Var({;) = bz + b°.
Thus,

(4.2) pa(z) = bz + 2b°.
According to Chen (2000b) for small b, when S = [0, 00),
(43)  Ay(z) = b=12/{\/Ar\/z} + o(b~1/?) for interior z;
) b b1 (2 + 1) /{22 T%(k + 1)} + o(b~1) for boundary z.

This is almost the same as that of the beta kernel given in (3.2) except that /1 — = does
not appear when z is in the interior as £ = 1 is no longer a boundary point.
Substituting (4.2) and (4.3) into Theorem 1, we will reproduce the formulae from
(3.3) to (3.8) except that 1 —z does not appear in these formulae when z is in the interior
and the integration interval is § = [0, 00).
However, using the gamma kernels produces some unique and interesting properties.
Notice that

%xm@) (z)b + O(b?) interior
(4.4) Bias{r(z)} = )
—2—(2 + k)m@ (z)b? + O(b®) =z in boundary
and
o?(z) s
n~1p=1/2 + o(n~1p~1/2) interior =

Var/zf(z)
o2()I'(25+ 1)
P2 1 1)£(z)

(4.5) Var{r(z)} =

n~1p71 +o(n~'b~!) boundary z.

So, the variance decreases when z increases as z~1/2 appeared in the leading term of
the asymptotic variance. This property is highly desirable when estimating curves with
sparse regions in the upper tail of the design density f. This is a property not shared by
using other fixed symmetric kernels including the Gaussian kernel. The reduced variance
for large z is gained at the price of increasing bias. This is equivalent to the strategy of
using larger bandwidth values in areas where the design is sparse. The gamma kernel
carries this strategy automatically in a natural manner. The varying kernel shape is not
the only device for changing the amount of smoothing. The smoothing bandwidth can
be altered from one place to another, like one does in the adaptive kernel smoothing
(Abramson (1982)). However, its effectiveness would be reduced for beta/gamma kernel
smoothing due to the varyin kernels.

5. Finite sample variance

One problem with a compact kernel based local polynomial smoother, as revealed
in Seifert and Gasser (1996a), is that its finite sample variance can be infinite. This is
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because, in the case of the local linear smoother Y w;(z) = S2(z)So(z) — SZ(z), the
denominator of (2.2) has a positive probability of being zero or arbitrarily small. To
avoid this, Fan (1993) added n~2 in the denominator. It is shown in the following that
using the beta or gamma kernels can eliminate the problem. The results are valid for
local polynomial smoothers rather than just local linear smoothers.

Let

(r—X1)-(x— X1)P
Xp=| eereeen and W = diag(K;»(Xj)).

LEMMA 1. If there are at least p+ 1 < n different design points not being on the
boundary of S = [0, 1], then XTW X is non-singular.

Proor. Without loss of generality, we assume that the first p + 1 design points
are different. Write

wi? o X
1/2 11 =
wiie = ( 0 212/2 and X = @)

where Wlll/ % and X® are both non-singular square matrices of p 4 1 order. This means
rank(WY2X) =p+1. So, rank(XIW Xp) = p+ 1 which finishes the proof.

In the case of local linear (p = 1), it may be shown by some matrix algebra that

G1 Yl = XIWX| = 2 (X — X Ky (X0) Kap(X;),
i#Ej

which is a weighted measure of the spread of the design points. So, if there are two
different design points not being on the boundary of S Y w;(z) # 0 as maintained in
the lemma. Note in passing that (5.1), which is valid for symmetric kernels and appears
has not been noticed before, is useful in computation to develop recursive formula.

Based on the lemma, it is readily true that the probability of Xg W X, being singular
is zero if the design variable is either continuous or fixed but there are at least p+ 1
different points not being on the boundary of . The later case includes any equally
spaced design as long as n > p + 3. The condition on the design variable is very
weak and is satisfied in almost all the practical cases. Therefore, in finite samples the
local polynomial beta or gamma smoother has finite variance with probability 1. This
generalizes a corollary in Seifert and Gasser (1996a) which states that local linear fits
have finite variance if and only if the kernel function has noncompact support.

