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Abstract. The distribution of the distance between two (or more) successive oc-
currences of a specific word in a random sequence of letters is known under different
models. In this paper, a more general problem is studied: the distribution of the dis-
tance between two (or more) successive occurrences of any word of a given set under
a Markov model for the sequence. The generating function and a recurrence for ob-
taining the probabilities are given. These results are applied to study the distribution
of the “CHI” motif in the genome sequence of Haemophilus influenzae.
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1. Introduction

Let S = {S152,...} be a sequence of repeated trials with possible outcomes taken
from an alphabet A. Let w be a specific string of letters of A, called a “word” or a
“pattern”. The exact distribution of the waiting time until w appears has been studied by
many authors, often for A = {0,1}. Among recent references, Robin and Daudin (1999)
have given the generating probability function and a recurrence relation for computing
the probabilities under a first order Markovian model for S. A more complete source
of references may be obtained in Koutras (1997) who gives the relation between the
generating function of the waiting time and the generating function of the number of
occurrences of w.

What happens when we consider more than one word?

Let W = {ws, ..., W} be aset of words of respective lengths {ki}l,...,m not included
in each other. In this paper, we study the waiting time until the first word of W appears.
This problems occurs in some applications:

e In genome sequence analysis where the same biological function is fulfilled by
different words. For example, a particular pattern of nucleotide called CHI (for Crossover
Hotspot Initiator) possess a function of protection of the genome and is characteristic of
each species. It is unknown for recently sequenced species but is expected to be frequent
and regularly spaced. For some organism, the same function is fulfilled by few different
words: for example, the CHI of Haemophilus influenza is (gNtggtgg) where N can be
any of the four letters of the alphabet 4 = {a,c,g,t}. The knowledge of the exact
distribution of the distance between the occurrences of several words would be of great
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help to study the longitudinal distribution of such a motif.

e A particular case of this problem is the sooner and later waiting time problem for
success and failure runs where A = {0,1} and W = {1---1,0---0} with k; ‘1’ and kg
‘0’. This problem is found in reliability and in psychology.

The general problem has been studied by Breen et al. (1985) using renewal theory
and only in the non-overlapping and independent case and by Chrysaphinou and Papas-
tavridis (1990) in the overlapping and first order Markovian case. Mori (1991) gives a
limit theorem for the waiting time till each of a given set of patterns of same length in
a sequence of iid random variables distributed uniformly on any alphabet.

The sooner and later waiting time problem has been recently studied by Aki and
Hirano (1993) and Uchida and Aki (1995) under a first order Markovian model, by Aki et
al. (1996) under a markovian model of order two. Koutras and Alexandrou (1997) have
generalized the problem with a three letters alphabet under a general non homogeneous
model.

The finite Markov chain imbedding technique provides a quite general method to
calculate the distribution of the first occurrence of different motifs (see Fu and Koutras
(1994) or Koutras and Alexandrou (1997) or of the counting of runs (Fu (1996))). How-
ever, for complex motifs, especially for overlapping words that are not simple runs, the
transition matrix is not straightforward to obtain. Furthermore this matrix has dimen-
sions proportional either to the total length of the motifs or to the length of the sequence.
This point seems to make the method untractable for large scaled problems such as DNA
analysis.

In this paper we give the exact distribution and the generating function of the
waiting time in the case of any set of words with any alphabet and a first order Markov
model.

We first present the model and the notations. In the second part, we derive the
probability generating function. The third section is devoted to the law of the r-scans
and the fourth presents an application to the CHI of Haemophilus influenza.

Set of words. Let us study the occurrences of a set of words W = {w;}i=1,....m not
included in each other and of respective lengths {k;}. w; ,, denotes the u-th letter of
w; :w; = (W;1,...,W;x;). The position of a word in the sequence is the position of its
last letter.

Model for the sequence. Let us consider a sequence {S;}z>1 of letters taken from
an alphabet A. The sequence is assumed to be a homogeneous first order Markov chain
- (MC1) with transition probability IT with general term 7(a, b)

V(a,b) € Ax AVz>1, Pr{Seis=b|S, =a}=n(a,b).

In the following, 7(")(a, b) shall denote the general term of II" and p = [1(a)]aca shall
denote the stationary distribution of II which satisfies p.JI = p.

