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Abstract. This paper presents a new quasi-profile loglikelihood with the stan-
dard kind of distributional limit behaviour, for inference about an arbitrary one-
dimensional parameter of interest, based on unbiased estimating functions. The new
function is obtained by requiring the corresponding quasi-profile score function to
have bias and information bias of order O(1). We illustrate the use of the proposed
pseudo-likelihood with an application to robust inference in linear models.
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1. Introduction

Consider a sample y = (y1,...,¥n) of n independent observations with distribution
function F(y;6) depending on an unknown parameter § € © C R4, d > 1. Let ¥(y;6) =
> L ¥(yi; 0) be an unbiased estimating function for 6 based on y. Occasionally, we shall
write ¥y and vy for ¥(y; 8) and 1(y; 6), respectively. The estimator of § corresponding to
Uy is defined as a root  of the estimating equation ¥(y;#) = 0. Under broad conditions
which we will assume throughout this paper (see e.g. Barndorff-Nielsen and Cox (1994),
Section 9.2) it can be shown that 6 is consistent and asymptotically normal, with mean
¢ and variance B(6)~'Q(6)(B()™1)T, where B(0) = —E{¥gp}, Q8) = var{¥y} =
E{%y¥T} and the symbol / as a subscript indicates differentiation.

Let Ig(0) = lg(f;y) be a scalar function whose gradient with respect to 6 equals
Uy, ie. lg(f) = fce U(y;t)dt, where c is an arbitrary constant. When lg(6) exists, it
may be thought of as a quasi-loglikelihood for # and it may be used, in analogy with
ordinary loglikelihood, for setting quasi-likelihood tests and confidence regions. Actually,
the relation

(1.1) var{¥p} = —E{%g/0},

that is known as the second Bartlett identity when ¥y is the usual score function (see
Bartlett (1953a, 1953b)) does not hold in general. It is however possible to make relation
(1.1) hold, by considering the linear transformation

(1.2) g1 = U1 (y; 0) = A(6) Ve,
where the matrix A(f) is such that
(1.3) AO)T = —var{Ws} LE{Ty/0} = Q(6) ' B(6)
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(see McCullagh (1991), Section 11.7). Since A(6) is nonsingular for all 6, the estimating
functions ¥y = 0 and ¥p; = 0 have the same solution. If a quasi-loglikelihood function
satisfies (1.1) many asymptotic considerations are simplified. In particular, the quasi-
observed information has the usual relation with the asymptotic covariance matrix of
the estimator 6 and the quasi-likelihood ratio statistic has a standard x? distribution.
Quasi-likelihood has been introduced in the context of generalized linear models (see
McCullagh and Nelder (1989)). In this case relation (1.1) is verified if the variance
function is correctly specified and, following Godambe (1976), the quasi-score is an
optimal unbiased estimating function. For a survey of quasi-likelihood and estimating
functions see Heyde (1997) and Desmond (1997).

When d = 1, a quasi-loglikelihood for 8, corresponding to the modified estimating
function (1.2), given by

- n 0
INOEDS / A(t)(yi; t)dt,
t=1vC

is usually easy to derive. In view of this, for setting quasi- likelihood confidence regions
or for testing hypotheses, the quasi- likelihood ratio statistic

no .f
(14 Wo(6) = 2{lo(®) ~ 0@} =23 [ AWv (st

may be used. For instance, confidence regions with nominal coverage 1 — « for 6 can
be constructed as {6 : Wg(0) < x3.;_o}, where X%;l—a is the (1 — a)-quantile of the x?
distribution. Alternatively, the directed quasi-likelihood r¢(8) = sgn(8 — 6){Wg(6)}'/,
which is approximately standard normal, may be used.

