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Abstract. The concept of the spectral envelope was introduced as a statistical
basis for the frequency domain analysis and scaling of qualitative-valued time series.
A major focus of this research was the analysis of DNA sequences. A common
problem in analyzing long DNA sequence data is to identify coding sequences that
are dispersed throughout the DNA and separated by regions of noncoding. Even
within short subsequences of DNA, one encounters local behavior. To address this
problem of local behavior in categorical-valued time series, we explore using the
spectral envelope in conjunction with a dyadic tree-based adaptive segmentation
method for analyzing piecewise stationary processes.
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1. Introduction

The concept of spectral envelope for the spectral analysis and scaling of categorical
time series was first introduced in Stoffer et al. (1993a). Subsequently, Stoffer et al.
(1993b) explored the utility of the methodology for analyzing long DNA sequences. In
that article, it was noted that there may be local behavior within a single gene (coding
sequence). In this article, we combine dyadic tree-based adaptive segmentation (TBAS)
and spectral envelope methodologies to develop a local spectral envelope.

Before discussing the spectral envelope and adaptive segmentation methodologies,
we focus on the special problems encountered when analyzing DNA sequence data and
in general, categorical-valued time series. Briefly, a DNA strand can be viewed as a
long string of linked nucleotides. Each nucleotide is composed of a nitrogenous base, a
five carbon sugar, and a phosphate group. There are four different bases that can be
grouped by size, the pyrimidines, thymine (T) and cytosine (C), and the purines, adenine
(A) and guanine (G). The nucleotides are linked together by a backbone of alternating
sugar and phosphate groups with the 5’ carbon of one sugar linked to the 3’ carbon of
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Table 1. Part of the Epstein-Barr virus DNA sequence (read across and down).

AGAATTCGTC  TTGCTCTATT CACCCTTACT TTICTTCTTG CCCGTTCTCT TTCTTAGTAT
GAATCCAGTA  TGCCTGCCTG  TAATTGTTGC GCCCTACCTC  TTTTGGCTGG  CGGCTATTGC
CGCCTCGTGT  TTCACGGCCT  CAGTTAGTAC CGTTGTGACC  GCCACCGGCT TGGCCCTCTC
ACTTCTACTC ~ TTGGCAGCAG  TGGCCAGCTC  ATATGCCGCT  GCACAAAGGA  AACTGCTGAC
ACCGGTGACA  GTGCTTACTG CGGTTGTCAC  TTGTGAGTAC ACACGCACCA  TTTACAATGC
ATGATGTTCG  TGAGATTGAT CTGTCTCTAA  CAGTTCACTT CCTCTGCTIT TCTCCTCAGT
CTTTGCAATT  TGCCTAACAT  GGAGGATTGA  GGACCCACCT TTTAATICTC TTCTGTTTGC
ATTGCTGGCC ~ GCAGCTGGCG  GACTACAAGG  CATTTACGGT TAGTGTGCCT CTGTTATGAA

the next, giving the string direction. DNA molecules occur naturally as a double helix
composed of polynucleotide strands with the bases facing inwards. The two strands are
complementary, so it is sufficient to represent a DNA molecule by a sequence of bases
on a single strand. Thus, a strand of DNA can be represented as a sequence of letters,
termed base pairs (bp), from the finite alphabet {4,C, G, T}. The order of the nucleotides
contains the genetic information specific to the organism. Expression of information
stored in these molecules is a complex multistage process. One important task is to
translate the information stored in the protein-coding sequences (CDS) of the DNA.
A common problem in analyzing long DNA sequence data is in identifying CDS that
are dispersed throughout the sequence and separated by regions of noncoding (which
makes up most of the DNA). Table 1 shows part of the Epstein-Barr virus (EBV) DNA
sequence. The data are taken from the EMBL data base. The entire EBV DNA sequence
consists of approximately 172,000 bp.

If we are interested in discovering patterns in a DNA sequence, we could assign
numbers (scales) to the nucleotides and then proceed with a spectral analysis of the
resulting numerical sequence. One could try scaling according to the pyrimidine-purine
alphabet, that is A =G = 0 and C = T = 1, however, this is not necessarily of interest for
every CDS of EBV. There are numerous possible alphabets of interest, for example, one
might focus on the strong-weak hydrogen bonding alphabet C=G=0and A =T = 1.
While model calculations as well as experimental data strongly agree that some kind
of periodic signal exists in certain DNA sequences, there is a large disagreement about
the exact type of periodicity. In addition, there is disagreement about which nucleotide
alphabets are involved in the signals (for example, compare Ioshikhes et al. (1992) with
Satchwell et al. (1986)).

If we consider the naive approach of arbitrarily assigning numerical values to the
categories and then proceeding with a spectral analysis, the result will depend on the
particular assignment of numerical values. For example, consider the artificial sequence
ACGTACGTACGT.... Then, setting A = G = 0 and C =T = 1, yields the numerical sequence
010101010101..., or one cycle every two base pairs (w = 1/2). Another interesting scaling
isA=1,C=2,G =3, and T = 4, which results in the sequence 123412341234..., or one
cycle every four bp (w = 1/4). In this example, both scalings, {a,¢,6,1}={0,1,0,1}
and {4, C, G, T} = {1, 2, 3, 4}, are interesting and bring out different properties of the
sequence. It should be clear that one does not want to focus on only one scaling. Instead,
the focus should be on finding scalings that bring out all of the interesting features in
the data. Moreover, because of heterogeneity (see e.g. Karlin and Macken (1991)), it
may be the case that if one scaling works well in one region of a DNA sequence that
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same scaling may work poorly in another region. Rather than choose values arbitrarily,
the spectral envelope approach selects scales that help emphasize any periodic feature
that exists in a categorical time series of virtually any length in a quick and automated
fashion.

Although it is well known that DNA is heterogeneous, in Stoffer et al. (1993b)
we found that heterogeneities can exist within short subsequences of a single gene. In
this article, we describe a methodology that will automatically divide a DNA sequence
into smaller stationary segments and then extract the pertinent information from these
segments. Our methodology will be an adaptation of the TBAS method given in Adak
(1998) and Ombao et al. (2001). This methodology was specifically developed for real-
valued nonstationary time series and has been successfully applied to a bivariate EEG
data set recorded during an epileptic seizure. In the next section we introduce the
concept of spectral envelope for stationary categorical sequences. Then, we establish a
theory for the analysis of locally stationary categorical sequences. Finally we discuss fast
and automatic estimation of the local spectral envelope via dyadic TBAS methodology
and present some examples.