Notations. For any words w; and w; of W, let us use the following notations.

e c;i(u) is ‘the overlapping indicator of w; over w; with u letters which equals
one when the first u letters of w; are the same as the last u letters of w; : €ij(u) =
H{(ws gy —us1 - Wik,) = (w1 wj,)} where I{A} equals one if A is true and zero
otherwise. The condition of non-inclusion of the words implies that eij{u) = 0 for
u = min(k;, k;) if i # j and for u > min(k;, k;) in any case.
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' 7;(u,v) is the probability to observe w; , to w; , given w; -1 :

v
Ti(“? U) = H W(w’i,:c—lawi,:l:)
=1

with convention 7;(u,1) = 1.
e d;;(t) is the overlapping polynomial which does not take into account complete

overlap:
min(ki ,k]' ) -1

ds) =y, Ol

Rt 7i(2,u)

2. Semi-Markov model for the occurrences of the words

2.1 Model and notations
The way the words occur along the sequence is completely described by two processes
e the positions of the occurrences of the different words of W : {Xp}n>1;
e the words occurring at each of these positions {I,}n>1:

{I, = i} < {the word occuring at X, is w;}.

This describes a semi-Markov process with states in W. This process is assumed to
be homegenous along the sequence.

Let p;;(y) denote the probability that the first word of W occurring after w; is w;
and that it appears y positions after:

pi;(y) = Pr{(Xn+1 — Xn =) N (Ing1 =J) | In = i}.

p;;(y) does not depend of n thanks to the Markovian structure of the sequence. Let ¢;;
be the generating function of the p;;(y)’s:

Gis(t) = > pij (W)Y,

y>1

Let ¢;;(y) denote the probability that the word w; occurs y positions after w;:

qz](y) = ZPr{(Xn-i-r —Xn = y) n (In+'r = .7) | I, = 2}

r>1

" The difference between pi;(y) and ¢;;(y) is that ¢;;(y) concerns any occurrence of w;
after any number of renewals of any word of W, while p;;(y) concerns only the first
occurrence of w; among the set W. Let fi;(t) be the generating function of the g;;(y)’s:

Fii® = ai; ().

y>1

If the first word is distributed according to some distribution v over W, ‘we shall
denote py;(y) = 3, Pr{(Xn41—Xn = y)N({Ing1 = J) | In = i}v(i) where v(i) = Pr{l, =
i}. We shall denote ¢,;(t) the corresponding generating function.

At last, we shall denote p;o(y) the probability that the first occurrence after w; of
any word of W occurs y position later : pie(y) = >_, pij(y), and ¢;¢(¢) the corresponding
probability generating function.
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2.2 Matrices of generating functions
LEMMA 1. The probabilities p;;(y)’s and q;;(y)’s satisfy the following relation

m y—1

(2.1) 65 (v) = pis (W) + Y > qu(2)pi;(y — 2).

=1 z=1

PROOF. The first term of the right hand side gives the probability that the first
word of W occurring after w; is w; and that it appears y positions after. The second term
calculates the probability of w; y position after w; is not the first one by conditioning
on all possible occurrences of any word of W between positions 1 and y — 1. O

LEMMA 2. The probability q;;(y) is

(2.2) 05 (y) = eii(kj —y)mi(k; —y + 1,k;)I(y < k;)
+7r(y ks +1)(wi,kia wj,l)Tj(27 k])ﬂ(y > k])

PROOF. The first term of the right hand side considers the case where w; overlaps
w; (y < k;)and the second term considers the case where it does not (y > k;). O

Loy 3. The generating function f5(t) = Xy 4 ()t
o3 48]

where g;;(t) = ZuZl e (Wi sy Wy, )™

ProOOF. Multiplying the left side of equation (2.2) by #¥ and summing over all
positive y’s, we get for f;;(¢):

Z Eij(kj - y)Tj(kj —-y+ 1, kj)ty + Z W(y—kj+1)(wi,ki,’w]"l)Tj(2, k’j)ty
= y2k;
= tkj Z Eij(Z)Tj(Z + 1, kj)t_z + Tj(2, kj)tkj_l Z 7T(u) (wi,ki,wj,l)t“
z=1 u>1
k; s Eij(z) —z 1 (u) u
=t JTj(Q,kj) Z Tj(Q,Z)t +-EZ7K’ (wi,ki,wj,l)t

z=1 u>1

and the lemma is proved since e;;(u) = 0 for v > min(k;, k;). O
If we consider the (m xm) matrices F'(¢), D(t) and G(¢) with respective general terms

fij(t), di;(t) and g;;(t), and the m-diagonal matrix T'(t) with general term 7;(2, k; )tk
(7 =1,...,m), we obtain the following matrix decomposition :

F(t) = [D (%) 4 %G’(t)] ().
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Considering that H(t) = [(I — IIt)~! — I] is the generating matrix of the transition
probabilities between any couple of letters of A, G(t) is the m x m generating matrix
of the transition probabilities between the last letter of each word of W and each first

letter: g;;(t) = [H(t)]wi,kiywj,l'
THEOREM 1. The generating matrices ®(t) = [¢i;(t)]; j=1,...m and F(t) satisfy
F(t) = ®t)I + F(t)]
where I is the m X m identity matriz.

