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Abstract. The usual estimator for the expectation of a function under the inno-
vation distribution of a nonlinear autoregressive model is the empirical estimator
based on estimated innovations. It can be improved by exploiting that the innova-
tion distribution has mean zero. We show that the resulting estimator is efficient
if the innovations are estimated with an efficient estimator for the autoregression
parameter. Efficiency of this estimator is necessary except when the expectation of
the function can be estimated adaptively. Analogous results hold for heteroscedastic
models.
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1. Introduction

Let Xi_p,..., X, be observations from a stationary and ergodic (homoscedastic)
nonlinear autoregressive model of order p,

(1.1) Xj = 7‘(’19, Xj._1) +6j, ] > 17

where X ;1 = (Xj_p,...,X;_1), and the innovations ¢; are independent and identi-
cally distributed with mean 0 and finite second moment. Suppose we want to estimate
the expectation E[h(e1)] of some square-integrable function ~ under the innovation dis-
tribution. The usual estimator is the empirical estimator %Z}"zl h{(¢;) based on the

estimated innovations £; = X; — r('@n, X;_1), where ¥, is some estimator of ¥.

If ¢ is known, we can improve the empirical estimator 1 > iy X — (8, X 51))
using the constraint Efe;] = 0. If ¥ is unknown, it suggests itself to replace ¢ by an
estimator. In Theorem 1 of Section 2 we give conditions for asymptotic linearity of the
resulting estimator for E[h(e;1)]. In Theorem 4 of Section 3 we characterize efficiency
of this estimator. Section 4 states corresponding results for heteroscedastic nonlinear
autoregressive models. Section 5 contains examples. The proofs of Theorems 1 and 3
are in Section 6.

The results may be viewed as instances of the following general principle, proved
for the i.i.d. case by Klaassen and Putter (1999). Suppose a model is parametrized by
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(9, F). Let Fpy be efficient for F' if ¥ is known, and let J,, be efficient for 9. Then F.s.
is efficient for F.

2. Asymptotically linear estimators

To begin we recall results on constrained models for independent and identically
distributed observations. Let ¢,...,e, be i.i.d. with distribution function F fulfilling
the constraint E[y(e;1)] = 0 for some vector-valued F-square-integrable function ¢ such
that E[¢(e1)9 " (e1)] = [ 47 dF is invertible. Let h be an F-square-integrable function.
Because of the constraint, we can write the expectation E[h(e;)] for each vector a as
H(a,F) = E[h(c1) — a"9(e1)]. The obvious estimator for F is the empirical estimator
F.(z) = %Z?:l 1(g; < z). We obtain unbiased estimators of E[h(e1)] by replacing F'
in H(a, F) by the empirical estimator,

(21) H(e,Fa) = 1+ > (hles) — aTp(e).

It is easy to check that the smallest asymptotic variance in this class of estimators is
achieved by a = ap(F') with

(2.2) an(F) = (Elp(er)d(e1) ') T Elp(en)h(er)]-

Under our assumptions, an(F,) is consistent for ap(F'). Hence H{apn(F,), F,) has the
same asymptotic variance as the best unbiased “estimator” H(as(F),F,) in the class
(2.1). The estimator H(ap(Fy), Fy,) is efficient by Levit (1975).

Consider now the (homoscedastic) nonlinear autoregressive model of order p. By
this model we mean a strictly stationary and ergodic time series X;, j > 1 — p, which
satisfies the structural relation (1.1). Here g5, j > 1, are i.i.d. with unknown distribution
function F' and independent of the initial observations X . Let G denote the stationary
distribution of X3. We assume that F has mean 0 and finite second moment. The
parameter 9 is unknown and belongs to some open subset © of RF.

Suppose first that the parameter o is known. Write the innovations €; as functions of
the observations, €;(¢) = X; —r(8¥, X j_1). The constraint on the innovation distribution
is Ele1] = 0. For each real a we obtain an unbiased estimator for E[h(e1)],

H(a, Fag) = = 3" (b(e5(9)) ~ as5(9)),

=1

where Fpg(z) = L > i1 1(€5(9) < x). The constraint on F can be written Eft)(e1)] =0
for ¥(z) = z. By the above results on constrained models, the asymptotic variance of
H(aa Fnﬂ) is minimized by a = ah(F) = E[elh(el)]/E[E%]a and Hn('ﬁ) = H(ah(Fnﬂ)a Fm?)
is efficient, with asymptotic variance