2. The spectral envelope for stationary categorical time series

As a general description, the spectral envelope is a frequency based, principal com-
ponents technique applied to a multivariate time series. In this section we will focus on
the basic concept and its use in the analysis of categorical time series. Technical details
can be found in Stoffer et al. (1993a).

In establishing the spectral envelope for categorical time series, the basic question of
how to efficiently discover periodic components in categorical time series was addressed.
This was accomplished via nonparametric spectral analysis as follows. Let X;, ¢t =0, £1,
+2,..., be a categorical-valued time series with finite state-space C = {c1,¢2,...,¢ck}.
Assume that X; is stationary and p; = pr{X; = ¢;} > 0 for j = 1,2,...,k. For B8 =
(B1, B2, - .., Bk) € R®, denote by X;(B) the real-valued stationary time series correspond-
ing to the scaling that assigns the category c¢; the numerical value 8;, j = 1,2,...,k.
We assume the existence of fx (w;f), the spectral density of X(8). The goal is to find
scalings B so that the spectral density is in some sense interesting, and to summarize the
spectral information by what we called the spectral envelope.

We chose 8 to maximize the power (variance) at each frequency w, across frequencies
w € [~1/2,1/2], relative to the total power 02(8) = var{X:(8)}. That is, we chose B(w),
at each w of interest, so that

- fx(w;B)
1) v s {250,

for B ¢t 1, the k x 1 vector of ones. Note that A(w) is not defined if B « 1; because such a
scaling corresponds to assigning each category the same value; in this case fx(w;8) =0
and 02(B) = 0. The optimality criterion A(w) possesses the desirable property of being
invariant under location-scale changes of 3.

As in most scaling problems for categorical data, it was useful to represent the
categories in terms of the unit vectors ey, e,. .., ey, where e; represents the k x 1 vector
with a one in the j-th row, and zeros elsewhere. We then defined a k-dimensional
stationary time series Y; by Y; = e; when X; = ¢;. The time series X;(8) can be
obtained from the Y time series by the relationship X;(8) = B'Y;. Assume that the
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vector process Y; has a continuous spectral density denoted by fy(w). For each w,
fr(w) is, of course, a k x k complex-valued Hermitian matrix. Note that the relationship
X:(B) = B'Y implies that fx(w;B) = B fvr(w)B = B f1°(w)B, where f3*(w) denotes the
real part of fy(w). The optimality criterion can thus be expressed as

o [BIF@B
(22) A(”)_aqu‘l{ FVB }

where V is the variance-covariance matrix of Y,. The resulting scaling f(w) is called the
optimal scaling.

The Y, process is a multivariate point process, and any particular component of
Y, is the individual point process for the corresponding state (for example, the first
component of Y indicates whether or not the process is in state ¢; at time ¢). For any
fixed t, Y, represents a single observation from a simple multinomial sampling scheme.
It readily follows that V = D — pp/, where p = (p1,...,px)’, and D is the k x k diagonal
matrix D = diag{p,...,px}. Since, by assumption, p; > 0 for j = 1,2,...,k, it follows
that rank(V’) = k—1 with the null space of V' being spanned by 1. For any k x (k—1) full
rank matrix () whose columns are linearly independent of 1z, Q' VQisa (k—1) x (k—1)
positive definite symmetric matrix.

With the matrix @ as previously defined, and for w € [—1/2,1/2], define A(w) to be
the largest eigenvalue of the determinantal equation

(23) Q' f¥*(w)Q - AQ'VQ| =0,
and let u(w) € RF! be any corresponding eigenvector, that is,
(24) Q'Y (w)Qu(w) = A\w)Q'VQu(w).

The eigenvalue A(w) > 0 does not depend on the choice of (). Although the eigenvector
u(w) depends on the particular choice of Q, the equivalence class of scalings associated
with B(w) = Qu(w) does not depend on Q. A convenient choice of Q is @ = [I_; | 0],
where I_; is the (k—1) x (k—1) identity matrix and 0 is the (k —1) x 1 vector of zeros.
For this choice, Q' f{°(w)Q and Q'VQ are the upper (k — 1) x (k — 1) blocks of fJ*(w)
and V/, respectively. This choice corresponds to setting the last component of B(w) to
Z€ero.

The value A(w) itself has a useful interpretation; specifically, A(w)dw represents the
largest proportion of the total power that can be attributed to the frequencies within a
dw neighborhood of w for any particular scaled process X;(8), with the maximum being
achieved by the scaling B(w). Because of its central role, A(w) was defined to be the
spectral envelope of a stationary categorical time series.

The name spectral envelope is appropriate because A(w) envelopes the standardized
spectrum of any scaled process. That is, given any B normalized so that X;(8) has total
power one, f(w;B) < A(w) with equality if and only if 8 is proportional to B(w).

Although the law of the process X;(8) for any one-to-one scaling 8 completely de-
termines the law of the categorical process X;, information is lost when one restricts
attention to the spectrum of X;(f). Less information is lost when one considers the
spectrum of Y;. Dealing directly with the spectral density fy(w) itself is somewhat
cumbersome since it is a function into the set of complex Hermitian matrices. Alter-
natively, one can view the spectral envelope as an easily understood, parsimonious tool
for exploring the periodic nature of a categorical time series with a minimal loss of
information.
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3. Local spectral envelope

In the previous section we assumed stationarity. But, as we have indicated, long
DNA sequences are heterogeneous and hence there is a need to establish methods to
investigate local behavior. In particular, as discussed in the introduction, the genetic
model is that CDS are segments of DNA that are dispersed throughout the sequence and
separated by regions of noncoding or noise. Because genetic information is contained in
segments, piecewise stationarity appears to be a suitable model.