PROOF. Let us multiply each side of equation (2.1) by ¥ and sum over all positive
y’s: the left term gives fi;(t), the right term gives ¢i;(t) + >~ du(t) f1;(t) and the
theorem is proved. O ’

A consequence of this theorem is that, if ¢ is such that [I + F(t)] is invertible, one

has
(2.3) ®(t) = F(t).[I + F(t)] .
It is hence of a great importance to know if [T+ F(t)] is invertible. Since F(t) is a matrix
of rational functions, the determinant of [I + F(¢)] is also a rational function. Therefore
it has a finite number of poles and roots and [I + F(t)] is invertible for every ¢ except a
finite number. Note that F(0) = 0 and F(1) is not defined.

Since ®(t) is a matrix of rational functions, we can consider that it is characterized
by all its coefficients which may be calculated by the aid of (2.3) on any open interval
containing no pole and no root. From now on, we shall consider that ®(t) is known. The
following corollary is a direct application.

COROLLARY 1. The probability generating function ¢;e(t) of the distance Y;, be-
tween an occurrence of w; and the next occurrence of any word of W is ¢ie(t) = ¢,(¢).1
where ¢,(t) denotes the i-th row of ®(t).

PROOF. ¢;e(t) is defined by ¢ (t) = - 51 Pie(y)t¥ where pia(y) is the probability
that the next word of W occurs y letters after w; : p;o(y) = Z;nzl Dij(y) = Pr{Xpn41 —
Xn =y | In = i}. It is clear that ¢u(t) = 300, 3o o1 Pty = 370, ¢i(t) =
é,(t).1.0

COROLLARY 2. The generating function of the p,;(y) is ¢y;(t) = v.®;(t) where

®;(t) is the j-th column of ®.
The generating function of the pye(y) is

¢uo (t) = l/.@(t) 1.

PRrROOF. The first part of the corollary is obvious since py;(y) = Y, v(¢)p;;(y). The
second comes from pye(y) = >, py;(y). O

Sequence with a given beginning. Corollary 2 can be applied to the particular case
where the sequence begins with one of the words of W, say w;. In this case we shall
consider the distribution » = [1,0,...,0].
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If the sequence does not begin with a word of W but with some other word wg, we
can apply the following result.

COROLLARY 3. The generating vector ¢y(t) = [Po1(t), . .., dom(t)] satisfies
$o(t) = Fo(H)I — B(2)].

Proor. For the generating functions, equation (2.1) is equivalent to f;;(f) =
$ij () + D falt)di;(t). Here we consider i = 0,...,m and j = 1,...,m since wp
is only taken into account as a beginning word. Therefore, Theorem 1 can be extended

as follows
501 6] . [
[F(t)] = {@@)}*[ﬁ(ﬂ}@“)

and the corollary is proved. O

2.3 Probabilities and moments
Several elementary results can be derived from the preceding theorems and lemmas.

Transition probabilities between words. Since }~ -, pij(y) = Pr{lpny1 = j | I, = i},
¢i;(1) is the probability that w; is the first word of W to occur after w;. It is therefore
the transition probability from w; to w;:

8(,7) = Pr{lp41 =j | I = i}

and the transition matrix S = [s(4, §)]i j=1,....m is § = ®(1).
The stationary distribution of § can produce a particular distribution v.

Moments of the distances. 1t is well known that the expectation and variance of a
random variable with generating function 9 are respectively %’(1) and 9" (1) +’(1)[1 -

P'(1)].

The generating function of the distance between an occurrence of w; and the next
occurrence of w; given that w; is the first word of W to occur after w; is ¢;;(t)/s(4, 7).
These conditional expectation and variance are easy to derive from ¢/;(t) and ¢;(t).

The moments of Y, can also be derived using Corollary 2.

Computation of the probabilities. The probabilities p(y)’s can be computed using
- the Taylor expansion of ¢(¢) which needs the computation of the y-th derivative of $(t)
at t = 0. A more efficient way is to obtain a finite recurrence relation between the p(y)’s
using the fact that ¢(t) is a rational function. We have used this method to compute
p(y) for y = 1 to more than 30000 in a few minutes on a PC.