(2:3) o5 = E[h(e1)’] - (Elh(e1)])” — (Elexh(en)))?/Eled]-

We are interested in the model with 9 unknown. Assuming that By, is asymptoti-
cally linear, we show in Theorem 1 that H,(1,) is asymptotically linear, and calculate its
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influence function. Call an estimator &, of an m-dimensional functional x(¥9, F') asymyp-
totically linear at (9, F) with influence function x (or x(Xo, X1)) if x : RP™! — R™
with E[x(X o, X1) | Xo] =0 and E[||x(Xo, X1)||?] < oo, and if

(2.4) B2y — (8, F)) = 123 (X5, X) + o, (1),
j=1

By the martingale central limit theorem, an estimator with influence function x is asymp-
totically normal with covariance matrix

(2.5) Vi = Ex(Xo, X1)x(X0, X1)].
For ¥ known, the estimator H,(¢) is asymptotically linear with influence function
(2.6) h(e1) — an(F)e1 — Elh(e1)]-

Now replace ¥ by an asymptotically linear estimator U,. The influence function of
H,(¥y) is given in Theorem 1. We use the following assumptions. They say that (¢, z)
is differentiable in ¥ in an appropriate sense and that the function A has a smooth
derivative.

AsSUMPTION 1. There is a G-square-integrable function # such that, for each con-
stant C,

(2.7) sup Z(r(ﬂ +A, X )79, X;_1) — ATf(Xj_l))2 =op,(1).
laji<Cn=t/2 55

AssuMPTION 2. The function h is absolutely continuous and F-square-integrable,
and its (almost everywhere) derivative h’ is F-square-integrable and satisfies

/ sup (K'(z — a) — #'(2))?dF(z) -0 as 75— 0.

lel<n

THEOREM 1. Suppose Assumptions 1 and 2 hold. Let Oy be asymptotically linear
for ¥, with influence function x(Xo,X1). Then H,(d,) is asymptotically linear for
E[h(e1)], with influence function

h(e1) — an(F)er — Elh(e1)] — (E[W(e1)] — an(F) E[#(Xo) "]x(Xo, X1)-

If E[h'(e1)] = an(F) or E[f(X)] = 0, the influence function reduces to the influ-
ence function (2.6) of H,(¥). In general, none of these two conditions holds, and the
asymptotic variance of Hy,(d,) depends on &, through its influence function x(Xo,X1).

We have assumed that h is differentiable. This excludes the interesting case h(z) =
1[z < t], for which E[h(e;1)] = F(t). To treat this case, one can rely on expansions of
F, 5. available in the literature; see Koul (1996) for general nonlinear models, and Boldin
(1982), Koul ((1992), Chapter 7) and Koul and Leventhal (1989) for linear autoregres-
sive models. General empirical processes involving “pseudo-observations” &; = f(Xj)
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are studied in Ghoudi and Rémillard (1998). For completeness we describe such an
expansion. For this we strengthen Assumption 1 and require smoothness of F. More
precisely, we require the following.

(al) There is a G-square-integrable function 7 such that, for each constant C,

max sup lr(¥+ A, X ;1) —r(9, X;-1) — ATf(Xj_1)| = op, (n"l/Q).
SIS |al<Cn-1r2

(a2) The distribution function F has a positive and uniformly continuous density

(a3) The estimator 9, is n'/2-consistent for 9.
Under these assumptions we have the expansion

up |F, (1) = Fro (t) = FOBEF(Xo) (8 — 9)] = op, (/%)

This is essentially Corollary 1.6 in Koul (1996), except that we have replaced his condition
(h1) by the weaker condition (al). Inspection of his proof shows that our (al) is sufficient
to guarantee the critical requirements (3.8) and (3.11) needed in his proof. Koul (1996)
also constructs n!/2-consistent estimators for .

For h(z) = 1]z < t] we have an(F) = Ele;1(e1 < t)]/E[e?] = ai(F), say. The
empirical estimator a;(F, 5 ) = >_7_; &;1(¢; < t) / Z;‘zl €2 is consistent for a;(F) uni-
formly in ¢ in the sense that sup,cg |a:(F, 5 ) — a:(F)| = op,(1). Thus we obtain that
the improved empirical distribution function F*; =F 5 —a: (Fnﬁn)?li > i1 €5 admits

n

the expansion

(28) sup|F; (£) = Fro(t) - (F(8) - 0 (F))E[#(Xo) T](0n — 9)| = op, (n™'/?).

For asymptotically linear U, this gives the desired result corresponding to Theorem 1.
3. Efficient and adaptive estimators

In this section we characterize efficient and adaptive estimators among those of the
form H,(d,). This requires the nonlinear autoregressive model (1.1) to be locally asymp-
totically normal. We need an additional assumption, finiteness of the Fisher information
for location. As in Section 2, fix a distribution function F' with mean 0 and finite second
moment.