A k x 1 vector-valued piecewise stationary process, {v,, T} i 0 , for T'> 1, is defined
to be

B
(31) Ys,T = Z Ys,b I(S/Ta Ub)7
b=1

here, Y, ;, are stationary processes with continuous k x k spectral matrices frp(w), where
Uy = [ub 1,up) C [0,1) is an interval, and Z(s/T,U,) is an indicator that takes the value
1 if s/T € Uy, and 0 otherwise. For ease of notation, we rescale time in each block so
that

{Ys,b :8/T € Ub}l—> {Yt,b t=0,..., M, — 1}

where the number of observations in segment b is M}, and Zf 1 My =T. This rescaling
of time represents a simple time shift to the origin wherein Y + Yy for s/T € Uy
Wltht—s—Zf LM,

We shall say that a categorical time series, {X; 7}, on a finite state-space and with
nonzero marginal probabilities (as discussed in Section 2), is piecewise stationary if the
corresponding k X 1 point process, {Y; 1}, is piecewise stationary. To assure that more
observations fall within each stationary segment (or block) upon sampling the process
Xs,1, we assume that the lower bound, M, for the number of observations in each block,
b, satisties M — oo as T' — oo. We remark that DNA is truly a discrete-time process, so
it would be unrealistic to consider an infill asymptotic situation wherein we assume we
are able to obtain more observations in a segment as the number of observations grows.
In our case, we rely on increasing-domain asymptotics to approximate the behavior of
the estimated spectral envelope for suitably large segments. For small segments, simple
Monte Carlo simulations can be used to approximate the small sample null distribution
of the spectral envelope estimator.

If X, r is a piecewise stationary categorical time series, we define the local spectral
envelope as follows. The local analogue of the optimality criterion in (2.2) is

- B f75,(w)B
(32) Ap(w) —;;ﬁ{ 518 }

for b=1,..., B, where V} is the variance-covariance matrix of Y. Analogous to Sec-
tion 2, we deﬁne Ap(w) to be the local spectral envelope and the corresponding eigenvector
By(w) to be the local optimal scaling of block b and frequency w.

Next, we present some asymptotic (I' — oo) results for estimators of the local
spectral envelope and the corresponding local scaling vectors. In this section we assume
that the (stationary) segmentation is known. In the next section, we deal with the
problem of estimating the local spectral envelope and optimal scalings when the exact
segmentation is not known.
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Suppose we observe a finite realization of the piecewise stationary categorical time
series X, T, or equivalently, the multinomial process Y, 1, for s =0,...,7—1. When the
stationary segmentation is known, the theory for estimating the local spectral density of a
multivariate, real-valued time series follows from well established results (e.g. Brillinger,
(1981); Hannan (1970); Rosenblatt (1959)), and can be applied to estimating frp(w),
the local spectral density of Y. In view of (3.2), given an estimate fys(w) of fy, b(w)
an estimate of the local spectral envelope and the corresponding scalings, denoted Xb (w)
and B, (w), respectively, can then be defined in a manner analogous to (2.3)-(2.4).

To avoid excessive notation and without loss of generality, we will henceforth use
the following conventions (which are typical for categorical data). Let Q be the matrix
defined below (2.4), namely, Q@ = [Ix_; | 0]’, and let V}, be the sample variance-covariance
matrix obtained from the data in segment b, {Ys 7 : s/T" € Uy}, or equivalently, {Y; :
t=0,...,M,—1}. We set

Yio € QY

this operation has the effect of removing the k-th element from Y. so that it is now a
(k — 1) x 1 vector. In this case, we denote

V¥ QVQ and Frp@) € Q' frp(w)Q;

note that V and fy(w) are now the upper (k— 1) x(k—1) blocks of the previously defined
V, and fo(w) matrices, respectively. In addition, we will use the same convention for
the population values V; and fyp(w).

For simplicity and without loss of generality, we define the local sample spectral
envelope, Ap(w), to be the largest eigenvalue of §7®(w) where

(3.3) G(w) = V2 fyp(w) V22,

The local sample optimal scaling, By(w), is then defined by B, (w) = V" *4(w), where
iy (w) is the eigenvector of §7°(w) associated with the root Ay(w). The scale corresponding
to the k-th category is held fixed at zero. Furthermore, let i (w) be normalized so that
i, (w)tp(w) = 1, and with the first nonzero entry of (w) taken to be positive.

To allow for the application of a general theory in obtaining asymptotic distributions
for the estimates of the local spectral density fy,(w), we assume throughout this section
that Y ; is strictly stationary for each block b, and that all local cumulant spectra, of all
orders, exist for each series Y, ;. The assumption of the existence of all local cumulant
spectra is not restrictive in the categorical case because the elements of Y ; take on only
two values, zero or one. Rather than introduce excessive notation, we refer to Brillinger
((1981), Assumption 2.6.1). The local periodogram of the data {Ysr : s/T € Uy} in
block b is given by

(3.4) Iy(w) = dy(w)dy (w),

where
Mp—-1

(3.5) dp(w) = M;1/2 Z Y. p exp{—2mitw}
t=0

is the finite Fourier transform of the data {Y, 1 : /T € Uy }.
Under the assumption of piecewise stationarity, and in the case that the stationary
blocks are known, the following results regarding estimation follow from Stoffer et al.
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(1993a). The results are stated here for completeness. All limiting statements are taken
as T — oo; recall that M, — o0 as T — oo. For simplicity, the distinct frequencies
wj, for j = 1,...,J, are assumed to be strictly between 0 and 1/2. Let W(p, v, ¥)
denote the Wishart distribution of dimension p on v degrees of freedom and with p x p
covariance parameter 3; similarly, W, (p, v, &) denotes the complex Wishart distribution
(see Brillinger, (1981), §4.2 for details).

LEMMA 3.1.  Under the established notation and conditions, Iy(wj), forj=1,...,
J, converges in distribution to independent W[k, 1, frpwy)), forj=1,...,J.

Since V% converges in probability to V4, we have gy(w;), for j = 1,...,J, are asymp-
totically independent W[k — 1,1, gp(w;)], for 5 =1,...,J, where

go(w) =V, 2 fyp(w) V2

is the population version of (3.3). Since the eigenvalues and eigenvectors are continuous
functions of a matrix argument, at least almost everywhere with respect to Lebesgue
measure, the asymptotic distributions of the sample spectral envelope Ap(w) and the

sample scalings B;(w) follow from Lemma, 3.1.

THEOREM 3.1.  Under the established notation and conditions, and for fy,b(w) =
Iy(w), the collection {Xb(wj),ﬁb(wj) 1j =1,...,J}, converges in distribution to {Xp ;,
Byj:i=1,...,J}, where By ;= %—1/2%7]. and { XNy 5, Upj: j=1,...,J}, are the largest
eigenvalue and eigenvector of independent WTe[k — 1, 1, go(wj)] matrices, j = 1,...,J,
with w,; normalized so that w, ;up ; = 1 and the first nonzero entry of Up,; being positive.