3. r-scans

r-scans have been used by Karlin and Macken (1991) in a genome analysis context
to study the homogeneity of the distribution of a motif along a sequence. It is defined
as the distance between an occurrence and the r-th next:

Y™ = Xpir — X
It is clear that its distribution depends on n only through I,,.
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3.1 Ezact distribution
Let us now consider the r-scan Y;" between an occurrence of w; and the r-th next
occurrence of any element of W. Let us denote

Py(®) = Pr{(Xntr = Xo = y) N Ingr = j | In = i}
and the corresponding generating function ¢;; (t) = Zyz . Pzrj(y)ty-

THEOREM 2. The generating function matriz ®" (t) of general term ¢7;(t) is

@"(t) = [@()]".

Proor. Let us proceed by reclurrence and assume that the theorem is true up to
r—1. One has p[;(y) = 32, > 0_) pu(z)plrj"l(y — z) s0 ¢7;(t) is equal to D% [3° o,

Pu(2) ][y a i (4 — 2)0 7] = T2 ¢u(t)ef (1) so @7(t) = B(1)@" (). O
The following two corollaries come straightforward.

COROLLARY 4. The probability generating function ¢L(t) of the r-scan Y] is
() = ¢ (t).1
where @ (t) is the i-th row of ®"(t).

COROLLARY 5. Let v be a distribution over W. If the first word is distributed
according to v, then the probability generating function of the pl,(y) is

T (t) = .87 (t).1.

First word wo given. Using the notation of Corollary 3 and the properties of the
generating functions of sums of independent random variables, the following corollary is
obvious.

COROLLARY 6. If the first word is wyg, the generating function of the p§,(y) is

Bhe(t) = B (). "1 (2).1.

Computation of the probabilities. The probabilities p™(y)’s could be computed us-
ing ¢"(t) but this appears to lead to numerical instability so it seems better to use the
r-th convolution of the p(y).

3.2 Chen-Stein approzimation for extremal r-scans

Dembo and Karlin (1992) have obtained results (Theorem 1) on the distribution of
minimum (and maximum) 7-scans using a Poisson approximation. Let N~ (a) denote
the number of r-scans shorter than (or equal to) a in a sequence of n distances: they
approximate the distribution of N~ (a) by a Poisson distribution with parameter A(a) =
(n —r + 1) Pr{Y¥; < a}. Using the Chen-Stein method, assuming that the distances
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Y are i.id., they give an upper bound b(a) for distance in total variation between the
distribution of N~ (a) and a Poisson distribution P[A(a)]:

r—1

b(a) = (1—e @) [2(r — 1) Pr{Y, <a}+2) Pr{¥;<a}|.

t=1

Using the exact distribution of Y,. given above, we can calculate Pr{Y, < a} for
any r and any a, and then calculate the exact values of A(a). r-scan can be used to
detect region with a high (or low) density of a family of words. Usually, one computes
the threshold a* such that exp[—A{a*)] = « (where « is a given risk). If the smallest
r-scan is smaller than a*, it is said significantly small.

Case of a renewal process. The i.i.d. hypothesis required for the validity of the
Chen-Stein bound does not hold in the general case. This hypothesis is true if the semi-
Markovian process is a renewal process, e.g. when the distribution of Y;; does not depend
on %, as in the example proposed in Subsection 4.2. In this case, we may calculate the
Chen-Stein bound b(a) and derive two more thresholds:

alug : xD[-A(@)] +b(a) = @, 0y : exp[—A()] — b(a) = o

It is only possible to arrive at a conclusion when the smallest r-scan is either smaller than
aj¢ or larger than af,,. When b(a) > exp[~A(a)] for some a > a*, it may be impossible
to obtain ag,,, which is not defined in this case. According to our experience, this happens
fairly often, especially when the ratio between the total number of occurrences and r is
not sufficiently high.

4. Applications

4.1 Sooner waiting time problem

The sooner waiting problem has been extensively studied. For example Koutras and
Alexandrou (1997) have generating function in a sequence of trinary trials. This problem
considers ‘pure words’ i.e. words made of repetitions of the same letter. The most often
studied case is the success and failure runs where A = {0,1} and W = {(1---1), (0---0)}
~with |wy| = k1 and |wg| = ko. Our results can be applied to deal with any size of
alphabet. To calculate the generating function we only need the transition matrix II,
the overlapping polynomial matrix D(t) and the diagonal matrix T'(¢).

