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Abstract. Asymptotic representations of the difference of M-estimators of the pa-
rameters of nonlinear regression model for the full data and for the subsample of data
are given for the following three situation: i) fix number of points excluded from data,
ii) increasing number, however asymptotically negligible part of data excluded, and
finally iii) asymptotically fix portion of data excluded. Asymptotic normality of the
difference of estimators {for the two latter cases) is proved.
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1. Introduction

An analysis of the influence of individual datum or of data subsets on the results of
any data-processing procedure has an eminent importance for the applications. Therefore
in any theory oriented on data-processing, a part of it has been always devoted to this
topic. In regression analysis one may find an amount of references to the papers treating
this problem for instance in the monographs about the sensitivity analysis of estimation
by Atkinson (1985), Belsley et al. (1980), Chatterjee and Hadi (1988) or Rousseeuw and
Leroy (1987), to give at least some of them.

In the linear regression there is a well-known formula for the difference of the least
squares estimators for the full data set and for a subset of data containing 7 — 1 obser-
vations, namely

(1.1) Bl(jé—l,l) _ Bffé) _ _{[X(n—1,e)]TX(n—1,e)}—1X£(Ye _ XEBI(E))

where notation is nearly selfexplaining, nevertheless, X (»~1:4) is the design matrix after
deletion of the /-th row from the full design matrix X and X, is the ¢-th row (considered
as a column vector) of the design matrix for the full data (see e.g. Chatterjee and Hadi
(1988), Visek (1992a) or Zvéra (1989)).

The present paper derives, in a form of asymptotic representations of Bahadur type,
analogical formulas for the M-estimators of nonlinear regression model for the three situ-
ations, namely when a fix number of observations is excluded from the data set, when an
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increasing but asymptotically negligible number of observations is excluded and finally,
when an asymptotically fix portion of observations is excluded. The representations for
the two latter cases hint the asymptotic normality of the respective difference, and so
they allow to establish a test of subsample stability of estimates in the sense of Visek
(1992a). We shall see later that it may help to select the most adequate model for given
data in the case when various methods give considerably different estimates.

Let us start with notations.

Notations. Let N denote the set of all positive integers, R the real line, R its
positive part and (2, B, P) a probability space. We shall consider for all n € N the
nonlinear regression model

Yi=9(X:,8%) +e, i=12,...,n

where {X,,}52, is a fix sequence of vectors from R?, 8 € RP and {e,}22;, e, : 2 — Ris
a sequence of independent and identically distributed random variables (i.i.d.r.v.) with
[Ee; =0 and Fe? = 02 € (0,00). F(z) will denote the distribution function (d.f.) of
e; - 071, respectively. Finally, having denoted I = {i1,82,. . ;1 €4y <dp < --- <
ik} C N, let us define '

(12) A" = arg min » " p([V; — (X, B)l67")
BeRr Ty
and A
(1.3) Blrde) = arg min > plYi - g(Xi,8)67Y)

ie{1,2,...n 1\ Ix

where p is an absolutely continuous function (with a derivative ¢) and 6, is a prelim-
inary estimator of the scale of residuals. 6, is assumed to be regression-invariant and
scale-equivariant in order to achieve regression- and scale-equivariance of ,é(”) (see in
Bickel (1975) or Juretkov4 and Sen (1993) and condition C.iii below). To simplify all
considerations we will assume that the same estimate of the scale will be used for the
full data set and for the “reduced” data. This assumption does not represent substantial
restriction of generality either from the theoretical point of view or for the applications.
In former case it only burden the notations by some additional items and prolongs the
proofs of theorems. In the latter case it asks for the employment of robust estimators of
scale and for a check whether after deletion the change of scale estimate is not dramatic.
If however instability of the scale estimate occurs, we may expect the same instability
of the estimate of regression model. In such a case we shall probably prefer another
estimator of regression model anyway, see discussion below. Let us give now conditions
under which we will derive the results.

2. Conditions

ConpITIONS A. (i) There is a positive 8y such that for any 8 € RP, ||8—8°|| < &

7] 8?
—g(z, i=1,2,..., and ———g(z,8) (4,k=1,2,...,p
aﬂjg( B U p) %jaﬂkg( ) ( )
exist for any z € {X,},. ;. Let us denote the vector of the first partial derivative and
the matrix of the second derivatives simply by ¢'(z, 8) and ¢"(z, B), respectively, and
their coordinates and elements by g;(z, 8) and g} (z, 8)-
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(i) The functions g (z,8)(j,k = 1,2,...,p) are uniformly in = € {X,}32, Lips-
chitz of the first order in 3 in the §p-neighborhood of 3°, i.e.

(L > 0) V(B € R?, |6 — £°]| < &)
17 17 ] 0
. gﬁpze{?ﬁ?ﬂ 195 (2, B) — g33(z, B)| < L- |8 = B°||-

Moreover

0 / 0 4 0
lg’%};pze{?gle max{[g(:c,ﬁ )I)Igg(xyﬂ )I?'gjk(m718 )I} < .

(iii) There is a regular matrix @ and a vector ¢ € R? such that

% Z 9'(X:, 899 (X, BT = Q + O(n~14
i=1
and .
% >4 (X, ) = ¢+ 0™,

=1
and denote (Q)ij = (Gij-

Remark 2.1. In what follows we shall use the fact that A(ii) implies that there is
J < oo such that

(21)  max sup max{|g(z, B)|, 19}(z, B)|, 195k (z, B)I} < J.-
1S5:kSP ze{ X}, ,BERP ||B—B|<b0

n=1)

Another consequence of A(iii) is that the matrix @ is positive definite.

Remark 2.2. Of course, to fulfill Conditions A we have to verify that the Lipschitz
property holds on a subset of RP, in which we assume, according to a priori knowledge,
that B lies. On the other hand, the most of nonlinear models g(z,3) which can be
taken into account to be able to solve efficiently the corresponding extremal problem
defining the M-estimator, would be (sufficiently) smooth. Remark of the same spirit is
true about uniformity in x.

Remark 2.3. From the proof of assertions given below it will be clear that the
results of paper hold also for linear model and it will be also clear how conditions is to
be modified (genearally weakened).

ConDITIONS B. (i) The function ¢ allows decomposition in the form

¢:¢a+¢c+¢s

where 1, has a derivative v/, which is Lipschitz of the first order, 1. is a continuous
function with derivative 1. which is step- function and 1), is a step-function itself. Let
us denote by Dy = {r1 1,71.2,..-,71,5, }, ($1 finite) and D2 = {ra;1,722,...,72,5,}, (2gain
s, finite) the points of jumps of ¥, and of v, respectively.
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(ii) 02 = varre; € (0,00) and there is a positive Jp such that F(z) has a density
f which is bounded on Dq(¥g) = U2,[g - ro; — Yo, 0 - r2,s + ¥o] and which is Lipschitz
of the first order on Dy (o) = UL [0 - r1,; — ¥o,0 - 71,; + Yo]. Let us denote by H < oo
an upper bound of f on Dy(d9g) as well as the corresponding Lipschitz constant of f on
D1 (90).

(iif) There is a finite © such that sup,cp [%(2)] < © as well as sup,cp\(p,uD,}
W'(2)l < ©. .

(iv) Epples-o~t) =0, varpyp(er -o71) € (0,00)

(2.2) y=0" Ep'(er-07") + i: Flrigo)(rie+) — $(rie—)] > 0
k=1

where 1(ry g4) = limy~ ry , ¥(2) and P(r1 x—) = lim; ~, , ¥(2), and

(2.3) 0= 0'—1EF€1’(/JI(61 . 0-1) + zrl,j [¢s(7'1,j+) - ":[)S("'l,j-)]f(rl,.’ia)

j=1
exists and is finite. Put for any positive ¢

Voe(z)= sup  |¢g(e"(z+u))|
fui<d,lul<¢

(where subindex a indicates that we take into account the second derivative of absolutely
continuous part of ¢ and ¢ hints that the supremum is taken over the interval (—(,()).
There is (g so that for all 0 < ¢ < (o E}'ﬂ;g’g(el) < o0, ]E’F{elﬁt’l”c(el)} < oo and
Ep{e% —(’l',c(el)} < ©Q.

Remark 2.4. First of all, notice please that for ¢ = ¢, + 9. the second term of
(2.2) is equal to zero while for ¢ = v, the first term vanishes. Similarly for (2.3).