The above theorem gives a representation for the limiting distribution of the local
sample spectral envelope and the corresponding sample scalings. Although the distribu-
tion of the largest root of a Wishart matrix or of a complex Wishart matrix has been
well studied, we are not aware of any results on the distribution of the largest root of
the real part of a complex Wishart matrix other than Stoffer et al. (1993a). Except for
special cases, the form of the distribution of the largest root of a Wishart matrix or of a
complex Wishart matrix is not tractable and contains the other roots of the matrix ar-
gument as nuisance parameters (Muirhead (1982)). The distribution of the largest root
of the real part of a complex Wishart matrix is more problematic since the distribution
Wie(p,v,X) is not Wishart itself, and depends not only on £ but also on £, the
imaginary part of X.

A special case of fundamental importance is the case where Y.y is white noise
wherein gy(w) = Ij_1, the (k—1) x (k — 1) identity matrix, for —1/2 < w < 1/2. In this
case, the distribution of the largest root of a W7 °[k — 1,2, g(w)] matrix, which arises in
Theorem 3.1, has a relatively simple form; see Stoffer et al. (1993a, Theorem 3.2).

THEOREM 3.2. Under the established notation and conditions, if Y, is white
noise, then for fyy(w) = Iy(w), the collection {Mo(w;) : 7 = 1,...,J}, converges in

distribution to {hy; : j = 1,...,J}, where the A, for i =1,...,J, are independent
and identically distributed with

pr(;1 < 2) = pr(xd_1) < 4z) — 7225 2exp(—2)pr(xE < 22) / T{(k - 1)/,

for z > 0.
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If the spectral estimate fy(w) is chosen to be the averaged local periodogram

estimate
m

Fra@) = @m+1)7" > Lw+¢/My),

{=—m

(the size of m can and should depend on M, but, for simplicity, we do not display
this dependence) then Lemma 3.1 holds with Ib(wj) and W[k, 1, fyp(w;)] replaced by
fr, bp(wj) and Welk,2m + 1, fyp(w;)]/(2m + 1), respectively (Brillinger, (1981), Theorem
7.3.3). Consequently, Theorem 3.1 holds when adjusted analogously. Theorem 3.2 also
holds when I(w;) is replaced by the estimate fy;(w;), in which case the distribution of
Ab,1 is that of the largest root of a W(k — 1,4m + 2,I_1)/(4m + 2) matrix. We refer
the reader to Muirhead ((1982), §9.7) for a discussion of the largest root of a W (p,v, I,)
matrix.

Finally, we consider local consistent window spectral estimates. Consider a window
function (which may be different in each block) Wi(a), —00 < a < oo, that is real-
valued, even, of bounded variation, with [*° Wj(a)da = 1, and [ |Wb(a)]da < 0.

Define
My,—1

(3.6) fy,b(w) = Mb_l Z WMb(w - f/Mb)Ib(f/Mb),
£=0

where Wy, (@) = B;li > e oo We(Bj [+ j]) and By, is a bounded sequence of non-
negative scale parameters such that Bas, — 0 and Bps, M — oo as T'— oo. The limiting
distribution for (3.6) is a special case of Brillinger ((1981), Theorem 7.4.4) and we state
the result as Lemma 3.2. Based on the limiting distribution of (3.6), we may establish
the asymptotic distribution of the local spectral envelope and the corresponding scalings
obtained from local window spectral estimates. To this end, define

My = (Bag, M) /? (/:: Wb(a)zda)

—1/2

LEMMA 3.2. Under the stated conditions and assumptions, for fy p(w) defined by
(3.6), {VMb[fo(wJ) = frpwi)l 3 =1,...,J} converges in distribution to {Z; : j =
1,...,J} where the Z; are mutually zndependent kx k complex matrices with (Z{,"‘;, Zg’;‘)
hamng a multwamate normal distribution with mean zero and covariance structure not
dependent on the window Wy(a).

If the largest root of g;°(w;) is distinct, the delta method can be used to argue that
Ao(w;) and ﬁb(wj) are jointly asymptotically normal. This statement follows because
the maximum eigenvalue of a symmetric matrix and the corresponding eigenvector are
analytic in a neighborhood of an argument with a distinct maximum root. Let u(w)
be the normalized eigenvector corresponding to the largest eigenvalue of 93¢ (w); that
is, up(w)'up(w) = 1, and the first nonzero element of uy(w) is positive. Then, using
Lemma 3.2 and the calculatlons given in Stoffer et al. ((1993a), Appendix) we have the
following main result.

THEOREM 3.3. Under the stated conditions and assumptions, and for fo( ) de-
fined by (3.6), if for each j = 1,...,J, the largest root of gi®(w;) is distinct, then
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{va, Ao (wi) = Ao (wi)]/ Ao(wy); vag, [By(wy) — By(wj)] : § = 1,...,J} converges jointly in
distribution to {zj;yj 2j=1,...,J} with z; and Y; being independent for j =1,...,J.
Furthermore, for each j = 1,...,J, z; has a standard normal distribution and is inde-
pendent of y; which is multivariate normal with mean zero. The covariance matriz of

V;l/ 2yj is given by
(3.7) {0 (w7) Holws) " 5% (ws) Hy(w;) T = as(w;)an(w;)'}/2,

where Hy(w;) = g5°(w;) Ao (wi) k-1, as(w;) = Hy(ws)* gi™(w;)V, *u(w;), and Hy(w;)*
refers to the Moore-Penrose inverse of Hy(wj).

Asymptotic normal confidence intervals and tests for A\y(w) can be readily con-
structed using Theorem 3.3. For B,(w), asymptotic confidence ellipsoids and chi-square
tests can also be constructed. A simpler asymptotic test statistic can be constructed by
replacing the term a;(w) in (3.7) by zero; details follow analogously to stationary case
presented in Stoffer et al. (1993a). We note that the asymptotic distribution of ib(wj)
and fib(wj) is considerably more complicated whenever the largest root of gf¢(w;) is not
distinct. In this case, we refer the reader to the techniques given in Tyler (1981) and
Eaton and Tyler (1991).