When d > 1, a quasi-loglikelihood for 6 does not exist in general. A necessary and
sufficient condition for the existence is that the matrix Wy, /9 be symmetric. Neverthe-
less, the problem of nonexistence may be overcome when the interest parameter is a
scalar component of §. For this case Barndroff-Nielsen (1995) proposes a quasi-profile
loglikelihood with the standard kind of distributional limit behaviour. However, as will
be discussed in Section 2, the modification of the estimating function needed to achieve
the usual asymptotic behaviour and, in particular, the asymptotic x? distribution for
the quasi-profile likelihood ratio statistic, may lead to some interpretation problems as
well as computational difficulties.

To avoid such drawbacks, in this paper we propose an alternative quasi- profile log-
likelihood for an arbitrary one-dimensional parameter of interest. Such a function, called
adjusted quasi-profile loglikelihood, is obtained by a scale adjustment of the estimating
function for the scalar parameter of interest only, aimed at obtaining a quasi-profile score
function with properties similar to those of the ordinary profile score, i.e. with bias and
information bias of order O(1). An application example, discussed in Section 3, illus-
trates the use of the proposed pseudo-likelihood function for robust inference in linear
models.

2. Quasi-profile loglikelihood functions

Suppose that 6 is partitioned as 8 = (7, A) into a scalar parameter of interest 7 and
a (d — 1)-dimensional nuisance parameter A\. The estimating function ¥y is similarly
partitioned as (¥,,¥,), where ¥, = ¥, (y;60) and ¥y = ¥,(y;d) are the estimating



QUASI-PROFILE LOGLIKELIHOODS 237

functions corresponding to 7 and A, respectively. This means that, for instance, if X is
known, ¥, may be used as an estimating function for 7.

To define a quasi-profile loglikelihood for 7, Barndorfl-Nielsen (1995) assumes that
the estimating function ¥y is multiplied by the matrix A(f) so that relation (1.1) is
satisfied. Consequently, the resulting Wy, is partitioned as

lI’T]. AT T\I’T + A'r )\‘I’A
2.1 Yoy = = ’ ’
1) o (\I’,u) (A,\,T‘I’T + APy )’

where A; ., A:, Ay, and Ay are, respectively, the (7,7), (r,A), (A,7) and (A, )
blocks of the matrix A(f). Let A, be the estimate for A derived from ¥y; when 7 is
considered as known, i.e. ¥ (y; T, Ar) = 0. For an arbitrary estimating function ¥y, so
specified, Barndorff-Nielsen defines the quasi-profile score for 7 by ¥, (y; 7, A;) and the
corresponding quasi-profile loglikelihood function for 7 by B

(2.2) lop(T) = / ’ U1 (y;t, Ae)dt.

This pseudo-likelihood has properties similar to the ordinary profile likelihood, since
the quasi-profile likelihood ratio statistic and the quasi-profile directed likelihood, under
regularity conditions of the standard type, have the usual asymptotic distributions (see
Barndorff-Nielsen (1995)). Then, (2.2) may be used for setting quasi-likelihood intervals
for 7, for testing hypotheses, etc.

However, due to transformation (1.2), some conceptual and practical difficulties may
arise in using the quasi-profile loglikelihood (2.2). In fact, transformation (1.2) mixes, in
general, the components of the original estimating function ¥4. As a consequence, the
interpretation of the components of the new estimating function ¥y; cannot be clear,
since, in general, in (2.1) the original partition of the estimating function ¥y into the
estimating equation for the interest parameter and the one for the nuisance parameter
is no longer respected. Moreover, the partial estimator A\, does not coincide, in general,
with the estimator of A that actually would be used if 7 was known, i.e. with the solution
in A of Ux(y; 7, A). Finally, the use of ¥y; instead of ¥y can increase the computational
task needed to make inference about 7.

Observe that all these difficulties vanish when the matrix A(#) is such that A, , = 0.
This condition on the matrix A(f) is equivalent to the condition

(2.3) E{UY U E{¥, )2} = E{T, U} E{¥)/»}

on the estimating function ¥g. Relation (2.3) is obtained by looking for a transformation
of the form (x,w), with x = x(7) and w = w(r, A), such that A, , = 0, motivated as in
Cox and Reid (1987) for orthogonal reparameterizations. Clearly, condition (2.3) is not
verified in general.