AssumMPTION 3. The distribution function F has positive and absolutely continu-
ous density f with finite Fisher information for location: E[¢2(e1)] = [ £2dF < oo, with

t(z) = —f'(x)/ f ().
Remark 1. Under Assumptions 2 and 3 we have E[h/(e1)] = E[f1(e1)h(e1)]-

Local asymptotic normality requires local perturbations of the model around the
true parameter (¢, F'). The perturbed parameters must still be in the parameter space.
Introduce local parameters w = (u,v), with u € R" and v in the space V of F-square-
integrable functions fulfilling '

El(e1)v(e1)] =0, with &(z) =(1,2)".
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Set ¥ny =9 +n"1/2y, and let F,, be the distribution function with density

fan(z) = f(2)(1 + n_l/Q'Un(x))-

Here vy, is defined as follows: With a, = n'/8 and ¢ the standard normal density, let
&n(z) = (1,(=an) VT Aay) T be a trimmed version of £(z), let ¥, (z) = (—an) Vu(z) Aan
be a trimmed version of v(z), let 9,(z) = [n(z — a; y)p(y)dy be a smoothed and
trimmed version of v(z), and then define

Un(2) = Un(2) — Eltn(e1)é(e1) T1(Elén(er)é(er) ) én ().

The following properties are easy to check. The function v, is absolutely continuous,
lun| < Cn'/® and |v}| < Cnl/* for some finite constant C, and [v,£TdF = 0 and
[ (v —v)2dF — 0. In particular, F,, fulfills Assumption 3, has zero mean and finite
variance. Moreover,

n'/? / h(z)(fau(z) = f(2))dz = Elh(e1)vn(er)] — Elh(er)v(en)]-

Since F' has a density, the stationary distribution G of X ; has a density, say g =
g9,F. Write g, for the density gy, r,,. Write Py, for the joint law of X1_p,... , X,

nu)

if ¥y, and Fy,, are the underlying parameters. Consider the local log-likelihood ratio

dPpy Inw (XO) " fnv (ej (ﬁnu))
log =log + ) log et

aP, (X0 =R @)
Here the random variables e;(#) = X; — r(9¥, X;_1) are the innovations, written as
functions of the observations. We have local asymptotic normality as follows. For the
proof see Koul and Schick (1997). They also give conditions for smoothness (3.1} of the
stationary density.

THEOREM 2. Let w = (u,v) € R* x V. Suppose Assumptions 1 and 3 hold and
the stationary density depends smoothly on the parameter,

(3.1) [ 192u(@) - g(@)lde 0.
Then
dPuw  _1p 1
32) 10%713;‘ =n~Y ;Sw(xj—l,gj) — 58w +op, (1),
n .
(3.3) n2Y "8y (Xj-1,65) = N(O,Ry)  under P,
J=1

where N(0, Ry,) is normal with mean 0 and variance R,,, and where

Sw(XQ,El) = ’U(El) + 'Ll,Tf“(X())fl(El),
Ry = E[S,(Xo,21)?.
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From now on we view S,,(X¢,e1) as an element of the Hilbert space Lo(G x F),
and V as a subset of the Hilbert space Lo(F). The tangent space

T = {Sy(Xo,e1) : w = (u,v) € R* x V}

is a closed linear subspace of Lo(G X F).

Consider now the problem of estimating an m-dimensional functional (¢, F). We
say that « is differentiable at (9, F) with gradient & if E[||&(X0, X1)[|?] < oo and for all
w = (u,v) € R" x V,

(3.4) 1 k(O nu, Fro) — (9, F)) — E[f(Xo, X1)Sw(X0,€1)]-

The function £ is not uniquely determined, but its projection kg onto T™ is. We call &g
the canonical gradient, and assume that Vi, = E[ko(Xo, X1)ko(Xo,X1)"] is positive
definite.

Now let &, be an estimator of k. We say that &, is regular at (9, F) with limit L if

2Ry, — k(9,F)) = L under Py, for all w = (u,v) € R* x V.

The convolution theorem of Héjek (1970) in the version of Bickel et al. ((1998), Sec-
tion 2.3) implies the following three results:

1. The distribution of L is a convolution, L = N(0, V;,) + K in distribution, with
K independent of N(0, Vy,).

2. A regular estimator &, has limit L = N(0,V,) if and only if &,, is asymptotically
linear (2.4) with influence function x equal to the canonical gradient &o.