For practical purposes, when the number of observations in block b, namely My, is
large, searching for peaks in the local spectral envelope estimate can be aided using the
following approximations. Using a first order Taylor expansion we have

S 0N Ab(w) = Ao(w)
(3.8) log Ap(w) = log Ap(w) + N
so that vpz, [log \p(w) — log Ay (w)] is approximately standard normal under the condi-
tions for which Theorem 3.3 is true. It also follows that E[log Ap(w)] ~ log Ay(w) and
var[log Ay (w)] ~ V]T,Izb. If there is no signal present in block b, we expect A\y(j/My) ~ 2/ M,
for 1 < j < Mp/2. Simulations show that M}, must be very large before this approx-
imation holds, and at typical block sizes, the average value of ;\b(j /My) is closer to
2.5/Mp when there is no signal present. Using this recommended value, when there
is no signal presently, approximately (1 — a) x 100% of the time, log j\b(w) will be
less than log(2.5/My) + (24/vas,) where 2z, is the (1 — o) upper tail cutoff of the
standard normal distribution. Exponentiating, the o critical value for ;\b(w) becomes
(2.5/My) exp(za/vum,). From our experience, thresholding at very small values of « rel-
ative to the sample size works well provided M, is not too small. Our experience with
DNA suggests that asymptotic approximations work well when M, is at least 28.

4. Tree-based adaptive segmentation for the local spectral envelope

In the previous section we assumed that the exact segmentation is known. Although
it may be possible to know the exact segmentation on visual inspection and careful micro-
analysis of a DNA sequence, we want to focus on the problem of fast and automatic
detection of CDS dispersed throughout a long DNA sequence. We do not claim that our
method will locate every CDS in a sequence, but we do believe that our method can
find the approximate location of many of the genes in a DNA sequence. In this section,
we will describe an algorithm for automatically segmenting a long DNA sequence. In
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addition, this technique can be generalized to categorical sequences other than DNA.
The strategy adopted is to divide the sequence into small blocks and then to recombine
adjacent blocks whose estimated local spectral envelopes are sufficiently similar. The
basic idea is that adjacent blocks with similar local spectral envelope estimates give
similar genetic information. The main feature of the algorithm is it divides the sequence
in a dyadic manner using a measure of distance (or discrepancy) between the genetic
coding information contained at two adjacent blocks. Our method is inspired by the
algorithm in Adak (1998).

We now give the algorithm.

1. Set the mazimum level J. The value of J determines the smallest possible size of
the segmented blocks. For a sequence of length 7", the smallest blocks have length 7'/27.
Ideally, the block sizes should be small enough so that one can separate useful genetic
information unique to that block from the noncoding material (noise). One should be
careful, however, about making the blocks too small. Blocks have to be large enough
to give good estimates of the local spectral envelope. Our recommendation is that the
block size should be at least 28.

2. Form the blocks. At each level j = 0,...,J, divide the data sequence into 27
blocks. Denote B(j,£) to be the ¢-th block on level j, where ¢ = 1,...,29. The first
block on level j is denoted as B(j,1) and the last as B(j,27). The “inner” blocks at
level j are B(j,£), (where £ = 2,...,29 — 1). For any level j = 0,...,J, block B(j,9),
for £=1,...,27, consists of the M; = T'/27 elements {Xie-vyr/21, - - Xperyai—ap}-

3. Estimate the spectral envelope. Compute an estimate of the local spectral en-
velope, Aj¢(wg), at each fundamental frequency wy = k/M; (k =0,...,M;/2) in each
block B(j,¢) where j =0,...,J,and £ =1,...,27.

4. Create a table of distances. Let §[-,-] be a distance (discrepancy) measure be-
tween the spectral envelope estimates of two children blocks. We will discuss choosing
such a measure after the algorithm is presented. Using the distance measure, create a
table of distances corresponding to each block, B(j,£), namely,

D(j,£) = 6[Ajr1,20-1(w), Ajt1,20(w)],

for £=1,...,2%, and for each level j < J.
5. Mark the blocks for final segmentation. Mark all the blocks B(J —1,£), at level
J—lford=1,...,277  Forj=J—-2and ¢=1,...,29, if

D(j,6) <D(j+1,2¢—1)+ D(j +1,2¢)

then mark the block B(j,€) and leave D(j,#) unchanged. Otherwise, leave the block
B(j,£) as unmarked and set

D(j,8) = D(j +1,2¢ — 1) + D(j + 1, 20).

Iterate this procedure for j = J —3,J —4,...,0. The final segmentation of the DNA
sequence is the set of highest marked blocks: {B(j,¢) such that B(j,¢) is marked and
its parent block and ancestor blocks are not marked}.

6. Classification. For the final segmentation, use the information in the estimated
local spectral envelope to classify a segment as (i) highly likely to contain CDS
(ii) highly likely to contain noncoding, or (iii) uncertain. A specific classification method
is discussed below.
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Fig. 1. Estimated spectral envelope of the entire EBV sequence.

Choosing a distance measure and classification rule for gene detection

Our choice for a distance measure in Step 4, and a classification rule in Step 6, of
the algorithm is based on our extensive experience with the Fourier analysis of DNA
sequences (e.g. Stoffer et al. (1993b)), and the research of others (e.g. Cornette et al.
(1987), or Tiwari et al. (1997)). The consensus is that a CDS typically contains the
frequency w = 1/3. Other frequencies, such as w = 1/10 may also be present (e.g.
Satchwell et al. (1986)), and repeat regions may have many spectral peaks. Introns
(junk DNA) behave generally as second order noise and sometimes fractional noise (also
known as 1/f noise, e.g. see Voss (1992)), so the spectral envelope will either be flat
or will have spectral power at or near the zero frequency in these regions. If a block
contains coding only, then generally, a spectral peak will appear at the 1 /3 frequency. If
a block contains coding and noise, then a spectral peak at 1 /3 will be present, but there
may also be power at the zero frequency, indicating long memory or 1/f spectra.