In this paper we adopt a more natural criterion for the construction of a quasi-
profile loglikelihood for 7, which is based essentially on a suitable adjustment to the
estimating function of the interest parameter only. Let A, be the partial estimator of A
corresponding to ¥y, i.e. U, (g; T, 5\7) = 0. When ¥y is the usual score of the loglikelihood
function, ¥, is the ordinary profile score function. Here and in the following, the symbol
~ indicates that a function of 4 is evaluated at (7, 3\7) and, by convention, the operation
~ is taken to be always the first carried out. Without this convention a symbol such
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as U, /= would be ambiguous. It is well-known that, unlike the full score function, the
mean of the profile score function is not in general exactly 0 and its variance does not
satisfy the second Bartlett identity. However, its bias and information bias are both
typically of order O(1) (see McCullagh and Tibshirani (1990)). In view of this, for an
arbitrary estimating function ¥, we propose to substitute the unknown parameter A
with its partial estimate A, obtaining the equivalent of an ordinary profile score function
¥, = ¥, (y;7,A;). Then, we adjust ¥, so that its bias and information bias are of order
O(1), as for the ordinary profile score function.
The pseudo-profile score function ¥, has bias E{¥,} and information bias

(2.4) var{¥,} + E{¥,/,}.

In the Appendix we show that, under standard conditions, E{¥,} is of order o(1),
while (2.4) is of order O(n). Essentially, we generalize the calculations of McCullagh
and Tibshirani (1990) to an arbitrary profile estimating equation and we propose a
scale adjustment to the pseudo-profile score function that reduces its information bias
to order O(1). The scale adjustment yields an estimating function of the form ¥, =
Voo(y; 7, :\T) = w(T, XT)\ilT, where w(-,-) is a suitable function, given in (2.7), resulting
from the leading term of

(25) {GrEE) = Bl | frac(En)
(see McCullagh and Tibshirani (1990), Section 3). Finally, let

(2.6) lop(T) = /T w(t,j\t)\Il.,(y_; t, Ae)dt

be the adjusted quasi-profile loglikelihood function for 7. This function, which repre-
sents an alternative to the quasi-profile loglikelihood (2.2), has some properties of the
ordinary profile loglikelihood. In particular, we show that the adjusted quasi-profile like-
lihood ratio statistic Wop(7) = 2{lgp(7) — lgp(7)} has approximately a standard x?
distribution.

To give w(T, \) explicitly, in the following it is convenient to use index notation.
The components of A are denoted by A%, the corresponding components of Uy are ¥,
and the derivatives of ¥, and ¥, with respect to the components of A are denoted by

0 52 F] 52

Vrja = W\P‘m Vo /ab = W‘I’n Vosp = W‘Ila and ¥, p = mq’a,
where the indices a, b, ¢,... range over 1,...,d — 1. For the expected values of these
derivatives, we use the notation v, /s = E{¥,/a}, Vrjap = E{¥r/ab}, Vasp = E{Tsp}
and vy . = E{¥, .} and we assume that these quantities are of order O(n). Further,
the zero-mean variables ¥, ¥,, ¥, /, — V;/,, etc., are assumed to be of order Op(nl/ 3.
These assumptions are typically satisfied in practice, when ¥y behaves asymptotically
like the sum of n independent random variables. In addition, £%/® denotes the inverse
matrix of —v,y, and v, ), = E{¥Y,/,}.