3. An asymptotically linear estimator is regular if and only if its influence function
is a gradient.

An estimator with limit L = N(0, V;,) is least dispersed among all regular estima-
tors. We call such an estimator efficient. It follows from 1. to 3. that an estimator is
regular and efficient if and only if it is asymptotically linear with influence function equal
to the canonical gradient,

(3.5) nl/z(/%n - Ii('L?,F)) = n_1/2 Z I%Z()(Xj_l, Xj) + Opn(l).
J=1

We apply the characterization (3.5) to estimators of ¥ and of E[h(e1)]. To calcu-
late the corresponding canonical gradients, it is convenient to decompose the elements
Sw(Xo,€1) in the tangent space T into orthogonal components,

(3.6)  Su(Xo,e1) =v(er) +u' E[F(X0)|(ta(e1) — ag, (F)er) +u' 8(Xo,61)

with

3.7) 8(Xo,€1) = (#(Xo) — E[F(Xo)])u(e1) + E[F(Xo)ar, (Flex
and ay, (F) = Ele1#1(e1)]/E[e?]. From Remark 1 we obtain

(3.8) ag, (F) = (E[e]]) -

By construction, ¢ (g1) — ag, (F)e; is in V, and S(X, 1) is orthogonal to V,
(3.9 E[S(Xg,e1)v(e1)] =0 for veV.
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We assume from now on that the dispersion matrix A = E[S(Xo,e1)5(Xo,€1)7] is
positive definite.

Consider first the problem of estimating the parameter 9. We view the para,meter
as a functional k(9, F) = 9. We have

(3.10) 12 (k(Onay, Fr) — 6(8, F)) = u,

and by decomposition (3.6) and orthogonality (3.9),

(8.11)  AT'E[S(Xo,£1)8u(Xo,21)] = ATLE[S(Xo,€1)S(Xo,61) Ju =

Hence A=1S(X,¢1) is a gradient of x(¥9, F) = 9. The gradient is canonical since
a'S(Xo,€1) = Su(Xo,e1) for w=(a,—a’ E[f(Xo)](fi(c1) — ag, (Fer)).

By characterization (3.5), an estimator 9, is regular and efficient if and only if it has
influence function A~15(Xo, 1),

(3.12) n2(@, —9) = A2 N " (X j_1,65) + op, (1)
j=1

The asymptotic covariance matrix is then A™1.

Efficient estimators for ¢ are constructed in Kreiss (1987a, b) for AR(p) and
ARMA(p, q) models, and in Drost et al. (1997) and Koul and Schick (1997) for non-
linear autoregressive models.

Consider now the problem of estimating the functional (¢, F') = E[h(e1)]. The
canonical gradient is given in the following theorem.

THEOREM 3. Suppose Assumptions 1 and 3 hold. Then the functional E[h(e;)] is
differentiable at (¥, F) with canonical gradient

(313) I%()(Xo,Xl) = h(El) - ah(F)el - E[h(El)]
~E[(h(e1) — an(F)e1)la ()| E[F(Xo) T]AT!S(X o, 1).

For ¥ known we have local asymptotic normality (3.2), (3.3) with u = 0, and the
functional E[h(e;)] has canonical gradient h(e1) — ap(F)e; — E[h(e1)]. This canonical
gradient equals the canonical gradient for unknown 4 if and only if h(e;) — ap(F)e; and
¢1(e1) are uncorrelated or E[#(X()"] = 0. In these cases, E[h(e1)] can be estimated
as well not knowing 9 as knowing 9. One says then that E[h(e1)] can be estimated
adaptively with respect to 9.

By Remark 1, applied with our h and then with h(z) = az,

(3.14) E[l (&1)] — a = E[(h(z1) — ae1)l1(e1)].
Hence the influence function of H,(%,) in Theorem 1 can be written

h(e1) — an(F)er — E[h(e1)] — E[(h(e1) — an(F)e1 )1 (e1)| E[F(Xo) T X (X0, X1).
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In particular, if E[h(e1)] can be estimated adaptively, then H,(9,) is efficient for any
asymptotically linear 9. A look at the proof of Theorem 1 shows that n!/2-consistency
of 1§n would suffice.

In general, E[h(e1)] cannot be estimated adaptively. Let ¥, have influence function
x- Assume also that J,, is regular. By the characterization of regular estimators, x must
be a gradient of x(¢9, F') = 9. Since h(g1) — an(F)e1 — E[h(e1)] is in V, it follows from
relation (3.10) and definition (3.4) that h(e1) —ap(F)e1 and x(Xo, X1) are uncorrelated.
Hence the asymptotic variance of Hn('ﬁn) is

0? = 6% + (E[(h(e1) — an(F)e1)ta (1)) ElF (X o) "IV Bl (X)),

where o2 is the asymptotic variance (2.3) of H,,(d), and V,, is the asymptotic covariance
matrix (2.5) of ¥,,. The minimal V, is A~1. We arrive at the following result.