6. Simulation results

A simulation study was carried out and designed to investigate the performance of
the beta or gamma kernel based local linear smoother. For comparison purposes, the
local linear ridge smoother proposed in Seifert and Gasser (1996a) was also considered,
which added a matrix H = ((? COI) to XTW X before matrix inversion. This was designed
to stabilize the variance of the original local linear smoothers in areas of sparse design.
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(a) Square Bias n=100 (b) Variance n=100

3. 3
i b
A £s
E L]
Q20 0.2 o4 08 08 10 00 02 04 06 08 10
x x
(c) Square Bias n=200 (d) Variance n=200
-]
o
2 §
i b
g% £y

15
8

00 02 04 08 08 10 00 02 04 L} os 1.8
x x

(e) Square Bias n=400 ({f) Variance n=400

5

log{Sauiara Bias)
<10

15
8

(-1} 02 04 23 08 10 (1] 02 0.4 08 o8 10
x x

Fig. 1. Squared bias and variance of the local linear smoother using the beta kernels
(solid lines), the Epanechnikov kernel (dotted lines) and the Gaussian kernel (dashed lines);
m{z) = (x — 0.5)2I(0 < = < 1) and the design points x; are truncated N (0,0.3%).

Readers should consult the paper for details. In the simulation, the Epanechnikov and
the Gaussian kernels were employed with the ridged smoother.

The data were generated according to two regression models based on: ¥; = m(X;)+
¢; where ¢; are independent N(0,0.052) random variables. In the first model, m(x) =
(sc 0.5)2I(0 < z < 1) and X; were independent [N (0,0.3%)| random variables truncated

n [~1,1]. In the second model, m(z) = exp(—z) + exp{—4(z — 1)?} for > 0 and X;
were 1ndependent Gamma(2) random variables. So, in both models the design density
was relatively sparse towards the right end of the support. As the regression curve is
compactly supported in the first case, the gamma kernel based local linear smoother is
not considered here. And similarly, the beta kernel based smoother was not considered
in the second case. The simulation results were all based on 1000 simulations with the
random variables generated using the algorithm given in Press et al. (1992). The sample
sizes used in each model were n = 100,200 and 400.

The performances of the smoothers were evaluated over a grld of equally spaced
points within [0,1] in the first and [0,5.5] in the second model. The optimal global
smoothing bandwidths which minimizes the MISE of each smoother over the above
defined range were used in each simulation. After 1000 simulation, the average squared
bias and variance were obtained as measures of performance.

The simulation results are summarized in Fig. 1 for the first model and Fig. 2 for the
second model. Both figures show that local linear smoothers using the beta or gamma
kernels had the best variance for almost all the sample sizes considered across the entire
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(a) Square Bias n=100 (b} Variance n=100
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Fig. 2. Squared bias and variance of the local linear smoother using the gamma kernels
(solid lines), the Epanechnikov kernel (dotted lines) and the Gaussian kernel (dashed lines);
m(x) = exp(—z) + exp{—4(z — 1)2}I(z > 0) and the design points z; are Gamma(2).

range. They had significantly smaller variance when z > 1 in the second model where the
design density becomes sparse as revealed in Fig. 2. In the first model, the performance
of the beta and Gaussian smoothers were close to each other, and both had smaller
variance and larger bias than those of the Epanechnikov smoother when £ > 0.8. As the
variance dominated the bias, as showed by the relative scale of the left versus the right
panels, the overall MSE of the beta and Gaussian smoothers were smaller than that of
the Epanechnikov kernel.

The increase in both bias and variance as z increases in Fig. 1 was due to (i) m” (z)
being constant and (ii) the design density is monotonic decreasing within [0,1]. The
shape of the variance in Fig. 2 was due to the Gamma(2) design distribution used which
has a mode at £ = 1. The increase in bias in Fig. 2 when z € [1, 2] was due to the fact
that {m” (z)}2 peaks at £ = 1.5. The rise in bias at z = 0 was due to the combination
of the boundary effect and the relatively lower level design. As expected, the bias of the
gamma, kernel based smoother was the largest in a large range of area, but was a good
price paid in return for a much larger reduction in the variance.
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Appendix

PROOF OF THEOREM 1. We only prove the theorem for the case of beta kernels
as that for the gamma kernels can be derived in a similar way.