By using the expansions in the Appendix, we find E{¥,} = m(r, \) +0(n~1), where
m(-,-) is of order O(1) and has the expression given in (A.4). The expansion for (2.5) is
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more complicated. By using the results in the Appendix, we find

~Vrfr — be/a’/'r/a’/b/'r
E{92} 4 2u, )k E{U, W} + v, v, 6/ kP E{T U4}

27 wrA)=

Observe that, when relation (2.3) holds, quasi-profile loglikelihoods (2.2) and (2.6)
coincide. In fact, in view of (2.3) we have that Ay, =0, A\, = = ), and the A, block of
the matrix A(G), which is in general given by

4 ~Vr/r + E{U U\ YE{T U]} oy,
™" = E{U2} — E{T, U\ IE{U T} 1E{T, P, }

reduces to
—Vr/r _K'/ Vr/aVb/r

 E{U2} + v, /oK E{¥, T;}

which is the same expression that one obtains for w(7, A).

To show that, under regularity conditions of standard type, WQP(T) is approxi-
mately x? dlstnbuted we consider its Taylor expansion about 7. In view of some ob-
vious simplifications, we find Wgp(7) = — (7 — 7)2w(r, A,) ¥, /= + 0p(1). Further, since
the scale adjustment to the pseudo-profile score function ¥, is such that w(T, A ) =
—E{¥, /e }/var{¥.} + o(1) (see equations (A.5)-(A.7) in the Appendix), we have

—(F — 1) w(r, A\, )T =7A'—7'2~—————E{‘ij‘r/T}
( ) ( :’\T)‘I’T/'r ( ) Val‘{‘if-,-}

where V; ;. denotes the (7,7) block of the matrix B(#)~1Q(6)(B()~1)T. Since 7 is
asymptotically normal with mean 7 and variance V. ,, the conclusion concerning the
asymptotic distribution of Wgp(7) follows.

ATT

“~I]T/T + Op(l) = (’f - 7_)2‘/;:1_1 + Op(l)7

3. Example: robust inference in linear models

Let y; = (2:,2), ¢ = 1,...,n, be independent and identically distributed obser-
vations from a random vector Y = (X, Z) such that Z = XT3 + e, where 8 is an
unknown vector belonging to R%~!,.d > 2, and e is independent of X and has distri-
bution F(-;0) = Fy(-/o) symmetric around 0, depending on a scale parameter o. Let
6 = (B,0) and let K(z) be the distribution of X on R?~!

A wide class of robust M-estimators for regression and scale parameters is defined
by estimating functions of the form

(3.1) U(y; B,0) = Z'ﬁ(ywﬁ’”) (Zis(fﬂi):l.l)gi’l('i’li])(mi)}xi>,

where r; = (z;—z18)/o and s(-), v(-), ¥p(-), ¥o(-) are appropriate functions (see Hampel
et al. (1986), Chapter 6). In particular, when s(z) = v(z) = 1 and ¥5(-) = Ygr(-; ki) we
obtain the Huber (1973) estimator for regression, where ¥ g r(u; k1) = umin{l, ky /|ul},
for some positive constant k;. Alternatively, the choice s(z) = 1/v(z), v(z) = ||z
and 9¥5(-) = Yur(-;k1) defines the so-called Hampel-Krasker estimator (see Maronna,
et al. (1979)). Unlike the Huber estimator, the Hampel-Krasker estimator is not very
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sensitive to points with high leverage. A popular choice for the function v, is ¥, (-) =
Y% p(+; ko) — v(k2), for appropriate constants k; and 7(k2), which correspond to Huber’s
Proposal 2 (Huber (1964)).

Let (u) = O(u)/Bu. For a general M-estimator defined by (3.1) with 15 and
¥, odd and even functions, respectively, we have Q(B,0) = Q = diag(s,8,20,0),
where Q,, = n [¢2(r)dFo(r) and Qs = n [ s%(z)g1(z)zzTdK (z), with gi(z) =
fqpﬂ{rv(a:)}dFo(r) Moreover B(8,0) = (1/0)B, where B = diag(Bg,g, Bs,s), With

Boy = n [ 19, (r)dFy(r), Bgg = nfs(m)v(m)gg(x)xdeK(z) and go(z) = [Yp{rv(z)}
dFy(r). Therefore, (1.3) can be written as AT(8,0) = Q~1(B,0)B(8,0) = (1/0)Q"'B =
(1/0)A = (1/0) diag(A%"ﬁ, A,,): in this special case, the matrix A(83, ) depends on o
only.