THEOREM 4. Suppose Assumptions 1 to 3 hold.
1. The functional E[h(e1)] can be estimated adaptively with respect to ¥ if and only
if E[(h(e1) — an(F)e1)l1(e1)] = 0 or E[7(Xo)] = 0. Then the estimator

- 1 — er—l &;h(é;)
Hy(95) = = (h(éj) - =%
" ; 2j=14
is efficient whenever 9, is n'/2-consistent. R
2. Suppose Elh(e1)] cannot be estimated adaptively. Let ¥y be regular and asymp-
totically linear for 9, with influence function x. Then H,(9,) is efficient if and only if
the i-th component ¥,; of ¥, is efficient whenever E[t;(Xo)] # 0.

We have mentioned at the end of Section 2 that a version of Theorem 1, namely rela-
tion (2.8), holds for h(z) = 1[z < t| under appropriately modified assumptions. For this
function we have E[h(e1)] = F(t). The improved empirical distribution function "5 (¢)

introduced there is efficient for F/(¢) provided ., is also efficient whenever E[r;(X )] # 0.
This follows immediately from the observation that f(t) = —E[{1(e1)1(e1 < t)]. Effi-
ciency holds even in the functional sense discussed in Bickel et al. ((1998), Section 5.2;
see also Schick and Susarla (1990)).

4. Heteroscedastic nonlinear autoregression

The results of Sections 2 and 3 generalize to heteroscedastic nonlinear autoregres-
sion. By a heteroscedastic nonlinear autoregressive model of order p we mean a strictly
stationary and ergodic time series X, j > 1 — p, which satisfies the structural relation

(4.1) X;j=r(X;-1)+s(0,X;-1)e5, J=1

Again, ¢; are i.i.d. with unknown distribution function F', and independent of the initial
observations X,. We write again G for the stationary distribution of Xy. We now
assume that F has mean 0 and variance 1. We also need that F has finite fourth
moment. Assumptions 1 and 2 are replaced by the following two assumptions.
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AssuMPTION 4. The functions r(J, Xo) and s(d, Xo) are differentiable in the
sense of Assumption 1, with derivatives 7(X¢) and $(X), respectively. Furthermore,
s(¥, ) is bounded away from 0 over z € RP and 9 in compact subsets of ©.

AssuMPTION 5. The function h is absolutely continuous and F—square—integrable,
and its (almost everywhere) derivative h’ satisfies

(4.2) / (1 + 22 (2)2dF (z) < oo,

(4.3) / (L+a%) sup (K@ =a~b)~ K@) dF() =0 as 70

Suppose first that ¢ is known. Write the innovations ¢; as functions of the obser-
vations, »

X5 — (9, X ;1)
s(¥, X j-1)

g;(9) =

The constraint on F can be written E[)(e;)] = 0 for ¢(z) = (z,22 — 1)7. For each
vector a we obtain an unbiased estimator for E[h(e;)],

H(e, Fas) = 3 3 ((e3(9)) — aTp(e5(0)),

where Fry(z) = -};Z;.':l 1(e;(¥) < z). By the results on constrained models in Section
2, an efficient estimator for E[h(e1)] is Hp(¥) = H(an(Fns), Frg) with

(v B N[ Elehe)]
(44) an(F) = (E[e%} Blel) - 1) (E[(e% - 1)h(el>1>
_ 1 (Ble] — 1)Blerh(er)] - EIENE(E? — 1h(er)
ER=1-(BEDE\ Bl - Dh(er)) - BedBlesh(e)] )

Suppose now that ¥ is unknown. Replace ¥ in H,(¥) by an asymptotically linear
estimator ¥,. The influence function of H,(?,) is given in Theorem 5.

THEOREM 5. Suppose Assumptions 4 and 5 hold. Let 9, be asymptotically linear
for 9, with influence function x(Xo,X1). Then H,(9,) is asymptotically linear for
Elh(e1)], with influence function

h(er) — an(F) "9 (e1) — Elh(er)]
—E[(W(e1) ~ an(F) T4 (e1)) (L, €1)| EIM(X0) T [x(X 0, X1),

where M(Xy) is the k x 2 matriz

M(X 7(Xo), 5(X0)).

1
0) - S(’&,Xo)(
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To discuss efficiency of Hn(zgn), we need local asymptotic normality of the model,
and the following heteroscedastic generalization of Assumption 3.

AssUMPTION 6. The distribution function F has positive and absolutely continu-

ous density f satisfying
y 2
/ (1+2?) (%) dF(z) < oo.

Assumption 6 implies that the Fisher informations for location and scale are finite:
J3dF < oo and [ 3dF < oo, with £a(z) = —1 + xf1(z). We set £ = (£1,£,)7.
A version of Remark 1 holds for 4.