Conditions B cover the most of the 1-functions which are used in the robust statis-
tics; for a discussion see Hampel et al. (1986). As we shall see in Remark 2.5 (below),
in the case when s # 0, we need to restrict the range of possible 1-functions further
by (2.4) and (2.5). On the other hand, specifying Iy, = {£} (for some 1 < £ < n)
it is clear from Visek (1996a) or (1997b) that for the case when 15 # 0 the norm of
n(B™ — B(™Ikn)) | although still asymptotically bounded in probability, may be much
larger than for the case 1, = 0 (for numerical examples which confirm this see also
Visek (1996a)). It implies that in the applications we will probably prefer ¥-functions
without jumps. Of course, in the following theoretical discussions we would like to treat
the problem in question for the largest set of ¥-functions for which we are able to do it.
Hence the case 1, # 0 is considered, too.

Remark 2.5. Let us consider the case when ¢; = 0. It is clear that under given
conditions the estimators 8™ and B(™¥) given in (1.2) and (1.3) fulfill the equations

> o(l¥; — 9(Xi, 867 1)g' (X, M) =0
=1

and
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S (% - g, A5 (X, ) = .

ie{1,2,...n N\ Ix

When however 1, # 0 the situation is a little more complicated. A simple consideration
however shows that for some discontinuous 1)-functions we may nevertheless expect that
B™ and fm1x) fulfill

(2.4) > w(Y; — g(Xi, B™)o71)g (X, M) = 0p(1)
=1
and . A
(2.5) ST (i - g(X, B N)e g (X, BT = 0p(1).

ie{1,2,...,n}\ Ik

On the other hand, conditions under which (2.4) and (2.5) are fulfilled appear to be
generally rather complicated since they have to cover all possible mutual relations of ¥
and g. The discussion in Rubio and Visek (1996) enlightens the problem and we may
hope that at least for some 1-functions one can recognize whether (2.4) and (2.5) hold.
For instance, one possibility when (2.4) and (2.5) may be reached is the case when the
jump in one part of ¥ is “compensated” by (a large number of) small changes of values
of ¥(¥; — g(X;, 3)) in a strictly monotone part of ¢ . Hence the following conditions will
simply assume that (2.4) and (2.5) are fulfilled.

ConprTIONS C. Let {k,}32; be a nondecreasing sequence of positive integers and
let us denote for any b € RP by g(X,b) the vector (9(X1,b),9(X2,b),. ,g(Xn,b))T

(i) There is a 4/n-consistent estimator &, = 6,(Y, X) of 7, i.e. \/_ (6n—0) = Op(1)
which is regression-invariant, sometimes this property is called affine-invariant, i.e. for
any b € RP

and scale-equivariant, i.e. for any ¢ > 0

on(cY, X) = c- 6n(cY, X).

(ii) The estimators B™ and Bk fulfill (2.4) and (2.5), respectively.
(iii) The estimator 3™ is y/n-consistent in the usual sense and BmIxn) is \/n-
consistent in the following sense

V(e > 0) (K > 0and n. € N) V(n > n. and I, )
P(va|ptmtn) — gll6,1 > K) <.

Remark 2.6. It will be clear that the form of the v/n- consistency required in C(iii)
is for the cases which will be studied below only slightly more demanding than the usual
definition of the y/n-consistency. The reader who is interested in the conditions for
the consistency of M-estimators for the nonlinear models may find them in Jureckova
and Prochézka (1994) or Liese and Vajda (1994) where also an extensive discussion of
the topic is presented. Moreover, in Rubio et al. (1993) it is proved that under the
Conditions A and B the consistency implies the 4/n-consistency. Finally, in Rubio and
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Visek (1996) it is shown that under Conditions A and B for the case When s = 0 there
is a 4/n-consistent solution of

.Z‘D([Yi - 9(Xi, B)l6,1)g (X5,8) = 0.

Let us recall once again that what concerns (necessity of) the scale-equivariance and
regression- invariance of the scale estimate for studentization of residuals, one can find
more details in Bickel (1975) or Jureckovd and Sen (1993). For a proposal of scale-
equivariant and regression-invariant scale estimator see Visek (1999).

3. Preliminaries
First of all, let us denote for ¢,u € RP and 7 € [0, 1]
(3.1) Sin(T,t,u) = g(X;, B + n~ Y/t + n_1/2—7u) - g(X;,8%).

In the case when u = 0 we shall write 8;,(7,t) instead of 6;,(r, t,0) and when even 7 = 0,
we shall write simply &;,(¢).

LEMMA 3.1. Let Conditions A and B be fulfilled and let us put for any M > 0
Sy = {t,u € RP,v € R" : max{||t]|, ||u|,v} < M}.

Then for the case when 1, = 0 there is a sequence of random matrices {U,}2., such
that Un = 0,(1) and we have for T € [0, 1]

n
32)  sup || {¥(lei — in(r t,w)o e ) g (X, B° + 2t 4 nm Y27 Ty)
Sm |52

—(les = Bin(r, )]0 te ™) g (Xs, 0+ V20))

+n! 2o By (e1 - 07HQ + Unlul| = Op(n™)  as n— oo

For the case s, £ 0 for any T € [0, 2] there ezist a family of Wiener processes W;
W;(y), and sequences of stopping times p;jn(7,t,u,v) and of random variables Iijkn(T),
and a sequence of random processes Kjn(7,t,u,v) (where j,k = 1,2,...,p, y € R,
i=1,2,...,n,n €N, t,u,v € Spy) so that

63 mx ke = oD,
(34) [22x sup IKjn(7,t,u,0) = Op(n™"),
. — 1/2—r
(3.5) o sup [lul~ Zﬂzan(T,t:U,U) Op(n’*™™)  as n— o0

and fort,u,v € Syr and 5=1,2,...,p

(3.6) Z{d’([ Sin(rt,w)lo e ) gl (X, B0 + n= V2t 4 n /2Ty
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o =1/2 -
—p([e; — bin(T,t)]0 “lem U)gg (Xz,ﬂo +n 1/2t)}

p
+'fl1/2-T”/Z gk + ’f'gkn(T Juk + Kjn(7, 8,0, v) =p W; (Z Hijn(T, T, U)>
k=1 =1

@

where “=p” denotes the equality in distribution.

ProOOF. For the proof see Lemmas 1, 2 and 3 of Visek (1996a) and (1997b). O

Remark 3.1. Let us recall that the stopping times as well as the Wiener processes
given in Lemma 1 may be defined on a probability space (Q, B, 13) different from the space
(9, B, P). On the other hand, using e.g. Csdrgd and Révész (1981), Theorem 2.1.2, we
can modify (3.2) and (3.6) so that they can be written simultaneously for ¢s = 0 and
1, #Z 0. Since we shall need such a form of this assertion later, let us do it in the next
lemma.

LeMMA 3.2. Let Conditions A and B hold. Then for any T € [O,é—] there are
random variables Kjkn(T) and random processes Kjn(T,t,u,v) fulfilling (3.3) and (3.4),
respectively, and random processes A%, (7,t,u,v) withj=1,2,...,p,n€ N, t,u € RP,
such that

jkn

(3.7) max sup|A%,. (T, t,u,v)] =0p(1) as mn— 00
1<5<p Sur J

and

n
1 —n1/2 - —1/9—r
(3.8) lrg]aicp%up Z{z/)([ei— (T, t,w)o " te™™ )g;(Xi,8° +n 124 4 p=12-7y)
: ISP oM =1

— lei = bin(r, D0~ ) g} (X, B0 + 07 20)}
p
#0273 (g + (7)) + A (s, 0) s+ K (7, £,1,)

k=1
p(1)-

PROOF. Let us assume that 1, # 0 (for the case 9; = 0 the proof is simpler). We
are going to use Lemma 3.1. Let us fix 7 € [0, 2] say Tg, and some A > 0 and € > 0.
Using (3.5) let us find K7 < oo and n; € N so that for the stoppmg times from Lemma
3.1 we have

n
g 1/2-7o
P (fgjagcp%up [Juf|~ ;u“n(m,t, u,v) >n K1> <e.