Suppose we are interested in making inference only about a scalar component 3;
(1 < j < p) of B. If we consider the Huber estimator we find that gi(z) = g1 =
[ ¥} p(r; k1)dFo(r), Q. = ng [ 23TdK(x), 92(x) = g2 = [ Yrr(r;k1)dFo(r), Bp,p =
ngs [ zzTdK (z) so that the matrix A is diagonal and Ag, s, = g2/91. Therefore, in this
case, the adjusted quasi-profile loglikelihood for 8; coincides with Barndorff-Nielsen'’s
one and has expression

n ﬁj 1 ; — 3 T — —b.’L'z ..... T;
(52) lar(B) = £ 3"y [ 5var (y Preza i = =By gy
i=1 c

b

where x;; is the j-th element of the vector x; and ﬁqb, q # j, 6p are the estimates for 3,
g # j, and o when S; is considered as known and set equal to b. For a Gaussian model
the factor Ag; g, is

(k1) — (k1)
20kE®(—k1) — k1d(k1) + {®(k1) — 1/2}]

where ®(-) denotes the standard normal distribution and ¢(-) its density. Observe that,
in general, the adjusted quasi-profile loglikelihood for a regression parameter coincides
with Barndorf-Nielsen’s one for any M-estimator for which s(z) = v(z) = 1 and g
odd. The general expression for the factor g2/g; is [ 1/}ﬂ(r)dF0(r) / J gbﬂ(r)ng(r)

If we consider the Hampel-Krasker estimator we have g1(z) = [v%p(r||z|];k1)
dFy(r), Q.5 = [{g1(2)/|z][*}zzTdK (), 92(z) = [ Ymr(rllz]l; k1)dFo(r) and Bg g =
n [ g2(x)rzTdK (z). Thus, in general, the A , block of the matrix A is not null. The
adjusted quasi-profile loglikelihood is given by

lop(B;)
:waij/ |z ll Taria, VHE (Ha:zllyz P — _Abxi" _m_ﬂ”bwi”;kl) db.
i=1 T4

c Op

Using (2.7), the constant w can be written as

Bp;.p; — fg; B(_—lj)fﬁf
1 ) = )
Qs;,8, = 265, B 5ym; + &5, B 5 Q-0 B e,

(3.3) w=

where Bg; s; is the j-th diagonal element of B, g, is the j-th column of the matrix B
without its j-th element, B(_;) denotes the matrix B without the j-th column and the
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Fig. 1. Adjusted quasi-profile loglikelihood ratio function Wop and Barndorff-Nielsen’s
quasi-profile loglikelihood ratio function Wgp for the parameter 85 of the model from the
Scottish Hill Races data.

J-th row and ng, is the j-th column of Q without its j-th element. In this case, matrix
B is symmetric.

In the usual formalization, one considers a linear model with fixed (not random)
carriers Zi, ..., Zn. In such a situation, for a general M-estimator defined by (3.1) with
¥ and ¥, odd and even functions, respectively, we have that var{U(y; 8,0)} = Q* =
diag(QE,ﬁﬁ Q:,a) and _E{a‘l’(ga ﬁ) U)/a(ﬁv U)T} = (1/0-)B*: with B* = alag(BE,ﬂ, B;,a)a
where Qf 5 =3, s*(;)g1 (z:)zizl, Qs , = n [ Y2 (r)dFo(r), Bj 5= s(xi)v(xi)ga(z:)
ziz} and Bf , =n [ Yo (r)rdFo(r). Consequently, in the case of fixed carriers, lgp for
Bj, computed from the Huber estimator, has the same expression, given by (3.2), as in
the case of random carriers. In contrast, to obtain lop(f;) from the Hampel-Krasker
estimator when carriers are fixed we have to calculate the factor w by replacing matrix
Q and B in (3.3) with Q* and B*, respectively.