We demonstrate these concepts using the EBV DNA sequence that was described
in Section 1. Figure 1 shows the estimated spectral envelope of the entire sequence. We
note the pronounced peaks at the zero and 1/3 frequencies. Also, the possibility that
there are other significant peaks (such as the presence of some spectral power at the
1/10 frequency) are visible in the estimated spectral envelope of the entire sequence.
Figure 2 shows the estimated spectral envelopes of the first half and the second half
of the sequence. In this case, we note that the estimated spectral envelopes, though
different, display the same peak frequencies as the entire sequence. Figure 3 shows the
estimated spectral envelope of the first 4096 bp of the EBV sequence and of the gene
BNRF1 (bp 1736-5689). The first 4096 bp of the EBV sequence contains noncoding
and coding (specifically, BNRF1 is the first gene of EBV); note the estimated spectral
envelope shows peaks at the zero and 1/3 frequencies (the general appearance is similar
to the entire sequence). In contrast, the estimated spectral envelope of the gene BNRF1
shows a peak at the 1/3 frequency, but does not exhibit a peak at the zero frequency.
Finally, Fig. 4 shows examples of subsequences in the EBV sequence that exhibit the
properties of white noise and of fractional noise. The results of these examples are typical
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Fig. 3. Estimated spectral envelope of the first 4096 bp of the EBV sequence [left] and of the
gene BNRF1 (bp 1736-5689) [right].

of the spectral analysis of DNA sequences discussed in the literature and are the basis of
our distance measure and classification rule. To summarize, we emphasize the following
observations: (i) If a block contains only coding, the spectral envelope should exhibit a
peak at frequency 1/3, and possibly other nonzero frequencies; (ii) if a block contains
both coding and noncoding, the spectral envelope will exhibit a peak at (or near) the
zero frequency as well as a peak at frequency 1/3, and possibly other nonzero frequencies;
(iii) if a block contains noncoding in the form of noise, the spectral envelope will be flat
or will indicate 1/f noise; (iv) if a block contains other interesting features (e.g. repeat
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Fig. 4. Estimated spectral envelope of 2048 bp from the EBV sequence known to be noncoding
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regions) the spectral envelope may exhibit several nonzero peaks other than 1 /3.

Using these ideas, our recommended distance measure is as follows:

1. Define the threshold at level j to be ;. A discussion of significance levels and
thresholding is given in the paragraph containing equation (3.8).

2. Compute the peak information function at block B(j,£) as follows. Let # be
a positive integer (which may depend on j) such that 2x << M;/2, and consider the
partition of the interval of frequencies, [0,1/2], given by

1
{Qj(v): [%,%), fOI"UZO,l,...,Ii:—l},

with the convention that the last partition contains 1/2. We define the peak information
function to be

_J1, if X(we) > a; forany w € Q;(v)
4.1 Pjov)y=13 > 5,E\ Wk J k=2
(4.1) (V) { 0, otherwise

forv=20,1,...,k — 1, where wy = k/M; for k = 0,1,...,M;/2, are the fundamental
frequencies. In other words, P;,(v) is assigned the value of 1 if there is a significant
peak in the estimated spectral envelope in the band of frequencies Q;(v). If there are no
significant peaks in the particular band, then P;,(v) is assigned the value zero. The par-
tition is arbitrary, but we have found the partition with endpoints {.00,.01,.02, ..., .50},
obtained by rounding the fundamental frequencies to two decimal places, works well.

3. Compute the distance, D, between two children blocks. For j = 0,...,J — 1, and
£=1,...,27:

(42) D(j,£) = Y |Pjs120-1(v) — Pyy1,00(v)]
v>0

+(J =5 = 1)[Pj41,20-1(0) + Pjy1,2¢(0)].
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Our distance measure is based on the location of peaks in the spectral envelope. The
indicator P;,(v) identifies whether or not a significant local peak exists in the estimated
spectral envelope and similar spectral envelopes in children blocks will yield a low value
in the sum in (4.2). The second part of (4.2) is a penalty term that guards against
combining large blocks in which there is a significant peak at the zero frequency, which,
in the presence of other nonzero peaks, may indicate inhomogeneity (i.e. coding and
noncoding in the same block).

Once the final segmentation is determined, our classification rule uses the points
previously discussed.

1. A block is designated as containing only coding if the local estimated spectral
envelope exhibits a peak at frequency 1/3 (and possibly other nonzero frequencies), but
no peak exists at the zero frequency (see Fig. 3).

2. A block is designated as containing both coding and noncoding if the spectral
envelope exhibits a peak at (or near) the zero frequency as well as a peak at frequency
1/3, and possibly other nonzero frequencies (see Fig. 2).

3. A block is designated as containing noncoding (noise) if the spectral envelope is
either flat, indicating white noise, or has a peak at, or near, the zero frequency and no
other peaks, indicating fractional noise (see Fig. 4).

4. A block is designated as containing other interesting features (e.g. repeat regions)
if spectral envelope exhibits several nonzero peaks other than 1 /3.

5. If adjacent blocks are classified in the same way, they may be recombined (see
the data example in Section 6).

Before proceeding to our examples, we make the following remarks.

e On dyadic segmentation: Dyadic tree-structured based methods are widely used
and well accepted in the statistics literature. One example of a dyadic tree-based method
is CART (Classification and Regression Trees) of Breiman et al. (1984). In the time series
literature, we now have well developed methods and theory that are based on dyadic
segmentation; see, for example, Mallat et al. (1998), Adak (1998), Donoho et al. (1998)
and Ombao et al. (2001). The Auto-SLEX method in Ombao et al. (2001) was applied
successfully to a nonstationary EEGs recorded during an epileptic seizure. The goal
was to estimate the time-varying spectra of the EEGs and coherence between the two
EEGs. It was clearly demonstrated in Ombao et al. (2001) that the Auto-SLEX method,
which is dyadic-based, does not suffer even when applied to biological signals that do
not necessarily have a dyadic structure. The only conditions that need to be satisfied
are that the length of the blocks at the finest level J goes to infinity at a rate that is
slower than the length of the whole time series.

® On the distance: The distance D(j,#) counts the number of peaks occurring at
different nonzero frequencies between the children blocks. If the peaks at the two children
blocks occur at different frequencies then the two children blocks are said to contain
different genetic information. The magnitude of the difference in genetic information
is captured by the distance D(j,£). It may, however, be the case that if two segments
have the same local spectral envelope, the signals may be due to different alphabets (i.e.,
the scales at the common peak frequencies may be different). In this case, a distance
measure should indicate a difference. How to incorporate this information efficiently is
currently under investigation.

o Efficient computation: It is necessary to use computationally efficient methods
when analyzing very long time series data sets. Dyadic transforms are useful tools
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for developing computationally efficient methods. The algorithm presented is efficient
because it uses two computationally efficient methods. In computing the estimates of
the spectral envelope, we used the Fast Fourier Transform. Moreover, the selection of
the final segmentation was delivered by the Best Basis Algorithm (BBA) of Coifman and
Wickerhauser (1992). Wickerhauser (1994) devotes a chapter to BBA and related cost
measures.

e Relationship to the Adak algorithm: The Adak (1998) method is useful for es-
timating the time-varying spectrum of a univariate nonstationary process. Spectral
estimates are compared between children blocks and distance measures were proposed.
The algorithm presented in this article is for multivariate piecewise stationary categorical
time series. Instead of spectral estimates, we compare the estimated spectral envelopes
between blocks. Moreover, our distance function is different than the one developed in
Adak (1998). The distance function used in our algorithm is specific for time series data
sets whose spectra have power concentrated at very narrow bands of frequencies.