Further, applying the strong law of large numbers for Wiener process (see e.g. Breiman

(1968), Proposition 12.31 or Stépan (1987), Theorem VIIL.1.5), let us establish K < 0o
so that for the Wiener processes we have

P(max sup | j(y)| >A-K{1> <e
1<j<py>k, Y

Using e.g. the law of iterated logarithm (Csorgd and Révész (1981), Theorem 1.3.1) let
us select K3 < oo so that

P(lglfng?p [W;(y)| > Ks) <e.
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By Lemma 3.1, there exist sequences of random variables {£;kn(70)},..; and of random
processes {K;n(70,t,4,v)}3, j, £ =1,2,...,p, satisfying (3.3) and (3.4) and

Z{¢([ei — bin(T0, t, u)]U—leﬁn_l/%)g}(Xi, B +n 12+ nH/2"Toy)
=1

= (les — Sinlro, Do "™ )i (Xi, B0 4V P0))

4 n
+nt 279> sk + Kjkn (T0)Juk + Kjn (70,8, 4,0) =p W (Z Hijn(T0,t, U, v)) -
k=1 i=1

Now, let us denote

n |
) 1N, 1/2-
(3.9) Bin(10) = {w  mex sup | > wijn(T0,t,u,0) > n ToKl} :

i=1

s |W; ()] _1}
3.10 By, =@ sup ——== > A-K
3100 Ban { ESENG A !

and

(3.11) B, = {G) : max sup |W;(y)| > K3}.

1<i<po<y<K;
Denoting D,, = B, N B, N B3, we have for any n > ns
(3.12) P(D,)>1-3e.

Consider a fix (but arbitrary) n > n, and also a fix (but also arbitrary) & € Dy, and
assume at first that at this @ we have

n
Zﬂz‘jn(m,t, u,v) > Kj.

i=1

Then, taking into account at first (3.10) and then (3.9), we arrive at
n

WJ (Z Hijn (T07 t; U, U))
i=1

For the case when 3 - ; f1:jn(70,t,u,v) < Ko we have

Wj (Z /‘l’ijn(TO) t,u, ’U))
=1

(see (3.11)). Since either (3.13) or (3.14) has to take place we have for our n > ny and
@ € D, and for any t,u,v € Sy

Wj (Z I‘l‘ijn(T[)’ t,u, ’U))
i=1

i.e. for our n > ny and @ € D,, and for any £, u,v € Spyr we have

(3.13) < A-KT S pign(ro,t,u,0) < nt270 - Allull.

i=1

(3.14) < Ks

< nl/27 - Allul| + K,

(315) Wj (Z lllijn(TO’ty u, ’U)) — n1/2—-‘ro . A“u” < Kj
i=1
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and also
n .
(3.16) - W, (Z ign (70, v>> +nl/270 - Allul| > K.
=1
Now, let us define for j,k =1,2,...,p, n € N and given w € D,

—1/2

(3.17) Alpn(To,t,u,v) = —A-|lu]|—1-sign{(2{¢([ei‘ in(T0, b, u)]o e )
: i=1

. Xg‘;(Xi’ﬂO+n—1/2t+n—1/2—7'0,ul)
— -—n 1/2,,
_"l)([ei— zn('rO,t)]U ! )
X g(Xi, 0 +n~V28)}

P
+ 120 Y "(gze + fjen (T0) e
=1

+ ’Cjn(TOa tv u, U)) } Uk

Notice that [|A%.,(70,t,4,v)[| < A. Since in the considerations made a few line above
the number n was an arbitrary integer larger than ng and the point @ was an arbitrary
point from D,,, we have from (3.12), (3.15) and (3.16)

= ‘ ~1_—n~Y2%y
(3.18) P (félja%(pilg) Z'=Zl{7,l)([ei = in(70,t, U)o e )

Xg.;(Xi’ ﬂo + n_—l/zt + n—1/2_TOU) - ¢([ zn(T(); t)] - —n v)
P

X g5(Xi, 8° +n~V2)} 4 nl /2o > (g + Kjkn(10))
k=1

+ A;kn(T()’ t’ u, ’U)]’U,k -+ ’Cj'n(TO) t7 u, U)

> K3) < 3e

and (3.8) is evidently fulfilled. Since 5 < 1 we have from (8-17) |A%yp (10,8, u, )| < A.

On the other hand, A was an arbitrary positive number (see the second line of the proof).
Hence (3.7) holds, too. O

Now let us recall that we have introduced &, (t) = g(X;, 8% + n~12t) — g(X;, 8%) (see
(3.1) and the lines below it). In what follows we shall need also the following lemma.

LEMMA 3.3. Let Conditions A, B and C hold. Then

n~1/2 i{z/;([ei — Sin®))o e ) g (X, B0 + nV/2E)

t==1

(3.19) sup
Sum

— Plei - 07 V)g (X, )} +7Qt + Oqu|| = 0,(1)
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where similarly as above '
Sm = {t € R”,v € R,max{||t[|, |v|} < M}.

ProoOF. Without loss of generality let us assume that 0 =1 and M > 1. At first
we shall consider the case when 1 = 9, and we shall show that

(320)  sup Ty (X, B0+ n?t)
Sm

Z{’Pa([ei —8in(t)]o ™ te™™
i=1

~ alei - 071G (X5, 80} + nt/2yQt + n/20qu|| = Op(1).

First of all, let us observe that for t € Syr 6;,(t) may be written as follows

(3.21) Sin(t) = n7 2 (X;, BY)] Tt + én—ltTQ"(Xi,Bt)t
= 07 2g (X, BNt + 0 T [g" (X, Be) — 9" (X, B
+n g (X, Bt

where [|G; — B°|| < n"Y/2M. Let us assume only n > M2§;°. For such n we have
n~1/2M < 8 and hence ||3; — 8°|| < 8o and so, using A.ii and (2.1), we find that

(3.22) n2|[g"(X;, BTt < n~Y2Jp' 2 M,
(323) n_lltTg”(Xi; ﬂo)tl < TL_1JM2,
and

n " (X, Be) — 9" (Xi, B)]t] < n”3/2LM>.
It means that there is a constant Cp < co such that for n > M2, we have
(3.24) [6:n(t)] < n™Y/2C,.

To conclude preparatory considerations, let us verify that for any v € Sas there is an
he€ [%e‘"_l/zM, %e”—l/zM] so that

(3.25) —nM ) Y2y 4 R,

Now we may write for 1,
(426)  alles — En]e™ ")~ Yaler) = vhles) i+ 5 - U6 02
where

(327) 7 = (ei — 6:in())(A — n V20 + hn~10?) — ¢
= —(in(t) + n %) + V26, (t)v + T Phv?e; — 26, (8) - B - 07}

and there is ng € N so that for all n > ng we have

(3.28) (e; — n—1/200)e—sign(ei_n—l/zco)_n—1/2M

<& < (e + n“1/2Co)eSig“(e"+”—1/20")'”"1/2M.
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Employing (3.26) and (3.27), we obtain
(3.29) Ya(le; — 6in(t)]e_n—l/2v)gl(Xi: B° + 012y — 4, (e:) g (X, B°)
= 1a(e:)lg' (X, B° + n ™ /2t) — g'(X;, 8%)]
+4'(Xi, B2+ n Y20 (Wa(le; — Sin()]e™ V) — vules)}
= ales)lg’ (Xs, 8% +n~12t) — g/ (X, 8°)] — ' (Xi, B° + n™ 28
(6in(t) + 1~ 2e0) (&) + n Y 2g (X;, B° 4+ n~ /%)
Abin(®)v +n"Y2he; —n Y 26,,(t) - h- V2 (es)
50X, B + 1724 {— (Bin(8) + 0 2e00)
+n“1/2{6in(t)v +n" Y2, — n—1/26in(t) “h- v2}}2¢;’(§,~).

Let us consider the first term of the right hand side of (3.29). Mimicking the steps of
the analysis of 6;,(t) (see (3.21)—(3.24)) we obtain for any £ =1,2,...,p

(3:30)  tales)lgb(Xi, 8% +17120) — g4(Xi, B°)]

D
=n"24a(e:) Y _{lgrs(Xi, B59) — gf o (Xs, B2tk + 95k(Xis B)tx}
k=1
where [|®8 — 8°|| < n~1/2M. Since for n > M?2§;>
n p
n~1/? sup D hale) Y {lgrn(Xi B59) — gf (X, B2)]tx}
M |i=1 k=1

< n! ,L.p1/2 . M? 'Z"‘pa(ei)”

i=1

an application of the Markov law of large numbers verifies that this supremum is Oy(1).
For any fix k, j € {1,2,...,p} using B.iv and the Lindeberg-Lévy central limit theorem
(CLT) we can show that for any € > 0 there is an integer n; > ng and a constant C
such that for all n > ny

> Cl> < E.