To illustrate an application to some real data, Fig. 1 gives the plot of the adjusted
quasi-profile loglikelihood ratio function

(3.4) Wor(Bs) = 2{lgr(Bs) — lop(Bs)}
n B A . _ A I
— 2U)Z$z3/ ;qﬁHF (”l’l”zz ﬁlble &bex’LQ bxz3;k1> db

= e lmalloe

for the parameter B3 of the model z; = B; + Boxi2 + P3xi3 + €;, computed from the
Scottish Hill Races data (discussed in Staudte and Sheather (1990), p. 265). The vari-
ables considered are the record time in minutes (z;), the distance in miles (z;2) and
the climb in feet/100 (z;3). The sample size is n = 35. Carriers are considered as
fixed and a Gaussian model is assumed as the central one. The Hampel-Krasker es-
timator is used with k; = 1.1, ¥, () = ¥4 (-;k2) — v(ke) and ky = 0.6. Figure
1 also gives the plot of Barndorff-Nielsen’s quasi-profile loglikelihood ratio function
Wop(Bs) = 2{fQP(ﬁ3) - l_Qp(ﬂg)}, computed from the same data. Moreover, Table
1 gives the results of a Monte Carlo experiment (based on 5000 trials) performed to
assess the coverage error of the nominal 1 — & confidence intervals for 33, based on the
adjusted quasi-profile loglikelihood ratio (3.4). For this experiment, the parameters 3,
B2, Bz are set equal to —4, 6 and 0.7, respectively. Errors e; are generated from three
different distributions: the standard normal N(0, 1), the standard normal contaminated
by a N(4,1) and the standard normal contaminated by a N(0,25). We consider a con-
tamination model of the form F, = (1—¢)F +eG, where G(-) denotes the contaminating
distribution. The contamination percentage ¢ is set at 5%. A simulation experiment has
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Table 1. Empirical coverage probabilities of the confidence intervals for 83 based on the
adjusted quasi-profile loglikelihood. i

l-«
distribution 0.990 0.950 0.900
N(0,1) 0.991 0954 0.903

N(0,1) cont. by N(4,1)  0.991 0.952 0.898
N(0,1) cont. by N(0,25) 0.992 0.953 0.894

also been made to evaluate coverage probabilities of confidence intervals from Barndorff-
Nielsen’s quasi-profile loglikelihood. Only the N(0,1) distribution has been considered
for the e;’s. For nominal 0.90, 0.95 and 0.99 coverage probabilities we obtained empirical
coverages probabilities 0.903, 0.953 and 0.990, respectively.

4. Final remarks

The adjusted quasi-profile loglikelihood lop discussed in this paper represents an
alternative to the quasi-profile loglikelihood Igp suggested by Barndorff-Nielsen (1995),
for inference about an arbitrary one-dimensional parameter of interest, based on unbiased
estimating functions. In some particular situations, functions lgp and Igp coincide.
Generally, our experience, based on the application example discussed in Section 3 and
other simulation experiments not reported here, suggests that lgp and lgp perform very
closely and allow inference with similar level of accuracy. However, as pointed out in
Section 2, the use of lgp is preferable because it avoids some conceptual and practical
difficulties that arise in using lgp. In particular, from a practical point of view, our
experience indicates that the computation of the loglikelihood ratio statistic from lop
can be difficult even in relatively simple cases as the one considered in the application
example of Section 3. Essentially, this occurs because when we are using Barndorff-
Nielsen’s approach, the estimating equation which gives the partial estimate X, is more
complicated to solve numerically.