5. Some simulation results

To test our methods, we conducted two simulation studies. The first simulation
divides the time domain of various signal and noise processes in a dyadic manner. The
second simulation is similar to the first, but we use a more realistic situation where
the piecewise processes have lengths that are nondyadic. In both cases, the signals are
generated by discretizing two sinusoidal processes

(5.1) X1 (t) = cos(2mt/10) + cos(2mt/3) + 1.5€1(t)
(5.2) X, (t) = cos(2mt/3) + ea(t),

where €;(t) and ez(t) are Gaussian white noise processes with unit variance. These
processes are discretized into four categories (representing the nucleosomes A, C, G, and T,
with about 65% of the observations corresponding to C and G). The gencrated categorical
sequences are used to represent CDS, the first signal contains the signature 1/3 frequency
as well as the additional presence of a 1/10 frequency, whereas the second signal contains
only the signature 1/3 frequency. For notation, we use S1(t) and S(t) to represent the
categorical sequences obtained by discretizing X1 (t) and X,(t), respectively. Also, we
use N(t) to represent, generically, an iid sequence of discrete random variables taking
on one of four possible values (representing noncoding, again with about 65% of the
observations corresponding to C and G).

5.1 Dyadic example

In this example, let X, represent a simulated DNA sequence of length T = 4096,
generated in the following manner:

Table 2. Distances (dyadic example).

level D(j,6)

j=0 3

j=1 3 1
j=2] 2 0 0 0
j=3]0]o]oJojofofofo
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Fig. 5. Estimated spectral envelopes (in decibels) for the dyadic example.
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Table 3. Recomputed distances and best segmentation (dyadic example). Bold face indicates
block is marked. Asterisks indicate best segmentation.

level D(j,%)

=0 0

j=1 0 0
j=2 0 0* 0* 0*
j=3|o0*[o*|o]o0 ofofo]o

Ni(t), 1<t<512
Si(t), 513 <t <1024
(5.3) X, = { Na(t), 1025<t< 2048
So(t), 2049 <t < 3072
Na(t), 3073 <t < 4096

We can visualize the decomposition of this simulated sequence using the following dia-
gram. Here, each block represents 512 observations, N denotes noncoding and S denotes
coding. The double lines separate the piecewise stationary segments.

(5:4) [FIsv[N]s]s]N]N]

The estimated spectral envelopes at each level, j = 0,1,2,3, are given in the Fig. 5.
In this example, the lowest level is J = 4 wherein the smallest data length considered
is 28 = 256; in general, level j corresponds to a window of length 2277, The dashed
line in each graph represents a significance threshold based on the discussion in the
paragraph containing (3.8), with c; set at 1/212-7 for each level j. Special attention
should be paid to the presence or absence of the zero frequency. Table 2 shows the
distances computed using (4.2), and Table 3 shows the recomputed distances and the
best segmentation based on Step 5 of the algorithm. We note that the best segmentation
corresponds precisely to the segmentation of the generated data as visualized in (5.4).
In addition, using our classification rule, segment (3,1) is classified as noise, segment
(3,2) is classified as coding with frequencies 1/10 and 1 /3 predominant, segment (2,2) is
classified as noise, segment (2,3) is classified as coding with frequency 1/3 predominant,
and segment (2,4) is classified as noise. This classification corresponds precisely to the
way the data were generated.

5.2 Non-dyadic example

This example is similar to the dyadic example except that the segmentation is non-
dyadic, and the signal lengths are a factor of 3 (to be more like an actual CDS). In this
case, X; was generated as follows:

Ni(t), 1<t<564
Si(t), 565 <t<1023
(5.5) X, = { Not), 1024 <t<2199
Soft), 2200 <t < 3024
Ny(t), 3025 <t < 4096

To visualize the segmentation, consider the following display. As before each block
represents 512 observations, N denotes noncoding and S denotes coding. The double
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Fig. 6. Estimated spectral envelopes (in decibels) for the non-dyadic example.
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Table 4. Distances (non-dyadic example).

level D(j,%)

j=0 7

j=1 4 3
j=2| 3 0 2 0
j=3|o]1]ofo[2]2 10

Table 5. Recomputed distances and best segmentation (non-dyadic example). Bold face
indicates block is marked. Asterisks indicate best segmentation.

level D,

j=0 3

j=1 1 2
j=2 1 0* 2% 0*
j=s|o*[1*]o]o 2]2]1]o0

lines indicate the best segmentation with the smallest block size being 512. For example,
the first block contains all noncoding whereas the second block contains coding and
noncoding.

(5.6) TN s/N][N]N]5/N]S/N][N[N]|

Based on the estimated spectral envelopes in Fig. 6, the distance tables in this
example are presented in Tables 4 and 5. As in the dyadic case, our segmentation
and classification rule correctly identify the decomposition of the data. In particular,
according to our classification rule, segment (3,1) is classified as noise, segment (3,2) is
classified as coding with frequencies 1/10 and 1/3 predominant but with some noncoding
present (notice the significant peak at the zero frequency), segment (2,2) is classified as
noise, segment (2,3) is classified as containing coding with frequency 1/3 predominant
and noncoding (note the peak at zero), and segment (2,4) is classified as noise.

6. Application: analysis of the EBV DNA sequénce

We applied our algorithm to a data set that is a subsequence of the EBV DNA
sequence. The subseries consists of bp 46001 to 54192; the length of the series is T' =
913 _ 8192. Below is a list of the interesting portions of this subsequence taken directly
from the EMBL data file:

CDS 46333..47481
/note="BWRF1 reading frame 12"
CDS 48386. .50032

/note="Coding exon for EBNA-2"
repeat_region  50578..52115
/note="12 x "125bp" repeats"

Note that the segment contains two coding sequences (CDS), one from bp 46333 to
47481, and another from bp 48386 to 50032. Also notable is a large repeat region from
bp 50578 to 52115; repeat regions are highly repetitive regions DNA.
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Fig. 7. Estimated spectral envelopes in the EBV example.