Notice please that to obtain (3.31), we had to use the assumption that F1,(e;) = 0, see
B.iv. But it means that

(3.31) P (

nM2S "o (ed)ghy (X, 8°)
i=1

j=14=1

Y4 n
(332) P (SSUP nY23 7 " whales) ghy (Xi, ) >P'C'1-M)

n"2 Y aled) gy (X, B)
1

==

-sup|tj|>p-C’1~M> <e
Sm

and so the second term of the right hand side of (3.30) is also bounded in probability.
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Now let us focus our attention on the second term of (3.29). We may write it as

(3.33) [ (Xi, B° +n~Y2¢8) — ¢'(Xi, B2 (6in(t) + n~ Y 2e0)9h, (e5)
+9' (X4, 8%) (6in (t) + n™ " 2ev) (e:).

Let us fix again an £. Using (3.22) and (3.24) we may find &9 ||3®8 — 80| < n~1/2M
so that the absolute value of the £-th coordinate of the first term of (3.33) is bounded by

P

07 > lgek(Xo, BENT - ti| (Co + les| M) g (es)]
k=1

<n Y -p- M- (Co+ |es| M)W, (es)]

and hence the application of the Markov law gives again the expected conclusion. Now,
let us consider the first part of the second term of (3.33). Making use of (3.21) we obtain
(338) ¢/(X00) () Vhle)

= {n1%¢' (X, )9’ (X, BO)] Tt + n 7' (X, BO)ET " (X, Br)t}ob, (e)-
Similarly as for the second term of (3.30), employing the Lindeberg—Lévy theorem we
find that for any £ =1,2,...,p

n F4
sup n 2" gi(X6, 8°) Y g5(Xi, B0t (e:) + ' ?Qt
M g=1 j=1

is bounded in probability (see (3.32)). In other words, the first term of (3.34) is bounded
in probability. For the second term of (3.34) we have again for any k = 1,2,...,p

n~tsups, g4(Xi, 87" (X, Bt (e)] < nt-p- I - M? S0 [t (e)] and we
apply the Markov law once again. It remains to prove that the last term of (3.33),
namely n~'/%supg, Y1, ¢'(Xi, 8°) - € - v - ¥, (e;) is approximately equal to n!/20qv.
We have ‘ '

n
n~2gup Zg'(Xi,ﬂO) ce; - v- P () — n*/%6qu
Sum =1
<nV2 IS 6 (X, %) - € - Y (es) — ' 20qu| sup Jo]
n
<n M Zgl(Xi,ﬁo) e - Y (e;) —n'/*0qv).
im1 '

Using CLT we find that this term is also bounded in probability (see again (3.32) and
B.iv), so that the same is true for (3.33). Using again (3.21) we find an upper bound of
the norm of the last but one term of (3.29) in a form

nt - T {Ca + |ei| - C3} v (e:)]

for appropriate finite constants Cy and C3 and the Markov law yields again the desired
result.
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To conclude the proof of (3.20) we have to show that the last term of (3.29) is also
Op(1). This last term is sum of expressions of the type ;

1 _
§g’(Xi, B+ n 1/2t)11)i1 - Wiz - Py (&)

where w;;’s are from the set {6;,(t), n~12e;u, n=1/26;,(t)v,n"Lhe;, —n 16, (t)hv?} and
for &; see (3.28). Let us consider at first w;; = wio = ;n(t), i.e. we shall analyze

50/ (Xs, 87 4+ ™ 21) 82, (01 (6.

Using (2.1), (3.24) and B.iv, we find ng > n; and ¢; < {p so that for all n > ny the
absolute value of this term is not larger than n=1C2 - J2 3 7 | {1,5;' ¢,(e:)| and applying
(3.28), B.iv and the law of large numbers we find that this term is of order Op(1). The
verification of the same assertion for other expressions is very similar.

Now let us consider ¥ = 1.. Recalling that we have denoted in B.i the points
of jumps of ¥, by re1,72,2,...,T2,6,, let us put ro9 = —o00 and 735,41 = oo. Let
us also denote the values of the derivative of 9, by ¥.(z) = a; for z € (rzj-1,72,5),
j=1,2,...,82+ 1. (This notations will be assumed valid only within this proof. Notice
that B.iii implies that oy = 0 as well as a,, 1 = 0.) Now let k, = n~'/2p'/2JM and put
C, = U;"’:l[rg,j — kn, 72,5 + kn]. It is clear that we can find an n3 so that for all n > ng,
k., < Yg (see B.ii). In the rest of this part of proof (i.e. in the part which is devoted to
1) we shall consider only n > ns. Now let us define for any n € N the function v, (z)
as follows. We shall put ¥, (2) = v¥.(z) for z ¢ C, which implies that ¢, (z) = a; for
z € (roj—1 + kn, 72, — ky,) for some j € {1,2,...,82 + 1}. For z € C,, define ,(2) as
a smooth and monotone (e.g. quadratic) function such that 9.(z) = ¥n(z) as well as
¥.(2) = ., (2) at the endpoints of intervals [ro j — kn, 2, +ky| for j = 1,2,...,52. One
possibility is that for j = 1,2,..., ss the derivative will be linear from point ry ; — kn,
at which it attains value «;, to the point o ; + ky, at which it attains of course value

Qj11, ie.
1
Yn(2) = oy + oF, (%+1 aj)(z—r2,;tkn) for z€[ra;—kn,T2;+ kn-

We are going to show that

(3.35) sup
Sm

w2 {pelles — Sin@®o e g (X0, B+ n %)
=1
— ees - 071G (X1, %) — Yn(les — Bin(B)]o™ e ") g (X, B0+ n1/%1)

+n(es - 071)g (X3, B2)}|| = Op(1).

Let us denote the i-th term of the sum in (3.35) as ugg) (t). It can be written as

~1/2 1/2

9 (X5, B+ n ) el = 6in (B0 ™)~ Yulles — BB~ )}

+6' (X, B%){¥nlei - 071) — ppeles - o1}
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Due to the definition of the function 4, (z) (please keep in mind that it is equal to ¥.(2)
for z € C%), (")(t) can be nonzero only in the case when for some jo € 1,2, ..., so either
To,j0 — kn < € < Tojo + kn OF T o — kn < [€; — 8in(t)]e™™ M o T2,j50 + kn or both.
From it we obtain that ugl) (t) can be nonzero if '

72,40 — k,<e; < 72,50 + ky

or
n~1/2y

(rajo — kn)e + 6in(t) < €5 < (rajo + kn)e™ ¥ 4 Gin ()

and due to the fact that max{|ry ], |res,|} < 00, due to the order of &, and of e
and due to (3.24) there is a sequence {£,}32, with £, = O(n~1/2) such that

n 1251

[T2,50 = knsT2,5o + kn] C [r2,50 — €nsT2,40 + £n]
as well as
' -1/ -1/2,
[(P2.50 — kn)e™ """ 4 6in(t), (P20 + kn)e™ ¥ 4 8in(8)] C [Fajo — LnoT2,jo + Enl-

It implies that the probablhty that u(") is nonzero is not larger than the probability of
the event that e;, € C} = U 1T, Kn, 79,5 + £5]. This probability is evidently (due to

the fact that s < 00) (’)(n‘l/2)
On the other hand, supg,, |[u(") ()|l < 2-maxi<j<s, |aj|pt/2J ky-Icx (e;), and hence

Z o™

i=1

< ZEFsup u™]| < 2-  ax Ia]l J - kn EFZIC* (e;) = O(1).

i=1 t=1

Efpsup

Sm

The application of the Chebyshev inequality concludes the proof of (3.35). Moreover,
we find for v =1,2,3

(3.36) Eplyy(e1)|” = Eplg(e)]” + O(n“1/2) as n— 00
and
(3.37) Er|e1d),(e1)|” = Erlervl(er)]” + Om Y% as n— .

Observe that due to the fact that ¢.(z) = 0 for |2| > max{|roa]|,|r2,s,|} and
max;<j<sy,+1 @] < 0o we have Erlei9,(e1)|” < oo for any v € N. But this together
with (3.36) and (3.37) implies that Conditions B hold also for ¥, (z) and since 9, (2)
has derivative which is Lipschitz, we can apply on 1,(z) the assertion of this lemma
already proved for 1, (z). In other words, (3.20) holds for ¥, (z), too. Moreover we have
Yo = 0 YEpY.(e; -0~ ) and 6, = o Epeiyl(e1 -0 !) (notice please that for the
functions 1, (2) the second terms in definition of v and  are zero, see (2.2) and (3.20)),
we have ¥ — 1, = Op(n~'/?) and 0 — 8, = Op(n"1/2), and (3.20) holds also for ..
For 15 we shall prove that

(3.38) sup
Sm

n—1/2 Z{¢s([ez _ 5in(t)}o.—le_n—lﬁv)gl(Xi,ﬂO + n-—l/2t)
i=1

— (e -0 1) g (Xi, B°)} + 7Qt + Ogu| = Op(n~1/%).
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Similarly as above we may write (let us recall that we have assumed that ¢ = 1 and
M>1)

(3.39) S {ws(les — Bin@®)e™ ) (X, B2+ 1V 24) — s(ei)g’ (Xi, B2}
i=1

= > {9 (X0, B + 072 [ (s = Sin(®e™ ) = o(es)}

i=1

+{g' (X, B° +nY2t) — g/ (X;, B%) }s(es) }-

Without loss of generality let us assume that s; = 1, i.e. there is only one point of
discontinuity of the function ¥s(2), and let us denote it by r. Moreover, let us denote
Ys(2) =11 for z < 1 and Y,(2) = 75 for z > r.