For example, in the simplest case of success and failure runs, we get

7(0,0) 11 - [[7;((00’ (g)tg;o 0
Die)= . | Lo, g
DT et 1
and k ko—1
T - [ 00" 0

0 thi(1, 1)k=1 |
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0.4 4

cumulated
probablity

Fig. 1. Distribution of the distances Y;;’s between the different versions of the CHI motif of
H. influenza.

4.2 Genome analysis: CHI of Haemophilus influenza

We study here the Crossover Hotspot Initiator of Haemophilus influenza which is
known to protect the genome against restriction enzymes and is therefore expected to
be particularly frequent and regularly spaced.

There are m = 4 versions of this pattern which are all k; = 8 letters long:

W = {gatggtgg, gctggtee, ggtegtes, gttggtee}-

It can be noted that ws overlaps itself and the other words with 1, 2 and 5 letters.
The other words overlap each other with only 1 letter. The overlapping structure does
not depend on the first word, the overlapping polynomials di; (t) and the generating
functions ¢;;(t) do not depend on i 50 Pie(t) = Pue (t) and the probability distribution
function (pdf) of the distance and of the r-scans do not depend on the first word. Hence
the distances are i.i.d. and we are in the renewal case described in Subsection 3.2. For
the same reason, the generating matrix ®(t) and the transition matrix S have all their
rows equal; any row of S gives its steady distribution ».

The model. Assuming that the sequence is generated according to a first order
Markov model (adjusted to the sequence) with transition matrix

0.3827 0.1547 0.1639 0.2988
0.3429 0.1874 0.2156 0.2541
0.2693 0.2641 0.1974 0.2692
0.2302 0.1595 0.2202 0.3901

the expected distance between two occurrences is E(Y,,) = 32535.8 and the standard
deviation is 32916.6. Under this model, the generating functions ¢;;(t) are all ratios of
two polynomials with degree 10 and the transition probabilities between words s(%, 5)
are simply given by the steady distribution v:

v = (0.2632 0.2195 0.1738 0.3435).

The cumulative probabilities >, _, . P (z) are given in Fig. 1. Remember that they
are not cumulative distribution functions since they do not reach 1: the asymptotic
values of this distributions are equal to s(i,j) which equal in this case to v(j). We see



904 S. ROBIN AND J.-J. DAUDIN

2.0
(10';;
1.5
sup Poisaon
1.0 yInf Poisson
0.5 J
'\ A 95%
174 Thea
0.0 4 - T T T
0.0 05 10 15 20

poskion (Mbps)

Fig. 2. Density of the CHI motif using 3-scans in the genome of H. influenza: mean = 1/IEY,
95% = r/yggo, Where Pr{¥Y" < yl.o } = 95%, Poisson = r/a*, inf Poisson = 7/ag,p, sup Poisson
=r/af;; (the highest peak at position 0.97 Mbps is truncated, its real height is 4.81073).

that the p;3(y)’s are superior to all other p;;(y)’s for very small y: this is due to the fact
that ws has more chance to overlap other word.

The data. The complete genome of H. influenza is 1830022 base pairs (bps) long.
The number of occurrences of w;, ws, ws,w, are respectively 28, 56, 76 and 63 so there
are 223 occurrences and n = 222 distances between them. The mean distance is 8 087.4
bps, the standard deviation 9544.1 bps, the smallest distance 3 bps (observed 8 times)
and the greatest 70722 bps. The distance 3 is necessarily obtained by an overlap of ws
on another word.

Use of r-scans. The heterogeneity of the CHI motif in the genome can be checked
using 3-scans (see Fig. 2): the 5% threshold of the simple Poisson approximation is
a* = 2744 (r/a* = 1.091073) but, taking the error bound b(a) into account we get
afye = 2537 (r/af,; = 1.18107°) and a3,, = 3071 (r/af,, = 0.981073). We observe 4
peaks exceeding the upper bound for the density r/a;,; and one candidate for which we
can not decide. Two interpretations of this result can be given:

e The peaks reveal real rich regions for the CHI motif.

e The general frequency of the CHI motif is much higher than expected under
- the M1 model. In this case, the peaks may be simple consequences of the departure from
the model.

In this case, the second interpretation seems more valid since the density is every-
where higher than expected. The mean and variance of a 222-scan under the M1 model
are respectively p = 7223007 and o = 490445; the distance between the first and the
last occurrence of the motif is 42?2 = 1795407. Using the central limit theorem for Y222,
we get a gaussian score of —11.1, which is highly significant.

The upper bound ag,;, can not be computed for the 4-scan because e~ — p(q)
turns out to be negative.
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