Remark 2. Under Assumptions 5 and 6 we have Ele1h'(1)] = E[l2(g1)h(e1)].

Local perturbations (9py, Fyy) around the true parameter (9, F) are introduced as
in Section 3. Write again V for the local parameter space, which now consists of F-
square-integrable functions v fulfilling F[¢(e1)v(e1)] = 0, with é(z) = (1,z,2% — 1) 7.
The local log-likelihood ratio

gnw(XO) = og f'nv(gj('ﬁnu))/s('ﬂnuyxj—l)

8 dp, = g Ke) * 2T e 00) /500, X )

is asymptotically normal as follows.

THEOREM 6. Letw = (u,v) € R¥xV. Suppose Assumptions 4 and 6 hold and the
stationary density gn. fulfills (3.1). Then local asymptotic normality (3.2), (3.3) holds
with Sy,(Xo,21) = v(e1) +u’ M(Xo)l(e).

The proof is similar to the proof of Theorem 2. For fixed nuisance parameter F,
i.e., for v = 0, the theorem is proved in Jeganathan (1995) and in Drost et al. (1997).
We decompose Sy, (X, e1) into orthogonal components,

Sw(Xo,e1) = v(e1) +u" E[M(Xo)](€(e1) — ae(F)T9(e1)) + u' S(Xo,e1)
with
(45)  S(Xo,e1) = (M(Xo) — E[M(Xo)])l(e1) + E[M(Xo)]ae(F) 1(e1)

and ag(F') a 2 x 2 matrix with columns defined as in (4.4) for h = ¢; and h = £5. From
Remarks 1 and 2 we obtain

(4.6) ag(F) = (ERp(e1)y(er) ) Elb(e1)t(er)]

(1 EE ) (10
~ \ E[e}] E[}] -1 02

1 (E[eﬂ— 1 —2E[s§]>

Elell -1 (Elf)? \ —El}] 2
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By construction, the components of £(g1) — ae(F)T9(e1) are in V, and §(Xo,e;) is
orthogonal to V. We assume that the dispersion matrix A = E[S(X,e1)5(Xo,&1)7] is
positive definite. As in Section 3, the influence function for efficient estimators of @ is
A~15(Xo,&1). The influence function for efficient estimators of E[h(e;)] is given in the
following theorem.

THEOREM 7. Suppose Assumptions 4 to 6 hold. Then the functional Elh(ey)] is
differentiable at (¢, F) with canonical gradient

ko(Xo,X1) = h(e1) — an(F) "p(e1) — E[h(e1)] = DTA1S(X g, €1)
with D = E[M(X0)|E[(h(e1) — an(F) T1(e1))e(e1)]-
By Remarks 1 and 2,
(4.7) E[(h'(e1) — aT9'(e1) (L, e1) T] = E[(h(e1) — a"9(e1))e(er)]-
Hence, by Theorem 5, the influence function of H,(d,) can be written
h(e1) — an(F) T p(er) — Elh(er)] — DT x(Xo, X1).
We arrive at the following result.

THEOREM 8. Suppose Assumptions 4 to 6 hold.
1. The functional E[h(e1)] can be estimated adaptively with respect to ¥ if and only

if D = 0. Then the estimator H,(d,) = %Z;;l(h(éj) —d; (e + En2(€2 — 1))), with

Cn2 = %Z( —Dh() - = Z 22 Zeah(ea)
j=1

is efficient whenever ¥, is n'/2-consistent. A
2. Suppose Elh(e1)] cannot be estimated adaptively. Let ¥, be regular and asymp-
totically linear for 9, with influence function x. Then H,(¥,) is efficient if and only if

DT(V,~A~Y)D = 0. This condition holds in particular if 9, is efficient, i.e., V, =A"L

In the non-adaptive case, a sufficient condition for efficiency of Hn(@n) is that 'zg‘ni
is efficient whenever E[#;(X¢)/s(¥, Xo)] # 0 or E[$;(Xo)/s(d, Xo)] # 0. This is also
necessary if none of the two components of E[(h(e1)—ay,(F) "1 (e1))¢(e1)] vanishes, which
will be the case for most parameters (¢, F').

Efficient estimators of ¥ can be constructed along the lmes of Drost et al. (1997).
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5. Examples

Ezample 1. The simplest example is linear autoregression of order p, X; = 97
Xj—1 + €;, where ¢; are i.i.d. with mean 0. The structural relation (1.1) is satisfied
with (¢, X) = 97 Xo. We have 7(Xo) = X and E[#(Xo)] = 0. Hence the model is
adaptive. Let 9, be n!/2-consistent and &; = X; —} X ;_1. Then the estimator H, )
in Theorem 4 is efficient. For p = 1 this was shown in Wefelmeyer (1994). An analogous
result holds for linear regression; see Klaassen and Putter ((1999), Example 5.3).