Let us consider at first the first sum in (3.39) and let us put

u{™ (t,0) = g/ (Xi, 8 + 0 V2) (s ([es — Bin(B)]e™ %) — a(er)}.

Similarly as above ugn) (t,v) can be nonzero if either

(3.40) e; <r<le— in(t)]e'"vl/z" e P bin(t) <e; <r
or i —1/2
(3.41) fei —bin(t)le™ "V<r<e T <e <re” V4 8in(t).

Denote the events described in (3.40) and (3.41) successively by Bi(k) (n,t,v), k=1,2.
First of all, please observe that (3.40) can hold when

n~ 2y

(3.42) re + 6in(t) < 1.
Similarly (3.41) can take place if
(3.43) r<re” vy Sin(t)

and for fix ¢,t,v and n only one of possibilities (3.42) and (3.43) holds. Notice please
that in the case when (3.42) holds, ¥s([e; — &-n(t)]e‘"—l/z”) ~ ths(e;) > 0 and hence also

E{ps(lei — in(®)]e™ ") — 95(ei)} > 0

while for (3.43) v¥s([e; — 5in(t)]e“"~1/2°) —1hs(e;) < 0. 4
Fix an £ € {1,2,...,p}, denote by uz(-?)(t, v) the ¢-th coordinate of ugn)(t,v) and
finally denote successively by ng )(n, t,v,2), j =1,2,3,4 the events

{weQ: {re" ™ 4 5m(t) <1} {gh(Xi, B° +nM2t) < 0},
{we Q: {re”™ " 4 6, (8) <7} {gh(Xi, B +n~12E) > 0}},
{weQ: {re" " 4 6,,(8) > 1} 0 {gh(Xi, B° +n~1%t) < 0}},
{wef: {ren—m” + () > 130 {g(Xs, B° +n71%) > 0} ).
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Further denote for 5 = 1,2,3,4 and k = 1,2 by w§j’k) (n,t,v,£) the probabilities of the
events Bi(k) (n,t,v)N Dz(j ) (n,t,v,£). Due to (3.24) there is ng € N so that for all n > ny4
we have [’re”'_l/% + 8in(t) — 1] < Yo (see B.ii). In what follows let us assume only
n > ng. Let us also recall that then f,, (u) < H for ¢; € {rend/z” + 8in(t), 7] (where

the endpoints of the interval should be interchanged if r < ren " 4 6 (t)). For any
n>ng,j=1,234and k=1,2 we have '

ik
(3.44) 7‘l'§‘7 )(n,t,v,ﬁ) = EIBi(k)(n,t,'v)ﬂDE")(n,t,v,E)
r r
< fe{u)du < H du
/1:6"'——1/2”4-51'”(15) € ( ) T6"~1/2v+6in(t)

and hence due to (2.1) there is a constant C4 such that
(3.45) ng’k)(n, t,v,8) <n Y20y,

Of course, lower and upper bound in (3.44) should be interchanged if 7 < n™/2[5;,,(t) +
re"al/z)“] but (3.45) holds for any combination of j and k. Now, we shall study the sum

i{ug“ (t,v) - BulP(t,v)].

i=1

Since ngl)(n, t,v,£) and ijz)(n, t,v,£) are disjoint for any j; # j2 and U?legj) (n,t,v,
£) =, we have ugn) (t,v) = ?:1{“5-") (t, T))Iogj)(n1t,u’e)], and hence

p
Eu((t,v) = Y Blu™(, M6 it
i=1

Then

n

(3.46) ST ¢, v) — Bul) (t,v)]

i=1

n p
= Z Z{uﬁl) (t’ v)IDﬁj)(n,t,v,E) - E[ug?) (t’ v)IDg")(n,t,v,L’)]}‘
i=1 j=1

Now consider ug‘) (t, UﬂDﬁ”(n,t,v,@) —E[ugf) (t, v)ID,@”(n,t,u,z)L i.e. put j = 1. Let us recall
that then re™ v 4+ 8:in(t) < r which implies that e; < r < [e; — 5in(t)]e““‘l/2”, see
(3.40). Denoting g = 12 — 11 = ¥s(r+) — 15(r—), we easy find that
(3.47) w3, D5 ity ™ Eu{P(t, D0 00)

=0 gy(Xs, B2+ 0" V) (1 — 7V (n,t,v, 0))

= 0 |g5(Xi, 8 + 0728 (1 = (D (m, 1, 0,0))

> —o-|gy(X;,8° +n~Y2)|  with probability wgl’l)(n, t,v,0)
and
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(3.48) =—p- gé(Xi,ﬁO + n_1/2t)7r§1’1)(n, t,v,£)
= 0 1g5(Xi, 0+ n~2) ("D (n, 0, £)
<n"Y2g. Cylgy(Xs, B° + n~1/2¢))|

with probability 1-— wgl’l)(n,t,v,f).

Taking into account the expressions staying after the first sign of equality in (3.47) and
in (3.48), and corresponding probabilities, we find that

E{ugz) (t, v)IDt('l)(n’t:U»f) - E[uf?) (t’ ’U)IDEI)(n,t,v,E)]} =0.

So, putting for any n € N and i = 1,2,...,7 axp(n,t,v) = 0|gp(X;, 8° + n‘l/Zt)lwgl’l)
(n,t,v,£) and by(n,t,v) = o- |gy(Xs, B +n~1/28)|(1 - ﬂgl’l)(n,t,v, ?)), we may utilize
Lemma A.2 and define

ug)(n, t,v) the time for Wiener process to exit the interval (—a;e(n,t,v), bi(n,t,v))
and we obtain ‘
Wy (60 0y — B (G000 4 ] = Wiy (,1,0))
where “=p” means equality in distribution. Similarly we find for j = 2,3 and 4

uig) & v)Ing)(n,t,v,e) - E[UEZ) ¢ U)IDSj)(n,t,'v,K)] =D W(/‘l‘gz) (n,t,v)).

Finally, putting pie(n,t,v) = E;zl ugg)(n, t,v) and employing (3.46), we obtain

n
n Y W (t,v) — Bul ()]

=1

n 4 n
=D n_1/4 Z Z W(#g) ('I’L, ta U)) =D n_1/4 Z W(,U’M(ny ta U))
i=1

i=1 j=1
n
=p w (n_1/2 Z /,l,ig(n, t, 'U)) .
i=1

Now let us put g = supg,, |g5(Xs, 8% + n~1/2t)|. Due to (2.1) there is n5 so that for all
n > ns, we have ) < oo. Further, let us take into account inequalities which are given
in (3.45), (3.47) and (3.48), and put ¢;e = ¢ §; and dyp = n~129.Cy - §,. Defining

(3.49) ng)(n, M) the time for Wiener process to exit the interval (—cie, die),

we obtain ) .
#Ee) (TL, ta U) S K;,(;e) (’l’l, M)

Having done a similar step for others j’s and putting

4
kie(n, M) = Z ngl’z)(n, M),

j=1
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we arrive at

(3.50) supn ~1/4 Z[u(")(t v) Eugg)(t, v)]
=p sup |W (n”l/ 2> pie(n,t, U))t
Sm i=1

< sup {IW(s)I :0<s< n‘lﬂ}:nie(n,M)} :

i=1
Moreover, see again Lemma A.2, we have from (3.49) for any t,u € Sy
Ersi o(n, M) < 4n™/2Cy[g))?

for all n € N, ie.
n
n~2Y " Erie(n, M) < Calg,]*.
=1
It means that for any positive ¢ there is a constant Cs and n. > ns so that for any
n > ng

3.51 Pln2Y ki(n, M :
(3.51) {n ;n(n, )>05}<2
and then there is also Cg € (0, 00) such that
(3.52) P{sup{|W(s)| : 0 < s < C5} > Cs} < g
see e.g. Csorgd and Révész (1981). Taking into account (3.50), (3.51) and (3.52), we
arrive at
P{supn 1/4|u(n)(t v) — Eu(n)(t v)| > Ce} <e

and it ‘means that also

supn —1/4

Z[UW (t,v) — Bul) (t,v)]