Let u(s) = B{Si(a)}, Ti(x) = n' 0, (2 — X;)'m(X;)Kep(X;) and nz) =
E{Ti(z)} for I = 0,1,2, and r(z) = m(z )f(z) Notice that
p(z) = B{Kap(X)(o = %)} = [ Kepla)a =) 1wy
= E{f(&)(z — fw)l}

where &, is a Beta{z/b+ 1,(1 — z)/b + 1} random variable. Taylor expanding f(&;) at
x’

(AD) [N &) = [@)—&) ~ FO@)E - &)+ + 3O @) - &)
+0P{($ - gw)l+3}'
It may be shown using the properties of beta random variables that E(§; — z) = (1 —

22)b 4+ O(b?), E{(z — &)?} = bz(1 — z) + O(b?) and E{(z — &)*} = O(b?) for k > 3.
Apply the expectation on either side of (A.1), we have

2-1

(A2) m(@) = (1D O @)pis(2) /5! + ofpa(a)}.
=0

In a similar derivation,
2-1

(A.3) y(z) = (-1)! Z O (z)piy 5 (2) /5! + o{p2(z)}-
§=0

Notice that

(A8) Covisy(a), 8u(@} = n~" [ K20 — )" f(5)dy -, ()
= n—lAb(-’L')E{(x - 'Ym)l1+lzf(7m)} - n—lll'h (x)/"'b (iL')

where 7, is the Beta{2z/b + 1,2(1 — z)/b + 1} random variable. From Chen (2000a),
Ao(w) = O(b—25 (1~ )12}, Also B{(z — 7)1+ f(1)} = Ofpy+1,(2)}. Thus,
it may be shown that the second term on the right hand side of (A.4) is of a smaller
order than the first term. Therefore,

corts @ (@) = { e kst

In general, we have

v = (G 8 402

where H; can be either S; or 1.
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Let #(z) = S2(z)To(z) — S1(z)Ti(z) and §(z) = Sa(x)So(x) — S7(x). Then m(z) =
#(z)/¢(x) and based on (A.5) we have

) = ) Ol e

Substituting (A.2) and (A.3), and using the standard derivation for the bias of local
linear smoothers, we may derive (2.4) of the theorem. ‘

Note that
(A6) Var{(z)} = Var {E{%";—% Xi,..., Xn}J
o e (S 1]
~ Var{#(z) i)} + B Z{’”Zﬂff—);)(}x)]

as y wji(z)m(X;) = #(z) and ) w;(z) = §(z).
Let 7(z) = 2 (@)uo(z) — H2(z) and B(z) = pa(e)vo(e) — pr (2o (). Then,

Var{#(z)/4(z)} = n~?(z) Var{#(z)} — 2n~>(2)B(x) Cov{#(z), §(z)}
+n~*(z)B%(z) Var{g(z)} + o{n " 4y(x)}
= 1~ *(z)p3(z)[Var{To(z)} — 20" (2)B(x) Cov{To(z), So(z)}
+1~%(z)B8°(x) Var{So(z)}]
+o{n"1Ay(z)}.

We use (A.5) in the derivation of the last equation. It may be shown in a similar fashion
to that for deriving (A.5) that, with error terms of o{n~1A,(z)},

Var{Tp(z)} = n 1 4p(z) f(z)m2(z), Cov{To(x),S0(2)} = n ' Ap(z)f(z)m(z) and
Var{So(z)} = n 1 Ap(z) f ().

These and the fact that 71 (z)8(z) = m(z) + o(1) lead to
(A7) Var{#(z)/4(z)} = o{n 1 Ap(x)}.
To work out the second term on the right of (A.6), we define
n
Wi(z) =n~! Z(:c - Xj)le/b+1,(1—z)/b+1(Xj)az(Xj)
=1
for non-negative integer [. It may be shown that

(18wl = B} = { 4 @S Folal) B0
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Then
S w(2)o?(X,)
Sl St
o [s,%m)wo(x) — 25,(2)S(a)Wi(z) + SHz)Wa (m>]
5)50(@) - S2@))°

_ 1 [(#@)wo(2) — 2 (@)pa(2)n () + pi (z)wo()
=~ ( (@@ — B@)F >{1 Tow}
— nlup(2)/13(@) + ofn~ As(o)}

— 171 Ay (2)0%(@)/ £ (@) + ofn ™ Ay(2)}

Combining (A.7) and (A.9) we prove (2.5) in the lemma, and thus finish the proof of the
theorem.
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