Ezample 2. A non-adaptive generalization of Example 1 is X; — u = p (X1 —
pl) + €;, where ¢; are i.i.d. with mean 0, and 1 = (1,...,1)T. Here 9 = (p", )" and
r(Xo,9) = p+ p' (Xo — pl). Assumption 1 holds with #(Xo) = (Xo—pl,1—p'1)T.
We have E[(Xo)] = (0,1 — p'1)7. Hence, by Theorem 4, an efficient estimator for
El[h(e1)] requires an efficient estimator for u, but not for p.

Write g = (g;—, gu) T for the canonical gradient of 9 = (p', ). To calculate the
canonical gradient g,, of , note first that by (3.7) and (3.8),

Xo — ul)e

S(Xoen) = Ko T sl )
(1 —p D(EE]) e

The covariance matrix A of S(Xo,e1) is diagonal, with (1 — pT1)2(E[e?])™! as lower

right entry. Hence g, = (1 - pTl)‘_lel. It is easy to check that this is the influence

function of the empirical estimator X,, = %z;le X, which is therefore efficient. Now

estimate p = (p1,..., pp)T by the empirical autocorrelation coeflicients
s = i1 = Xn)(Xj—i — Xa)
nt — oy

Estimate the innovations ¢; by é; = X; — X, — pa (X j—1 — Xnl). Set Iy = (b, Xn)T.
Then the estimator H,(J,) in Theorem 4 is efficient for E{h(e1)].

Ezample 3. A heteroscedastic and non-adaptive example is the SETAR(1,2) pro-
cess, defined by

X;=(on+ biXj_1 +016)1[X;1 < 0]+ (a2 + B2 Xj_1 + 0265)1[X;1 2 0], j=>1,

where the ¢; are i.i.d. with mean 0 and variance 1. The structural relation (4.1) holds
for 9 = (a1, 1,01, 0, 82,02) T and

r(¥,z) = (a1 + fiz)l|z < 0] + (ag + Baz)1]z > 0],
s(9,z) = 011z < 0] + 021z > 0].

In this model, Assumption 4 holds with
#(z) = (1fz < 0], z1[z < 0,0, 1|z > 0],zl[z > 0],0)T,
$(z) = (0,0,1[z < 0],0,0,1{z > 0]) T,

and the vector D is given by

(plo o I (1—p)lo polo I T
0_17 o1 70_1, o2 ’ oo 70_2 ’




ESTIMATING THE INNOVATION DISTRIBUTION 257

where I, = E[e¥(h' (€) — an(F) "' ()], p = P(Xo < 0), u1 = E[Xo1[Xo < 0]}, p2 =

E[Xo1[X, > 0]). Hence the estimator Hy(J,) of Theorem 8 is, in general, efficient only if

all components of J,, are efficient. Such estimators for 9 can be constructed as one-step

improvements of n!/2-consistent estimators, using the approach of Drost et al. (1997).
An initial estimator for (ag, 1) is the minimizer (41, B1) of

> (X — a1 = B Xj-1)*1[Xj-1 < 0];

=1
and oy can be estimated by the square root 61 of

~2 Z?—_q(Xj -0y — BlXj_1)21{Xj_1 < 0]

gy =
' E;'L=1 1[X;-1 < 0]

For as, 32 and o, we have corresponding estimators.

Ezample 4. Another heteroscedastic and non-adaptive example is

Xj = OéXj_l + \/ﬁ-*-"/X}_lEj, izl

where the €; are ii.d. with mean 0 and variance 1. The structural relation (4.1) holds
for ¥ = (a, 8,7)T and r(d, ) = az, s(9,z) = /B + yz2. The time series is ergodic if 8
and ~ are positive and o +« < 1. Assumption 4 holds with

1
i) = (£,0,0)T, §(z) = ———=(0,1,2%)".
(@)= @0,0)7,  3z) = ;—=—=s(0,1.2")
We obtain
—r 0
Tin | VB+y2?
M (.’13)—— 1 1:2

2(8 +7z%) 2(B +z?)

Hence the estimator H, (@n) of Theorem 8 is, in general, efficient only if all components
of 9,, are efficient. Such estimators for ¥ can be constructed as one-step improvements
of nl/2-consistent estimators, using the approach of Drost et al. (1997). Here one should
be able to avoid sample splitting using ideas of Koul and Schick (1997).

6. Proofs

LEMMA 1. Suppose Assumption 1 holds and Oy, is n'/?-consistent. Then

(6.1) > (r(Bn, X 1) — (9, X 1) ~ #(X 1) (n —9))% = 0p, (1),
j=1

(6.2) Z(r(&n,xj_l) —r(9,X;.1))* =0p, (1),

(6.3) max |r(dn, Xj-1) — (9, X j-1)| = op,(1).