=1

is bounded in probability. To prove that also

Z{g (X, 8° + 1" 2t) — g'(Xi, 8°) Yo (&)

i=1

supn -1/4

is bounded in probability is much easier. We shall give only a hint, precise arguments
should be done “coordinatewise”. Similarly as above we can write it as

Zg"(Xz,ﬂ)t«ps(en

=1

supn —3/4
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where Bj is between ﬂg and ﬁ? + n_l/ztj forall j=1,2,...,p. So we have

> g (X0, 82+ n7Y2) — g/ (X3, 8°) (&)

=1

(3.53) supn~1/4
Sm

> g (Xi, B)t — g"(Xi, BO)taps(es)

=1

< sup n=3/4
Sm

> 9" (X, B2)tbs (es)

=1

+supn~3/4
Sm

Taking into account A.ii we have
lg"(X:, B)t — g" (X, )l < n /% -p-L- |8~ B%IIM

and due to the fact that max,er |¥s(2)| = max{|r1|,|72|}, the first term of (3.53) is not
larger than n~1/4C; for some positive constant C7. Using CLT we can verify that the
second term of (3.53) is Op(n~1/4). '

‘We shall conclude the proof if we show that

n i B{s(les — Sin(®)]e™ ") (X, 82+ n71/20)

(3.54) sup
Sm i=1

—1ps(e)g (X, B°)} +vQt + qu|| = Op(n_1/4).

Let us try to evaluate the mean value from the (3.54).

355) > E{g(Xi, 8 + 0 2t (lei — Sin(®)]le™™ ") — g/ (X, B2)s(er)}

(356) =Y Blles = Gn(®le™ ) g (X0, B 402 — g (X, 80}

—1/2

+ D B{Ws(lei = Gin(t)le™ ) — Yulei)}g (X, B)-

Now, (3.55) can be written as
(357) 3 E{ps(les — 6n(®)]le™ ) = (en)} - {0 (Xi, B +n /%) — g/ (Xi, B°)}
i=1

+>_Ey(e:) - {g' (X, 8 +n~?t) — ¢ (X, 89}
i==1 .

—1/2

Let us denote by m;(n,t,v) the probability that vs([e; — 8;in(t)]e™™ %) — t(e;) # 0.
From (2.1) it follows that 7;(n, t,v) < n~'/2Cs for some positive constant. Now, let us fix

2€{1,2,...,p}. Then similarly as above we may find B(t’e) sothat forall j =1,2,...,p
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B§t,£) is between ﬁ;-) and ﬂ? +n Y 2¢; and we have
=172, _
(3.58) |E{ys(lei — Sm(®]e™ ¥) = (en)} - {g6(Xi, B+ n128) — gj(Xs, 8°)}]

p ~
n~2 . xi(n,t,0) - ngZk(Xi,ﬂ(t’e))tk <n 'Cg-p-J-p-M.
k=1

Due to the assumption that Et(e;o~1) = 0, the second term of (3.57) is zero for all .
Since the upper bound in (3.58) is independent of ¢t and v whenever they are from Sy,
the supremum over Sps of norm of the expression in (3.55) is O(1).
Let us turn our attention to (3.56). It is equal to
fe; (w)du

n
7 0
o) g X-,ﬂ/
iz-:; ) ren 20 46,0 (8)

= 0> d(X:, 8) { [ fultau [ 1) = fei<r>]du} .

i—1 e"-1/2"+6¢-n(t) rem™ Yt-8in(t

r

Utilizing (3.21) and (3.25) we can write

ren v + 6in(t) —r
=7r(l— n~Y2y 4+ n"the?) + n—1/2[g'(Xi, BTt + n~1tTg" (X;, Bt)t

(where B; is given at the first line under (3.21)). Hence there is a constant Cy so
that for all t,v € Spr |re® "*¥ + in(t) — 7| < n~1/2C,. But then we have for all
u € [re"_l/z" +6;n(t), 7] (where lower and upper bound of the interval should be changed
if it is appropriate) |fe, (u) — fe,(r)| < n7Y/2CoH (see B.ii). It implies that

, '(X;,8° ' . (1) — fo. ()]
029X / ety P () Feu (7))

n T
< n—1/2CQHgJZ [/ Vg )du] < gCgHJ
™ v+éin(t

i=1 en”

and the expression in (3.56) can be written as

Py

o (X, 1) [ du+O(1)

re"_1/2"+6in (t)

=p Z gl(Xi: ﬂo).fei (7“)

i=1

(Y 0r + 07 e 4+ Y2 g (X5, BTt + 0 T g (X, B)t) + O(1)

where we have used again (3.21) and (3.25) (for §; see again the first line under (3.21)).
Recalling that ¢ = ¥s(r+) — ¥s(r—), we obtain (3.56) in the following form

rer Y246, (8)

0Y ") [ fau(w)tu+ O(1)
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=2y (r+) — s(r—)]
g (X, BO){rfe, (r)v + [¢ (Xi, B%)] 78} + O(1).

i=1

Recalling that

3 g (X)) [0 8] T = @+ O(nH)  and
i=1

1 n
=g (X, B%) = g+ O ™V4).
i=1

we conclude the proof. O
4. Bahadur representation

In this section we shall give the Bahadur representation for the difference of the
estimators (") — B(%Ikn)  We shall consider successively the following three cases:

i)

(4.1) kn=k foral né€N,
ii)
(4.2) thereis v € (0,1) and A€ R sothat lim k, -n™" = A,
n—>r00
iii)
(4.3) thereis A€ (0,1] sothat lim k,n~ ' =\
2 n—oo

Remark 4.1. We have assumed X € (0, 3| instead of a general case A € (0,1]. If we
allowed X € (0,1], at the further considerations we would have to take min{k,,n — k,}
instead of k, or max{k,,n — k,} instead of n — k,. Similarly, we have assumed that
{k,}22, is a nondecreasing sequences instead of a general one (see Conditions C). Not
having the assumption of monotonicity but only of convergence, we would have to speak
about “lim sup” or “lim inf” instead of “lim” to keep the following text fully correct.

First of all we shall study the order of convergence of B — g(nIk) . We obtain:
LEMMA 4.1. Let Conditions A, B and C hold. Then we have

(4.4) nk; V2B — fmIen)y = O,(1).

Proor. It follows from C.iii that we have
\/ﬁ(ﬁ(") _ B(”’Ik")) =0p(1) as n— o0

which is the assertion of the lemma for the case given in (4.3). So it suffices to prove
(4.4) for the cases given in (4.1) and (4.2). Let us begin with (4.1). We are going to use
Lemma 3.2.
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Due to (3.3) and (3.7) it is clear that for the matrices {Vp}, o,
1., -
(Vn)jk = @ik + Kjkn + :Y'Ajkn(t, i, D)

(where Kjkn = Kjkn(0) and A%, (£,@,7) = A%, (0,1, #i,5)) we can find for any A > 0
and any € > 0 an integer n; so that for any n > n; we have

P( max_lgjx — (Vn)je| > 24) <e.

It means that the matrices V,, converge to @ in probability. Let us put { = \/ﬁ(ﬁ (m) _ g%y,
@ = /n(B™k) — B™) and § = /n(logs, — logo). Due to Conditions C there is an
integer ny > m; so that for any n > ny there is a set B, with P(B,,) > 1 — ¢ and for any
w € B, we have max{||f], ||@]||5]} < K for some K finite. Substituting ¢,& and ¥ into
(3.8) (for 7 = 0) we obtain

S (1: — g, A7) g (X, B Ten)) — (Y — 9(Xi, )67 g (X, B™)]

i=1

V(B ) — fM) = Op(1)  as n— oo,
Taking into account (2.4) and (2.5) for the case given in (4.1) we arrive at

(£5) AVan(B) - fTen))
= 3 Y% - 9(Xe, HOI) 57 1)g! (X, BI)) + Op(1) 85 1 oo
ecly,,

Since k, = k and ¢ as well as ¢’ is bounded, the right hand side of (4.5) is Op(1) as
n — 00. Recalling once again that k, = k and employing the Assertion A.1 of Appendix,

we conclude the proof of lemma for (4.1).
It remains to prove (4.4) for (4.2). In the same way as in the previous case we obtain
again (4.5) but now, due to the fact that k, — oo for n — 00, we cannot claim that

right hand side is O,(1) as n — oo. Nevertheless, dividing (4.5) by kY2 we arrive at