In our analysis, we set the lowest level at J = 5 so that the smallest blocks have
256 elements, and we set the threshold using «; = 1/2'¥J for j = 1,...,5. The
best segmentation and classifications are shown in Table 6. We note that adjacent
blocks with the same classification can be recombined; this situation happens with blocks
B(4,10) and B(3,6), and with blocks B(3,7) and B(3,8). The spectral envelopes for
the final segmention are displayed in Fig. 7. Our algorithm locates approximately the
three interesting segments of the DNA sequence considered here. In particular, block
B(3,1), which includes bp 46001 to 47042, correctly identifies a CDS. (as previously
noted, the actual location is bp 46333 to 47481). Block B(2,2), which includes bp 48049
to 50096 correctly identifies a CDS (the actual location is bp 48386 to 50032). Finally, the
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Table 6. Best segmentation and classifications. The best segmentation is marked with a letter
indicating the classification: C = CDS, N = Noise, R = Repeat region.

level B(j,£)

=0

ji=1

j=2 C

j=3]| Cc | N R | N | N
= T[T ITI~TR] T 1T 1]

combination of blocks B(4,10) and B(3,6), which includes bp 50609 to 52144, correctly
identifies a large repeat region (the actual location is bp 50578 to 521 15).

7. Discussion and conciusion

In this article we have extended the concept of the spectral envelope for a station-
ary categorical time series to the situation where the time series is stationary only over
intervals or subsequences. DNA sequences exhibit this kind of behavior. In particular,
the genetic model presumes that genetic information comes in pieces with definite start-
ing points (or start codons) and ending points (or stop codons). We have presented a
method to aid in the identification of coding sequences that are dispersed throughout the
DNA and separated by regions of noncoding. To address this problem we explored using
the notion of a local spectral envelope in conjunction with a dyadic tree-based adaptive
segmentation method. Our focus was on the problem of fast and automatic detection of
the approximate location, rather than the precise location of a CDS. Our hope is that
this information will allow molecular biologists to focus on small portions of a given
sequence. We do not claim that our method will locate every CDS in a sequence, but we
do believe that our method can find the approximate location of many of the genes in
a DNA sequence. We presented an algorithm for automatically segmenting a long DNA
sequence. The strategy adopted was to divide the sequence into small blocks and then to
recombine adjacent blocks whose estimated local spectral envelopes are sufficiently simi-
lar. The basic idea is that adjacent blocks with similar local spectral envelope estimates
give similar genetic information. We provided two simulation studies and an actual data
analysis that demonstrated the viability of our methodology. This research is ongoing
and some fine tuning of the methodology will certainly be developed in the future. For
example, we will investigate other distance measures and classification rules; moreover,
we will focus on including the estimated optimal scalings into the algorithm.

In terms of the general problem (i.e. not specific to any particular analysis), we
make the following concluding remarks. The spectral envelope could come under the
general title of spectral domain principal component analysis of multiple time series.
This topic is discussed in detail in Chapter 9 of Brillinger (1981) and there is a connection
between Brillinger’s work and the spectral envelope. Specifically, Brillinger’s approach
can be viewed as a scaling problem with complex-valued scales. In the spectral envelope
approach, we restrict attention to the case where the scales are real and the vector time
series of interest is the multiple indicator process associated with a categorical-valued
process.

While the piecewise stationary assumption is reasonable for DNA, we would like
to broaden the scope of our technique to evolutionary stationary processes. In the
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theoretical development of an evolutionary spectral envelope, we can use the model of a
locally stationary process of Dahlhaus (1997, 1999) or its special case given in Chiann and
Morettin (1999). A k-dimensional zero-mean random process Y,r,fort=0,...,T -1
is defined in Chiann and Morretin (1999) to be Dahlhaus locally stationary if it admits
the spectral representation

1/2
(7.1) Yir= /_ |y CPETIA/T, )i (0),

where Z(w) is a vector stochastic process whose increments are orthogonal and satisfy
regularity conditions on its cumulants. The k x k matrix A(-,-) is the time-varying
filter. Under this model, the k x k evolutionary spectral density matrix is defined to be
fr(w,w) = A(u,w)A*(u,w). We note that the first argument of A(t/T,w) is rescaled
to live on the unit interval. Increasing the number of observations, T, does not mean
looking into the future. Rather, this asymptotic framework, i.e. the concept of a doubly-
indexed sequence of processes {Y; r}, allows for more data to be observed at a local
structure and to do asymptotic inference starting from a single realization rather than
using replications of Y, (¢t = 0,...,7 — 1). Dahlhaus also proposed a method for
estimating fy (u,w) in his model. The estimators are consistent but the method is not
computationally efficient and can be problematic when the time series is long. In Ombao
et al. (2001), we proposed estimators of the evolutionary spectrum that are based on
dyadic segmentation framework. The methods used are computationally efficient and
the estimators are mean square consistent.

Under the Dahlhaus model, an evolutionary spectral envelope could be defined anal-
ogously to the spectral envelope for stationary processes discussed in Section 2. That is,

let
(AW
(7.2) A(“’w)“ﬁiﬁ{ BV (w)B }

where V(u) is the variance-covariance matrix of Yy r at time u = t/T, as defined in
Dahlhaus (1999). We can define A(u,w) and B(u,w) to be the spectral envelope and the
resulting optimal scaling, respectively, at time u and frequency w. Although the time-
varying spectral envelope A(u,w) could be estimated by using the windowing method
for estimating fy(u,w) in Dahlhaus (1999), as previously stated, this approach is not
computationally efficient and is impractical for large data sets. We can, however, use
the principles in Ombao et al. (2001) to devise a computationally efficient method for
estimating the evolutionary spectral envelope. We expect that our estimators will be
consistent under known segmentation. In addition, we will still need to address over-all
consistency of our method given that the segmentation is usually not known and has to
be selected using the data-driven BBA.

The dyadic segmentation framework is computationally efficient and provides a rem-
edy to the problem of efficient estimation. It is in the tradition of the growing body of
work used in regression and signal processing. Under the dyadic segmentation frame-
work, consistent estimators for the Dahlhaus time-varying spectrum are formed when
the segmentation is known. This result is given in Ombao et al. (2001). Thus, one con-
jecture that can be given at this point is that under known segmentation, one can also
form a consistent estimator for the true spectral envelope if the evolving spectral enve-
lope follows the same smoothness assumptions of the Dahlhaus evolving spectrum. The
next step is to rigorously define that evolving spectral envelope. Moreover, the over-all
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consistency still has to be addressed given that the segmentation has to be selected from
the data.
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