1<j<n
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PrOOF. Relation (6.1) follows immediately from Assumption 1 and nl/2-
consistency of J,. For notational convenience, write Tnj = r(@n, Xjo1) —r(¥,X;-1).
Relation (6.1) implies max; <j<p |[rnj —#(Xj-1)" (9 —9)| = op, (1). Hence (6.2) follows
if we show L3°%  ||#(X;_1)||> = Op,(1), and (6.3) follows if we show n~'/2 max; <;<n
l*(X j—1)|| = op,(1). Both statements follow from stationarity and square-integrability
of 7.

LEMMA 2. Suppose Assumptions 1 and 2 hold, and dy, is n}/2-consistent. Then

/2 i h(Es) =723 hies) — BIK ()IELF(Xo) 102 — 9) + 0, (1)
J=1 =1

Proor. By Taylor expansion,

h(é;5) = hle;) + (&5 — &5)h'(e5) + (&5 — &) /Ol(h'(ﬁj +1(é5 — 7)) — I (ej))dt.
We have
(64) & — &5 = —(r(On, X;j-1) = r(9, X -1))-
Assumption 2 implies ;1;2;’.‘:1(11’(5]-))2 = Op,(1). Hence relation (6.1), the Cauchy—

Schwarz inequality and the ergodic theorem give

Y (6 — e (e) = —n TP ) K () (X j-1) T (9n = 0) + 0p, (1)

j=1 j=1

—E[W (1)) E[(Xo) "In'/?(0, — 9) + 0p, (1).

It remains to show
n 1
(6.5) n~2Y (& - €j)/ (W (e +t(¢5 — €5)) — ' (g5))dt = op, (1)-
=1 0

Relations (6.4) and (6.2) imply =7, (¢; —£;)? = Op, (1). Hence, by the Cauchy—Schwarz
inequality, relation (6.5) holds if

1 [t . :
Y [ e+t - )~ WP = o, 1),
j=1 ,
This, in turn, follows from Assumption 2, since by relation (6.3) and (6.4) we have
maxi<j<n €5 — & = 0P, (1)-

ProOOF OF THEOREM 1. It is easy to check that “h(Fn@n) is a consistent estimate
of ar(F). It follows from Lemma 2 that %Z};l h(¢;) has influence function

h(e1) — El(e1)] - E[W' () E[F(Xo) (X0, X1)-
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n A

Since the choice h(z) = z fulfills Assumption 2, we obtain as special case that 1 3° =165
has influence function &, — Eff(X 0) "|x(Xo,X;). Combining the above shows that
Ho(9,) =1L ?=1 h(¢;) - ah(Fnﬁ,,)?li 31 &; has the desired influence function.

Proor oF REMARK 1. Consider the location model generated by the density f.
The function [ h(z)f(z—a)dz = [ h(z+a)f(z)dz is differentiable at a = 0; its derivative
can be written in two ways. By Assumption 2 and dominated convergence,

/ h(z + o) f(z)dz — / h(z) f(z)dz = a / K (2)f(z)dz + o{a).

By Assumption 3 and Lemma. 7.2 in Ibragimov and Has’minskii (1981),

/ h(@)f(z — a)da — / h(@) f(z)dz = a / h(@)ly(z) £ (5)dz + o{a).
Hence [ '(z)f(z)dz = [ h(z)i(z)f(x)dz.

PRrROOF OF THEOREM 3. Note first that h(e1) —an(F)e1 — E[h{e1)] is in V. Hence
the function £o(X, X;) defined in (3.13) is in the tangent space T'. By definition of vy,

12 (k(9nus Frw) — 68, F)) = n'/? ( / hdFp, — / hdF) — Efh(e1)v(e1))

for all (u,v) € R* x V. To prove that &o(Xo, X1) is a gradient, we must show that
Elie0(X0, X1)Sw(Xo0,€1)] = E[h(e1)v(e1)] forall w= (u,v) € R* x V.

But this follows from straightforward calculations using the representation (3.6), the
orthogonality condition (3.9), the facts that h(e;) — an(F)ey — E[h(e1)] and £;(e1) —
ag, (F)e; belong to V and the identities '

E[(h(e1) — an(F)e1 — Elh(e1)])v(e1)] = Elhler)v(er)], wve,
E[(h(z1) — an(F) — Elh(e1)])(ta(e1) — ae, (F)e1)] = E{(h(e1) — an(F)er)la(er)]-

This proves that /o(Xo,X:) is a gradient. Since it is in the tangent space T, it is
canonical.
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