Another theoretical concern is with possible location adjustements designed to im-
prove the asymptotic properties. The adjusted quasi-profile loglikelihood is based only
on a scale adjustment of the estimating function for the scalar parameter of interest,
aimed at obtaining a quasi-profile score function with properties similar to those of the
ordinary profile score. A location adjustment is not necessary since the bias of the
quasi-profile score ¥, is already of the proper order O(1). For the ordinary profile score
function several additive adjustments that reduce its bias have been proposed, including
Bartlett (1955), Cox and Reid (1987) and McCullagh and Tibshirani (1990), and the
bias reducing properties of these adjustments are discussed further by Levin and Kong
(1990) and DiCiccio et al. (1996). Following these approaches, it would be interesting
to consider an additive adjustment to the adjusted quasi-profile score function, based on
the first-order bias expansion (A.4). This would yield to a modified quasi-profile loglike-
lihood which, in view of (A.4), appears relatively easy to compute and which presumably
could be of some importance in small samples.
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Appendix

A Taylor expansion for the quasi-profile score function ¥, about the true parameter
value gives

~ o 1. .
(A'l) U, = ¥+ ()\7- - )‘)alI"r/a + 5()‘1' - A)ab‘I’T/ab + OP(n_lﬂ):

where (A, —A)? = (A, ~2)%(A,—\)?. Under the usual regularity conditions, which assure
that the global estimator 6 is consistent and asymptotically normal, the summands on
the right-hand side of (A.1) are Op(n!/2), O,(n'/2) and O,(1), respectively.

An expansion for (5\7 — A)* is obtained by expanding the estimating equation
Uy (T, XT) = 0 around the true parameter value and next by inverting the resulting
expression into an asymptotic expansion for (:\T — A)%. We find

. 1
(A2) (A —N)2 = k/*T, + §nd/“ne/b/§f/cl/d/bc\'ﬂe\11f + K0k H, Uy + Op(n 1),

where H., = V., — vesp. The sample size does not appear explicitly here but is
incorporated into the random variables and their expected values. Thus, k?/% = O(n™1),
Vasbe = O(n) and H, s, = Op(n'/?).

Now, substituting (A.2) into equation (A.1) and collecting terms of the same asymp-
totic order, we obtain

(A3) T, = U, + k"%, U, + 6Y°H, ;U + 6%k Hy v, T
1 1
+5nf/“nd/bne/ch/auf/bc\Ifd\Ife + §nc/“nd/bVT/ab\Ifc\Ifd + Op(n_l/z),
where H, /, = U, /, — v;/, = Op(n!/?). An expansion for the mean of ¥, is readily

obtained by taking termwise expectations in (A.3). Then we find E{¥,} = m(r,\) +
O(n~1), where m(r, A) is of order O(1) and is given by

(A4) m(r,\) = ¥ E{ET, /;} + vy 1ok kP E{ DT, }
1 1
5V jabapcs R P E{ R ) + 5Vr/abk P E{T W}

The first-order bias expansion (A.4) is simple since it involves only the first two deriva-
tives with respect to A of the estimating functions. There is a formal similarity between
equation (A.4) and the expression for the bias of the ordinary profile score function given
in McCullagh and Tibshirani (1990).

The expansion for the scale adjustment (2.5) is more complicated. For the variance
of the quasi-profile score function ¥, we find

(A.5) var{¥,} = E{¥%} + 2Hb/aVT/aE{\I’T‘I/b} + Hc/alid/bl/.,./aI/T/bE{‘Ilc\I’d} + O(1),

where the three summands on the right-hand side of (A.5) are of order O(n). Its deriva-
tion is similar to that for the mean expansion (A.3) and is not given here. For the
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numerator of the scale adjustment (2.5) we find that

o ~
(4.6) 2 ptiny = o
and _
(A.7) -——E{’lI/,./.,.} = —Vr/r — K,b/al/T/aI/b/-,- + O(1),

where the two summands on the right hand side of (A.7) are of order O(n). Putting
equations (A.5), (A.6) and (A.7) together, we find that the adjusted quasi-profile score
function has the form w(7, A, )¥,, where w(r, A) is given by (2.7).
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