AVntt - k;l/‘?(,é(n) — B("%Ikﬂ))
= k2 " (Ve — 9(Xe, B )]671)g (Xe, B T)) +05(1) a8 m— o0,
Lely,,

Since /n(B™1a) — 5%) = O,(1) and for v € (0,1), n"Vkn, — A, we have for large n
(E)1/2 < 1 and hence KY2(301en) — §9) = /(52 ) /2(A0In) — 0) < (Jii(CIkn) —
8°), i.e. ki/?(BnTen) — 8%) = O, (1) as n — co. Similarly ks/?(log i, —log o) = Op(1)
as n — 00. . :
So we may substitute into (3.19) t = v/, (3™ x) — %) and v = vkn(log 6n—, —log o),
and we obtain

ka2 (Ve — 9(Xe, BT )]6 7 ) g (Xe, B Tin)) = he - 070) g (Ko, B°)}

£cly,

+ k,lt/QvQ(B("’["") - 8%+ k,l,/20q(log On—k, —logo)|| =0p(1) as n—oo.
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It implies that

(4.6) AWan - k2B — finTin)y
= k2 Y lee- 07N)g (X, B°) - ki PAQ(B™ ) — 6°)
lely,,

—kY/26g(log 6k, — log o) + 0,(1).
Now the terms k/ 2')IQ(B(”’I’%) — (% and ky/ 20q(10g On—k, — logo) can be written as

1/2
( by ) /1 — knQ(B™ =) — g% and

n— kn
k 1/2
() 0w Ratog n-s, ~ 1050,

respectively. Since kp - (n — kn) ™! = 0(1) and /i — En (80 %) — %) = O,(1) as well as
Vn = kp(log 6, — logo) = Op(1) when n — 0o, using central limit theorem (to cope
with the first term of right hand side of (4.6)), we obtain

W kTP f0Da)) Z 0,(1) a5 n— oo,

Finally, utilizing Assertion A.1 of Appendix once again, we conclude the proof of
lemma. O

The following theorems give the Bahadur representation of B(") — ﬁ(""’kn) for the
three types of sequences {ky }n.; which were indicated above.

THEOREM 4.1. Let Conditions A, B and C be fulfilled, and let (4.1) hold. Then
ifYs =0 ;
n(ﬁ(nyfhn) _ B(n))
=—771Q7 D ¢ (X, BT y([Y: — g(Xs, B TR)]6 ) + 0p(1)

i€lk,
as mn — 0Q.

When 1, # 0, there ezist a family of Wiener processes W; = W;(y) withy € R, a se-
quence of stopping times pijn(t,u,v) j=1,2,...,p,1=1,2,...,n,n € N, t,u,v € Sy,
and a sequence of random vectors R, € RP, such that uniformly in I, C {1,2,...,n}

max sup
1<j<p S

W; (Z uijn(t,u,v)> ‘ =0p(1) as n— o0,
i=1

=1

(Rn)j =p W; (Z pign (VR(B™ — B°), n(B™e) — B™), /n(log &, — log a)))

and A A
(47)  n(B"n) — )

=—71Q718 N g (X, BT ([Y; — (X, B T)]67T) + R

i€lg,,

+op(1) as n— oo.
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ProoF. We shall prove the second assertion of the theorem. It will be clear from
what follows that the proof on the first one is similar but simpler, and hence it will be

omitted. A A
From Lemma 4.1 we have @, = n(8(™%=) — 3(")) = ©O,(1) and from Conditions C

t, = n1/2(B™ — g% = O,(1) and 9, = n'/2(log 6, — logo) = O,(1). We are going to
employ Lemma 3.1 for 7 = % Let us put

n

@) (Ra)y = ~ YW - oK Ao ) (s, B

i=1

— ([Y; — 9(Xi, 86 1) g5 (X, B™)]

yy
-~ A~ ’I n
+yon Y gie(B — B),
=1

then due to symmetry of the distribution of Wiener process, due to the fact that
3 LY (50 _ jmTin)
w Y- n (5 ) B B) = o)
£=1

and an(%,fn,'&n,ﬁn) = 0p(1), we have from Lemma 3.1 for j =1,2,...,p

n 1.
i=1
(see (3.6)). Taking into account (2.4) and (2.5), we obtain from (4.8)

> w(IYs - g(Xi, B D)o g/ (X, B Ten))

’l:EIkn
_ny . n(ﬁ(n) _— B(n,-[kn)) + Rn —_ Op(]-) as n— 00

and the proof of the theorem follows. O

Now let us consider the case described by (4.2).
THEOREM 4.2. Let Conditions A, B and C be fulfilled, and let (4.2) hold. Then

(4.10) nk;/2(B1en) — g(n)
= —k;1Pxy1Q Z g (X:,8% ¢ (ei-07t) + Qp(l) as n— 0o

iEIk,n

and hence nky Y/ 2(,@(") - ,@("’I’“n)) is asymptotically distributed according to N,(0,X)
where & =y 2vary(e; -0 1) - QL.

Proor. From Lemma 4.1 we have 4, = nk;1/2(,3("’1’=n) — ™) = 0,(1). From
C.ii and C.iii it follows that &, = n!/2(3(™ — 8%) = O (1) and o, = n'/2(log 5, —logo) =
Op(1). Notice that for 71 = 2(1 —v) > 0, we have for the quantities from Lemma 3.2
Kjkn(T1) = 0p(1), A;kn('rl,fn,ﬁn,ﬁn) = 0,(1) as well as K;n (71, tn, in, 7n) = 0p(1).
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Taking into account (2.4) and (2.5), we obtain from (3.8) for 7y and any j =
1L,2,...,p

37 w([Y — g(X, B Ie)]67 ) g5 (X, B Tn))

i€ly,

D
* S A - 3(nokn, 3
+n1/2’/ Z[’Y(qjk -+ K/jk;n('rl)) + Ajkn(‘Tl,tnyunyvn)]nkn 1/2(ﬂ£:’"» o) - ﬂl(cn))
k=1

- p(l)

and hence also
nV2 N (Y — g(XG, BT )]6 1) g (X, B TE))

i€ly,,
2 (noTx,) )
—_ Al 2
+ 3 ygink V2B — V) = 0p(1).
k=1

Taking into account (4.2)
k=2 (k) _ o)y
=~k P27QT Y o (X, B yp([Y: - (X, B0 )60)

i€lk,,
+o0p(1) as mn — oo.
Utilizing now consistency of the estimator 3("k=) (see C.iii) and the assumptions about

the functions g(z, 8), ¥(z) and F(z), we obtain (4.10). An application of the central
limit theorem concludes the proof. O

It remains to treat the case when lim, o k,n ™' = X € (0, 3]. An analysis of this
case may be done in a similar way as it was used in Theorems 1 and 2. However it seems
simpler to use directly Lemmas 5.1, 5.2 and 7.1 of Visek (1996a).

THEOREM 4.3. Let Conditions A, B and C hold, and let (4.3) take place. Then

(4.11) n/2(B0I) — By = 4 LQTINY2 D " givh(eso ) g (X, ) + 0p(1)

=1

as n — oo where ain = kn'? fori € Iy, and am = AY2 - [(1 = A)(n — ko) Y2 for
i € {1,2,...,n} \ I1,, and hence Vn(BTkn) — 3(7)) has the asymptotic distribution
N(0,X*) where

A
= v 2vary (ela_l) QL
1—-2AX
PRrOOF. First of all, let us show that

(4.12)

23 e - 0NN (X, 6) — 2 — ) !
i=1

3 e 07)g (X0, 8%) — @t A(B™ — B Ika)) || = 0,(1).

ie{1,2,.n\Ix,,
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Taking into account (2.4) and (2.5) we may bound the left hand side of (4.12) by

n /2 Y (Y — 90X, B)Jo)g' (X2, )

i=1

— (e - o) (X5, B°)} + 1@t/ 2 (B™ — B°) + 0gn'/*(log 6, — log o)

n 112 A
+[ ] (k)2 S (% - g(X, B

n~kn ie{1,2,...,n\ Ik,
g (X, B Ten)) — p(e; - 07 1) g (X, B} + 1Q(n — K1/

- (B™Ten) — 89 + Bg(n — ky) /*(log &7 — log o) || + 0p(1),

and taking into account C.iii we find that the both norms are o,(1) according to Lemma
3.3. Finally, let us observe that (4.12) may be written as

kn 1 1 s kn  [kn 1
Ve 7 2 Ve o) - [ 2

k3 Ikn

x 3 e o7 (X0, %) —v@nMP(B — frlad)) | = 0,(1).

i€{1,2,....,n\ Ik,

Using central limit theorem and A.iii, we conclude the proof. O

Remark 4.2. Notice that multiplying (4.11) by A~%/2 and then assuming limit for
A — 0, we obtain formally (4.10). It meams that for A — 0 Theorem 3.3 agrees formally
with Theorem 3.2.

5. Conclusions

The result which we have obtained for the situation when a fix number of obser-
vations is deleted from the data, shows that the M-estimators which are generated by
a discontinuous 3-function may exhibit larger changes (after deletion of a few observa-
tions) than the estimators generated by a continuous function. Moreover, the form of the
terms in corresponding relations hint that the change may be considerable and let us add
that results of processing real data sets confirm it, see Visek (1996a). It implies quite
clear conclusion: We should avoid M -estimators generated by discontinuous 1-function.

Of course, when the difference of the estimates before and after deletion of some
points seems to be large, one can ask whether the change is significant or not. The results
for the situations when together with increasing number of observations we allow also
for an increase of number of deleted points, bring a possibility to test this significance.
Naturally, when applying these results we cannot decide whether we have deleted e.g.
asymptotically negligible part of data, since we have at hand a given number of obser-
vations and we delete a part of them. Nevertheless, if our analysis indicates that the
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subset of influential points may include more than a few observations, we can assume
that the results for one of the two latter situations will work and we can probably use
corresponding tests (see Bendéek et al. (1998)).

Since all the results of paper are given for nonlinear regression, let us say now
a few words about their relation to the linear regression model. Of course, the linear
regression model is a special case of the nonlinear one, but.... This “but” means that
the assumptions which may be acceptable for nonlinear regression, need not seem to be
acceptable for the linear one. An example of such assumption may (seemingly) be A.ii.
It is clear that this assumption would be fulfilled if we accept

(5.1) sup ||lz:|| < K
ieN

for some K > 0. However, this assumption is considered by some statisticians as inad-
missibly restricting while they are willing to accept the assumptions of the type

) >l = Otn)

Judge et al. (1985) or Jureckovd and Sen (1993). First of all, let us look on the “difference
of generality” between (5.1) and (5.2). Assertion A.2 says that if (5.2) is fulfilled for
k > 1, for any A > 0 there is a constant Ka so that the portion of observations, norm
of which is larger than K, is asymptotically under A. Further, as we have seen, e.g. in
(3.44), we need, at least for ¢-functions of types 9. and 9, to evaluate probability of
the type P(u < e; < u —n~1/2zTt) and in fact to be.able to carry out the proofs, we
would like to have the upper bound for this probability given by ||z;]|O(n~1/2). Since
in the case of (5.2), the norms ||z;|[, ¢ = 1,2,...,n are not uniformly bounded, we need
some assumption(s) about F(z) (e.g. existence of bounded density) to be fulfilled on
the whole support of F(z). Moreover, the proofs are rather involving while under (5.1)
they are straightforward and it is evidently sufficient to require corresponding properties
of F(z) only in the neighborhood of u (where e.g. when the behaviour of regression
quantiles is studied, u = 0, see Jureckovd (1984)). If we take into account that under the
contamination, it is already rather strong to ask for local properties of F(z), it seems
even more unrealistic to assume something about global properties of F'(z). On the
other hand, although for given data we have always bounded maximum of the norms of
carriers, a large ratio of

sup |||/ med ||z]|

icn teEn

(where n is number of observations) may indicate that to assume that (5.1) holds, can be
a little bit hazardous. Nevertheless, had we accepted (5.1), all the results of this paper
are valid for linear regression, too. ’

So, let us summarize. Theorems 1, 2.and 3 allow us to find for the given M-estimator
of the regression model the group of the most influential points. Moreover, in the case
when k, — 00 as n — o0, applying central limit theorem we may find the significance
of the difference 8™ — B(™Ix+), We may call the estimate which is not for the full
data significantly different from the estimate for some “reasonable” subsets of data, the
subsample stable.

If however the difference appears to be significant, something may be wrong with our
estimates. For instance, we have used 1-function which is not adequate for the data, e.g.
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the 1p-function is too far from the derivative of loglikelihood of the underlying model. So
we should repeat the analysis with some other estimator. In fact, just described situation
may be interpreted from a somewhat more general point of view. We shall try to explain

it. . ‘
Although the robust statistics offer wide scale of estimating methods, most statis-

ticians do not probably expect that we may obtain (considerably) different estimates
of model as a result of application of different methods, of course we mean on one fix
sample of data, see e.g. Ruppert and Carroll (1980). The belief that the estimates (i.e.
the values of different estimators) should be similar for given data set, has probably
its roots in a misinterpretation of the consistency and in a belief into an (objectively)
existing mechanism somewhere behind the data which we (at least asymptotically) may
discover, as Chrystofer Columbus discovered the America. But such belief may be some-
times problematic, sometimes it may be clearly demonstrated that it is an illusion (see
Prigogine and Stengers (1984)). Any case, the experiences from the applications of ro-
bust procedures on the real data, especially the applications of procedures with high
breakdown point, confirm the possibility of obtaining considerably different results (see
e.g. Hettmansperger and Sheather (1992) or ViSek (1992a, 1993)). In Visek (1994) an
artificial data showed that the least median of squares and the least trimmed squares
estimates may be orthogonal to each other. Due to the simplicity of these data, the
reasons which caused this effect, can be traced out. Let us call this effect diversity of
estimates. Similarly, it is not difficult to demonstrate an analogous behavior for the
minimal bias estimators studied in Martin et al. (1989), namely surprisingly large “bias”
of this estimator in some situations (converted commas hint that sometimes we are in
fact sure that the estimate is considerably biased, sometimes it is far from other estimate
with high breakdown point; for the discussion with more details see Visek (1996b). Let
us note that it is even possible to give a formalization of the diversity of estimates which
shows that it is not contradictory to the consistency of the estimators, see Visek (1997a,
2000).

It may be surprising but we may meet with diversity of estimates more frequently
than we would expect. The fact that the most of statisticians have not yet this experience
is due to the bad availability of implementations of the estimators with high breakdown
point. Nevertheless when we meet with the diversity of estimates, the test for the
subsample stability may help to select an appropriate estimate for given data, namely
that one which exhibits the highest subsample stability (with, of course, insignificant
difference 4™ — B("’I"n)). For a detailed discussion of the topic see Visek (1992b or
1994).
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Appendix

Assertion A.1. Let for some p € N, {Y™}2,, v = {vfjn )}3:11,’3”."’_"’;,’ be a se-
quence of (p x p) matrixes such that for i =1,2,...,pand j=1,2,...,p
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(A1) lim v{™ = ¢;;  in probability

n—o0 2‘7

where Q = {g;; }1_1122 “? i a fixed nonrandom regular matrix. Moreover, let {(™}%2

be a sequence of p—dlmensmnal random vectors such that
Vg = 0,(1) as n— oo.

Then
0™ = 0,(1) as n— oo.

ProoF. For the proof see Visek (1996a). O

LEMMA A.1. (Stépsn (1987), p. 420, VII.2.8) Let a and b be positive numbers.
Further let £ be a random variable such that P(§ = —a) =7 and P(§ =b) =1— (fora
7 € (0,1)) and IEE = 0. Moreover let T be the time for the Wiener process W (s) to exit
the interval (—a,b). Then & =p W (7) where “=p” denotes the equality of distributions
of the corresponding random variables. Moreover, IJET = a-b=varé.

Remark A.1. Since the book of Stépan (1987) is in Czech language we refer also
to Breiman (1968) where however this simple assertion is not isolated. Nevertheless, the
assertion can be found directly in the first lines of the proof of Proposition 13.7 (p. 277)
of Breinman’s book. (See also Theorem 13.6 on the p. 276.)

Assertion A.2. Let for some positive k we have 3., ||zi|| = O(n). Then for any
A € (0,1] there is a Ka such that denoting for any n € N

= #{’L :1<i<n, ”ZL‘ZH > KA}
we have m, < A -n (where “4A” denotes the number of elements of the set A).

PROOF. Due to the assumptions of lemma there is C such that for all n € N we
have 2377 | [lzifl < C. Fix A € (0,1] and put Ko = % € +1. Then

1« 1 1
C>=Ylal=—3 > lml+ > lwlly>omeKa
=1

{:llz:I<Ka} {ifjz: > Ka}
and hence m,, <n- KLA < nA.
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